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Abstract 

The measurement problem of Quantum Mechanics reflects the tension between the 

deterministic evolution of wavefunctions and their random collapse caused by 

experimental observations. Here we argue that, in the Hamiltonian picture of quantum 

dynamics, wavefunction collapse follows from the destruction of adiabatic invariance on 

ultrashort time scales. Once adiabatic invariance is lost, Planck’s constant becomes 

meaningless, and Quantum Mechanics breaks down. We also suggest that, in the long-

time limit, action quantization is a result of Arnold diffusion, a process describing the 

instability of nearly integrable Hamiltonian systems with more than two degrees of 

freedom. 
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1. Adiabatic invariants in Hamiltonian dynamics 

Following [1-2], consider a one-dimensional system characterized by the 

Hamiltonian ( , ; )H q p  , which is dependent on a time-varying parameter 

( )t = . Assume that the system undergoes a finite periodic motion with 

period 0T  and that the parameter   is slowly varying during 0T , that is,  

 0d dt T   (1) 

If   were constant, the motion of the field would be strictly periodic with a 

constant energy 0( )E E T= . Since   is slowly varying, averaging the energy 

rate over 0T  yields the approximation,  

 
dE d H
dt dt






=


 (2) 

For fixed E  and  , the canonical action of the system is the integral taken 

over the closed path C  in phase space, namely, 

 
2 2C

I
pdq dpdq

 
= =   (3) 
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By (1) – (3), the rate of the action average is an adiabatic invariant defined by   

 0
dI
dt

=  (4) 

To fix ideas, consider a one-dimensional oscillator with parameter 

independent Hamiltonian,  

 2 2 21
( , ) ( )

2
H p q p q E= + =  (5) 

The phase space trajectory of (5) is an ellipse, and the adiabatic invariant is 

simply, 

 0

2

ETE
I I

 
= = =  (6) 

In this case, (1), (4), (6) are held by default, and the canonical action (6) 

recovers the Lorentz invariant of classical and quantum field theory. We next 

proceed with the following couple of assumptions: 

A1) The evolution of (5) is monitored using a measurement signal ( )t  

playing the role of external parameter. 
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A2) ( )t  represents a piecewise continuous function of period 2L .  

The overall Hamiltonian of the system oscillator plus signal can be presented 

as, 

 2 2 21
( ) ( , ; ) ( )

2
H p q g f q p h  = + + +  (7) 

where f  and  h  are analytic functions and the oscillator is assumed to couple 

weakly to the signal, that is, 

 1g   (8) 

The Fourier series decomposition of the signal is given by 

 0

1
( ) ( cos sin )

2 n n n n

a
t a t b t  


 + +  (9) 

in which 

 n
n
L


 =  (10a) 



5 | P a g e  

 

 
1

( ) cos
L

n nL
a t tdt

L
 

−
=   (10b) 

 
1

( )sin
L

n nL
b t tdt

L
 

−
=   (10c) 

If time is counted in discrete intervals with 0n ntt = , invoking the uncertainty 

relations of Fourier analysis gives 

 1 2n nt    (11) 

where 

 ( )n L n  =   (12) 

and 

 0nt t n =   (13) 

By (11), ultrashort time measurements ( 0 0t → ) imply an unbounded 

uncertainty in the number of terms entering (9), n → . Hence, taking 

0nt = , renders both the signal ( )t  and its time rate undefined. As a result, 
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(1) turns into an ill-defined condition, ruins the adiabatic invariance 

mandated by (4) along with the very meaning of Planck’s constant.   

Although the above analysis has focused on classical Hamiltonian dynamics 

of periodic systems, its extrapolation to a quantum mechanical context is 

straightforward.  

2. Arnold diffusion and action quantization 

Before delving into the topic of Arnold diffusion, it is worthwhile recalling 

a few important concepts of classical Hamiltonian dynamics.  

The formalism of action-angle variables consists of replacing the generalized 

coordinates and momenta through the transformation [1-2] 

 ( , ) ( , )q p I→  (14) 

Action-angle variables are canonically conjugate and introduced through 

the generating function  

 ( , ) ( , )
q

S q I p q H dq=   (15) 
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The action integral and its conjugate angle take the form, 

 
1

(
2

( , ) )
C

I I Hp q H dq


= =  (16a) 

 
( , )S q I

I



=


 (16b) 

Since I  is a cyclic variable, the corresponding drift of (15) per each period of 

I  amounts to [1]   

 2S I =  (17) 

Consider a nearly integrable periodic system with N  degrees of freedom 

defined by the Hamiltonian [3-4] 

 0 1( ) ( , , )H H I H I  = +  (18) 

where 00     is a small perturbation and 0( )H I  is the unperturbed 

Hamiltonian, taken to be fully integrable in the limit 0 = . The frequency of 

the unperturbed motion is determined by 

 0( )
H

I
I




=


 (19) 
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For 
0

1   , the equations of motion read 

 
( , )

0
H I

I





= − =


 (20a) 

 
( , )

( )
H I

I
I


 


= =


 (20b) 

in which , NI  R . The solution of (20) lies on invariant N - tori residing in 

the phase-space of dimension 2NR . For 2N  , all solutions are stable since 

2 -tori confine trajectories on a 3 -dimensional energy surface. This is no 

longer the case for 3N   where, according to the Arnold diffusion conjecture, 

the action of nearly integrable systems changes by (1)O  over a sufficiently 

long time.  Fig. 1 graphically explains why phase-space trajectories are 

confined by lines (so-called KAM surfaces or tori) in a 2-dimensional space 

but wander off in 3 or more dimensions [3].  

Introducing the assumption   

 0 1 1 1,H c H c   (21) 
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where 1c  is a positive constant, and taking the unperturbed Hamiltonian to 

represent a quasi-convex function of the action variable, the following 

condition holds [4] 

 1 (2 )
1( ) (0) NI I t I C = −   (22) 

over sufficiently long-times satisfying  

 1
2

1
20 exp( )

N

C
t



−

   (23) 

 

Fig. 1 Phase-space trajectories escaping KAM surfaces in 3 dimensions [3] 
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In (22) and (23), 1 2,C C  are also positive constants. By (17), the corresponding 

drift in action satisfies the inequality 

 1 2
1 )( ) 2 ( NS I O C   =   (24) 

Normalizing (24) to 1C  confirms that the drift in action is of (1)O , which 

naturally replicates the process of action quantization for 1N  . The 

transition from classical to quantum behavior is expected to occur when  

 
1

2 1
2

0 exp ( )
N

C
t



−

  ; 1N      (25) 

leading to  

 ( ) 2 (1)S I O  = =  (26) 

It follows from these considerations that action quantization (and its 

associated Planck constant) may be mapped to the long-time behavior of 

(26), as applied to large ensembles of oscillators in near equilibrium 

conditions. 
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