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Abstract

This paper explores the basic principles of the special theory of relativity, for-
mulated and developed mainly by physicists including but not only Albert Einstein,
Hendrik Lorentz, Hermann Minkowski, and Henri Poincaré. Concepts such as Galilean
transformations, Lorentz transformations, time dilation, length contraction, and ten-
sors will be explored. This paper also discusses Maxwell’s equations and their impli-
cations for special relativity.
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1 Basics of Spacetime and Galilean Relativity

1.1 Reference Frames and Coordinate Transformations
Reference frames form the foundation of special relativity and are crucial to understanding
its associated principles and transformations. A reference frame is an abstract coordinate
system defined or characterised by mathematically and physically defined geometric points
with a non-changing orientation, scale, and origin. A reference frame is used to define
properties such as velocity, position, and distance with respect to an observer within that
frame. An inertial reference frame is a reference frame where there is no acceleration and
Newton’s first law holds. We will now abbreviate the terms “reference frame” and “inertial
reference frame” as “RF” and “IRF”, respectively

When we change from one RF to another, we are applying a transformation. There are
different types of transformations, including rotation, translation, and shearing. Let us first
consider a 2D Cartesian coordinate system representing an RF S on which a point P is
plotted, with O denoting the origin with coordinates (0, 0), like so:
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Figure 1: A 2D Cartesian coordinate system representing the RF S with a point P .

We may specify the point P with coordinates (4, 3) — this tells us the position of P on
a Cartesian plane with respect to the origin in S. However, if we rotate the Cartesian plane
clockwise by a certain number of degrees to form a new RF S ′, we will not get the same
coordinates for P . Figure 2 illustrates this.

We can see from Figure 2 that P has the coordinates (0, 5) in S ′, which is different from
the coordinates of P in S. Therefore, we can see that position is relative and not absolute
under a rotation transformation. However, we can see that the distance between the origin
and P is absolute. To calculate this, we can use the formula

ℓ =
√
x2 + y2, (1.1)
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Figure 2: A 2D Cartesian coordinate system representing the primed S ′ (darker) and un-
primed S (lighter) RFs with a point P .

where ℓ denotes the distance between O and P , x denotes the x-coordinate of P with respect
to O in an RF, and y denotes the y-coordinate of P with respect to O in the same RF.
Plugging in the coordinates for P in S and S ′, respectively, we get

ℓ =
√
42 + 32 = 5

in S and

ℓ′ =
√
02 + 52 = 5

in S ′. Hence, we can see that the distance between O and P , as well as that between any
two points we so choose on a Cartesian coordinate system, remains absolute under a rotation
transformation. We say that distance, under a rotation transformation, is invariant. It is
also invariant under a translation transformation (where we slide or move the coordinate sys-
tem). An invariant is a quantity that remains absolute or unchanged after some coordinate
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transformation.
Note that properties such as the invariance of distance and relativity of position also

apply to other types of coordinate systems, such as polar and cylindrical coordinate systems.
However, we will mainly be dealing with Cartesian coordinate systems in this paper for
convenience.

1.2 Spacetime Diagrams and Galilean Transformations
The study of relativity (Galilean and special) deals with what events look like and how
objects appear to move or behave in different IRFs (or from the perspectives of different
observers) as time progresses. Hence, we need a way to represent this. This is where a
spacetime diagram comes in — this is an abstract coordinate system that allows us to plot
the movement and appearance of different objects and events within an arbitrary RF. More
specifically, a spacetime diagram is any graph that represents various objects’ positions
through time. We can compare it to a flipped position-time graph, where a horizontal axis
represents position x (instead of time t), a vertical axis represents time t (instead of position
x), and O represents the origin. This is shown in Figure 3.
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Figure 3: A 2D spacetime diagram.

Before special relativity, there was Newtonian or Galilean relativity. This theory of
relativity was built upon the idea of absolute space and universal time, that is, Galilean
relativity relies on the postulates that all objects are either moving or completely at rest
with reference to absolute space (i.e. absolute motion) and that time ticks with equal pace
for any observer in any IRF. Galilean relativity also states that the laws of motion are
identical in any IRF. Finally, it states that all objects in an IRF can move relative to each
other in any form under uniform motion (i.e. motion in a straight line with constant speed),
implying that the speed of light can be surpassed — however, as we will discover in special
relativity, this is not the case.
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As mentioned in Section 1.1, changing between different RFs involves applying a trans-
formation. It therefore follows that a Galilean transformation is applied to change between
different IRFs in Galilean relativity. We often deal with relative motion between objects with
constant velocities in Galilean relativity, hence, only spatial coordinates (in our 2D case, the
x coordinate) vary under a Galilean transform.

To illustrate, consider a hypothetical scenario set in a park. Let us assume that a man is
standing motionless relative to the ground; we will denote the man as A. Let us also assume
that a cat, which we will denote as B, is moving away from A at a constant velocity v1 of
0.5m/s to the right relative to A. Using a spacetime diagram, we can plot the positions of
A and B as time goes by. We will measure position x in metres and time t in seconds.

Let us first consider the spacetime diagram in A’s IRF, which we will denote as S. We
can see that A is always at x = 0 for whatever value of t since A does not appear to be in
motion with reference to himself. From A’s perspective, at t = 1, B is at x = 0.5; similarly,
at t = 2, B is at x = 1. By following this pattern, we see from Figure 4 that the points
(represented by a series of dots) connect to form a line, representing B’s motion at a velocity
v of 0.5m/s to the right relative to A. The line is called a worldline, which is a curve or
path in spacetime that an object traces. We can hence see from above and Figure 4 that
B’s wordline in S is described by the equation

x = vt. (1.2)
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Figure 4: Worldlines of A and B in A’s IRF S.
1Throughout this section on Galilean relativity, we will denote velocities without making them bold

(which is contrary to the convention for denoting vectors in physics). While velocity in general is a vector,
since we are only dealing with one dimension of space and uniform motion here, we may treat velocity as a
scalar. As we move onto special relativity and introduce more dimensions, in some cases, we will use proper
denotations for vectors and scalars.
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Let us now consider the spacetime diagram from B’s perspective, in which a new pair of
axes describe the motion of A and B through spacetime in B’s IRF, which we will denote as
S ′. It is evident that B always remains motionless relative to itself. Thus, using a new pair
of axes (the x′- and t′-axis, representing position and time in S ′, respectively), we see from
Figure 5 that B is always at x′ = 0 for any value of t′. Here, we trace out B’s worldline in
S ′. Since from A’s perspective, B moves away from him at 0.5m/s to the right, it follows
that from B’s perspective, A moves away from it at 0.5m/s to the left. Therefore, we can
see that at t′ = 1, A is at x′ = −0.5; at t′ = 2, A is at x′ = −1. Following this pattern, we
trace out A’s worldline in S ′. This is also shown in Figure 5. We can hence see from above
and Figure 5 that A’s wordline in S ′ is described by the equation

x′ = −vt′. (1.3)
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Figure 5: Worldlines of A and B in B’s IRF S ′.

Note that a dot or point on a spacetime diagram that represents its present position and
time away from the origin is called an event. Also, note that from Figures 4, 5, and 6, we can
see that when we choose whose RF and worldline we are considering, the worldline always
lines up with the time axis (i.e. in their own IRF, their position is always at x = 0). This
must be true because any moving object is always motionless with respect to itself.

From Figures 4 and 5, we see that the change in position between each corresponding
event at the same time from A’s and B’s worldlines, which we will denote as ∆x, increases
with time according to their relative and constant velocity v. For instance, in both IRFs
S and S ′, at t′ = t = 1, ∆x = 0.5; at t′ = t = 2, ∆x = 1, etc. Hence, another way
we can transform S into S ′ is by shifting both A’s and B’s worldlines to the left, allowing
B’s worldline to lie on the vertical t′-axis, as shown in Figure 6 — that is, with a positive
relative velocity v associated with a left shift. Both ways of transforming between IRFs given
a constant velocity are valid; it does not matter as long as the worldline under question lies
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on the time axis and the other worldlines are shifted accordingly. However, the convention
in special relativity is to shift the coordinate system (representing its corresponding IRF) to
the right with a positive v, leaving the worldlines fixed.
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Figure 6: Worldlines of A and B in B’s IRF S ′.

We now know what a Galilean transformation looks like given a constant relative velocity
v and two moving objects each in an IRF. With all the information above, we can formulate
eight equations that describe a Galilean transformation from an unprimed IRF to a primed
IRF and back.2 Taking the hypothetical park scenario described above, it is evident that

t′ = t, (1.4)

where t′ and t are the time coordinates for a given event in S ′ and S, respectively, since for
any two objects moving relative to each other at some constant velocity each in an IRF, time
runs at the same pace — this relates to the concept of universal time in Galilean relativity.
We can also see that

x′ = x− vt, (1.5)

where x′ is the x-coordinate in S ′, x is the x-coordinate in S, and v is the relative velocity
between two objects each in an IRF. Equation 1.5 is true because an object with its motion
described by coordinates in S ′ is displaced from another object with its motion described
by coordinates in S by their relative velocity multiplied by the time elapsed. We may also
think of Equation 1.5 as the “old” coordinates in the unprimed frame “becoming” a new
coordinate under a Galilean transformation, in which the set of all such coordinates under

2The terms “primed” and “unprimed” used throughout this paper refer to coordinates, RFs, or other
mathematical objects alike that have and have not undergone a coordinate transformation, respectively.
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the same transformation make up a new primed coordinate system or IRF. Regarding the
two other axes of space, that is, the y- and z-axis, we also consider them to be equal to their
primed counterparts, as in

y′ = y (1.6)

and

z′ = z. (1.7)

Together, Equations 1.4, 1.5, 1.6, and 1.7 describe a Galilean transformation from an
unprimed IRF to a primed IRF.

We may also represent a Galilean transformation in 2D (that is, only with the x and t
coordinates) from an unprimed IRF to a primed IRF using matrix notation, which is3(

x′

t′

)
=

(
1 −v
0 1

)(
x
t

)
=

(
x− vt

t

)
. (1.8)

If we wish to transform from a primed IRF back to an unprimed IRF, we simply add vt
to both sides of Equation 1.5, giving

x = x′ + vt, (1.9)

and leave all other components the same, that is,

y = y′, (1.10)

z = z′, (1.11)

and

t = t′. (1.12)

Together, Equations 1.9, 1.10, 1.11, and 1.12 describe an inverse Galilean transformation,
which is a Galilean transformation from a primed IRF to an unprimed IRF.

We can also represent an inverse Galilean transformation in 2D from a primed IRF to an
unprimed IRF in matrix notation, which is(

x
t

)
=

(
1 v
0 1

)(
x′

t′

)
=

(
x′ + vt′

t′

)
. (1.13)

In Galilean relativity, velocity is also additive. To illustrate, consider three objects, A,
B, and C, each in an IRF. Let us say that A is a man standing motionless relative to the

3See Appendix A for matrix multiplication.
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ground on a road. On the same road is B, a driver in a car moving away from A at a
constant velocity v of 10m/s to the right relative to A. B then throws out a ball C moving
away from B at a constant velocity u of 5m/s to the right relative to B. Since velocity is
additive, we can see that the velocity u′ at which the ball travels relative to A is given by

u′ = v + u = 10m/s + 5m/s = 15m/s.

2 The Special Theory of Relativity

2.1 The Invalidity of Galilean Relativity and Einstein’s Postulates
The core of special relativity involves two postulates proposed by Einstein. Einstein’s first
postulate is that the laws of physics are identical in any IRF. For instance, if you were to
throw a ball up and then catch it, the laws of physics that describe this event will always be
the same whether you are standing motionless relative to the ground, sitting on a bus moving
at some constant velocity, or walking in a park at some fixed velocity. This is because all
such events take place in an IRF.4

We have seen that in Galilean relativity, velocity is additive. So let us now consider
another hypothetical scenario where we have three objects, A, B, and C, each in an IRF.
Let us say that A is a man in a train station standing motionless relative to the platform.
Let us also suppose that a passenger B holding a torch is sitting in a train and moving away
from A at a constant velocity v of 1 × 108 m/s to the right relative to A.5 Finally, a beam
of light C is shone from B’s torch which moves away from B at a constant velocity u of
3 × 108 m/s to the right relative to B.6 In Galilean relativity, the velocity u′ at which the
beam of light travels relative to A is given by

u′ = v + u = 1× 108 m/s + 3× 108 m/s = 4× 108 m/s. (2.1)

We can plot a spacetime diagram in A’s and B’s respective IRFs to see how the motion
of the beam of light appears to each of them, in which position will be measured in x× 108

metres. Figures 7 and 8 illustrates this.
One might think that Equation 2.1 along with Figures 7 and 8 correctly describe the

relationship between the relative motion of C to A and B, but they would be wrong. They
would be wrong because the speed of light (in free space or a vacuum) is always equal to
c = 3× 108 m/s to any inertial observer. This is known as Einstein’s second postulate, which
states that the speed of light in free space remains invariant under transformations between
IRFs.

4We will assume that gravitational acceleration is equal in all hypothetical scenarios given here.
5Since this is a hypothetical scenario, yes, we will assume that the passenger and train can reach such a

velocity.
6To be pedantic, it should be 299 762 458m/s, but we will approximate it and write 3× 108 m/s.
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Figure 7: Worldlines of A, B, and C in A’s IRF S.
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Figure 8: Worldlines of A, B, and C in B’s IRF S ′.

There are quite a few experimental and theoretical pieces of evidence for the constancy of
the speed of light in any IRF. One of the most famous is the Michelson-Morley experiment.
It was an experiment performed in 1887 by physicists Albert A. Michelson and Edward
W. Morley in an attempt to measure the relative motion of the Earth to the hypothetical
“luminiferous ether”. The physicists found no difference in the speed of light, whether mea-
sured in the direction of Earth’s motion or other directions. This disproved the existence of
a luminiferous ether and contradicted Newtonian physics.

From this, we can see that Galilean transformations do not accurately describe the motion
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of objects in IRFs at velocities or speeds close to the speed of light. Hence, we require a
better and more accurate description of the relationship between transformations of IRFs.

2.2 Relativity of Simultaneity
We have seen that the speed of light does not appear to be identical in different IRFs when
we apply Galilean transformations. Therefore, we require another kind of transformation
that allows the speed of light to remain the same no matter the IRF.

Before we continue, let us reconsider the units we will use for our spacetime diagrams.
Assuming time t to be measured in seconds, if position x were to be measured in metres,
then the wordline of a rightward-travelling light beam would appear to be almost entirely
horizontal — this is not what we want. In special relativity, the convention is for the
worldline of a light beam to travel 1 unit of distance in 1 unit of time. Hence, what we want
— and what would be more convenient and illustrative — is to have a light beam trace out
a worldline at a 45◦ angle to both axes on a spacetime diagram. To achieve this, we will let
each unit of distance be the distance that light travels in 1 second, which is 3× 108 m,7 also
known as a light-second (ls). Therefore, the slope m of the worldline of a rightward-travelling
light beam would be8

m =
∆x

∆t
=

3× 108 m

1 s
= c. (2.2)

We see from Equation 2.2 that despite the worldline of a rightward-travelling light beam
being at a 45◦ angle to both axes (in the first quadrant) on a spacetime diagram, the slope
is not 1 — it is c. Hence, to make its slope 1 — and to make the units of position and
time consistent9 — we multiply t by c, giving us a ct-axis with units of length (measured in
light-seconds) instead of just a t-axis. We will also say that c = 1 when using the relativistic
unit of light-seconds. This is illustrated in Figure 9.10 Now, the velocity or speed of any
object in an IRF will be a dimensionless quantity since we have a quantity in light-seconds
divided by another quantity in light-seconds.

From Figure 9, we can also see that the worldline of a rightward-travelling light beam is
given by the equation

x = ct, (2.3)

and from this, we can see that the slope is indeed 1 since
7Note that this is also equivalent to c× 1 s, where c = 3× 108 m/s (the speed of light in free space).
8Since time is plotted on the vertical axis and position is plotted on the horizontal axis, to obtain the

slope of any worldline on a spacetime diagram, we take the “run over rise”, which is equivalent to the change
in position divided by the change in time, as shown in Equation 2.2.

9For reasons we will discuss later in this section, having a ct-axis instead of a t-axis is much more
convenient and simplifies important calculations.

10From now on, we will omit the numbers and units labelling each axis on a spacetime diagram and assume
each grid spacing (representing units of position and time on their respective axes) is separated by an interval
of 1 ls. We will also omit the majority of events plotted on worldlines except for those of significance. Lastly,
we will omit the labelling of the origin and only represent it with a black dot.
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x

ct
x = ct

Figure 9: A revised 2D spacetime diagram on which the wordline of a light beam travelling
to the right with respect to the origin is plotted.

m =
∆x

c∆t
=

1 ls

1 ls
= 1. (2.4)

You now might wonder how we are supposed to measure time in units of length — this
is entirely possible and valid. For instance, a friend might ask you how much longer it will
take you to arrive at their home. You might say you are 500m away. Assuming that you
travel at a constant speed of 5m/s on a bike, you and your friend would then deduce that it
would take you another 500/5 = 100 s until you arrive. Hence, 500m can be thought of as
the distance you travel on a bike in 100 s assuming a constant speed of 5m/s.

Similarly, assuming time t runs at intervals of 1 s, each unit along the ct-axis equals
3 × 108 m (or 1 ls). We can therefore say that 3 × 108 m (or 1 ls) of time is the amount of
time it takes a light beam to travel 3× 108 m (or 1 ls) of distance.

With this in mind, let us discuss the geometric interpretation of the Lorentz transfor-
mation. Before anything, we can already have a fairly good guess at what the Lorentz
transformation might look like; the key is to use Einstein’s second postulate, which states
that the speed of light remains invariant under transformation between different IRFs. To
achieve this, when we transform between two IRFs, on their respective spacetime diagrams,
we must make the angle between the wordline of a light beam and each axis equal, as we
will see later on in this section.

We must also clarify what we mean by two events being simultaneous and how we can
measure it. When two events are simultaneous, they happen at the same time according to
the observer’s RF. Since the speed of light is indifferent to any observer in an IRF, we may
use it to define simultaneity.

Suppose we have three people A, B, and C. A is standing motionless relative to the
ground, B is sitting in a train that travels away from A to the right at 1/3 the speed of
light, and C is also sitting in a train that travels away from A to the right at 1/3 the speed
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of light, but he starts at 2 ls to the right of B. Let us now suppose B sends a light beam to
C, and when C receives the light beam, he reflects it directly back to B. Figure 10 shows
the resultant spacetime diagram.

x

ct
x = 0

A

x = ct/3

B

x = ct/3 + 2

C

ct1

ct2

Figure 10: Worldlines of A, B, C, and two light beams in A’s IRF S.

From Figure 10, we see that C receives B’s light beam at ct1 = 3 and that B receives C’s
reflected light beam at ct2 = 4.5. In other words, the time it takes for the light beam sent
by B to reach C and that for the light beam to be reflected from C to B do not appear to A
as being equal. This is because in S, C appears to be moving away from the light beam sent
by B and hence appears to reflect the light beam at a later time. It also appears to A that
B receives the reflected light beam at an earlier time because B appears to move towards
the light beam.

Let us now consider the hypothetical scenario in B’s IRF. In Galilean relativity, we would
shear the spacetime diagram in S to the right in the x direction. This is shown in Figure 11.
In reality, however, this is incorrect. One of the reasons is that this method of transforming
between two IRFs contradicts Einstein’s second postulate, which states that the speed of
light is invariant to any inertial observer.

The other slightly more subtle reason requires a bit of thinking. In our hypothetical
scenario, it is mentioned that B and C travel at the same velocity to the right at 1/3
the speed of light; their worldlines only differ by their starting positions (and also by the
distance between them at each moment in time, which is constant). Therefore, B and C
appear motionless relative to each other. This means that in both B’s and C’s RFs, both
the distance that the light beam sent by B travels and the time taken to do so is the same
as those of the light beam reflected by C. As we can see, this directly contradicts A’s notion
of simultaneity since A would see the distance that the light beam travels from B to C and
back to B as well as the time taken to do so as being unequal. Therefore, we can conclude
that simultaneity is relative and not absolute.

Let ct′1 denote the time at which the light beam sent by B reaches C from their perspec-
tives and ct′2 denote the time at which C reflects the light beam to B from their perspectives.
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x′

ct′

x′ = −ct/3

A

x′ = 0

B

x′ = 2

C

ct1
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Figure 11: Worldlines of A, B, C, and two light beams in B’s IRF S ′ under a Galilean
transformation.

Since we have already established B and C would see that the time it takes for both of these
to happen is equal, we would expect that

ct′1 =
ct′2
2
.

Again, this contradicts what A would see since in his IRF, ct1 = 3 and ct2 = 4.5, from
which we can clearly see that

ct1 ̸=
ct2
2
.

Using the information above, we can construct a plane of simultaneity11 which passes
through ct′1 (which is the halfway point between the origin and ct′2) and the event where
C reflects the light beam to B. This is represented by a teal horizontal dotted line on
the spacetime diagram in Figure 12, denoted by D. Simply put, a plane of simultaneity
according to an observer is defined as the set of all events that appear to happen at the same
time in that observer’s RF. It therefore follows that multiple planes of simultaneity form the
horizontal grid lines of a spacetime diagram in that observer’s RF.

We can see from Figure 12 that IRFs transforming under Lorentz transformations have
both their x- and ct-axes sheared in such a way that the angles between each of them and
the worldline of a light beam are equal. In the following section, we will derive the actual
mathematical equations that describe both a Lorentz transformation from an unprimed IRF
to a primed IRF and one from a primed IRF to an unprimed IRF.

11Although on 2D spacetime diagrams it would be better to call them lines of simultaneity, we will stick
with planes of simultaneity instead for generality.
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Figure 12: Worldlines of A, B, C, and two light beams in A’s IRF S (lighter) B’s IRF S ′

(darker) under a Lorentz transformation.

2.3 Derivation of the Lorentz Transformation Equations
We know from Equation 2.4 that the slope of the worldline of a rightward-travelling light
beam is 1. From the hypothetical scenario mentioned in the section above, we also know
that the worldline of B (and hence the ct′-axis) is described using the equation

x =
1

3
ct. (2.5)

Equation 2.5 tells us that B travels at 1/3 the speed of light to the right relative to A.
In units of m/s, we see that B travels at v = 1× 108 m/s. However, simply writing

x = vct

or

x = vt

would be incorrect since in the first equation, the dimensions (or units) are inconsistent, and
in the second equation, we relate x with t instead of with ct. Hence, we must divide v by
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the speed of light c and obtain

x =
v

c
ct. (2.6)

Here, we will define our new quantity β as

β ≡ v

c
,

where v is the velocity of any object or observer under question. This is called the beta
coefficient, which represents the fraction of the speed of light at which the object travels.
We may hence rewrite Equation 2.6 as

x = βct. (2.7)

We can also see that the slope of the ct′-axis is β, and since the angle between the
worldline of a rightward-travelling light beam and the ct′-axis is equal to that between the
light beam and the x′-axis, the x′-axis will have a reciprocal slope of 1/β. Thus, the x′-axis
is described by the equation

x =
1

β
ct,

which, when we rearrange for ct, becomes

ct = βx. (2.8)

Recall from Galilean relativity that a Galilean transformation from an unprimed IRF to
a primed IRF is described by the equations

t′ = t

and

x′ = x− vt.

To obtain the Lorentz transformation analogues, we replace vt with βct for the x′ coor-
dinate and subtract βx from ct to obtain the ct′ coordinate, as in

ct′ = ct− βx (2.9)

and

x′ = x− βct. (2.10)

17



Note that βct represents the gap between the ct- and ct′-axes and βx represents the gap
between the x- and x′-axes. We should also note that we do not know whether the spacing
between the grid lines is unchanged after a Lorentz transformation. Thus, we will multiply
an additional gamma coefficient γ to the expressions on the right-hand side of Equations 2.9
and 2.10, giving us

ct′ = γ(ct− βx) (2.11)

and

x′ = γ(x− βct). (2.12)

To solve for γ, we can use the inverse Lorentz transformation equations, which are simply
Equations 2.11 and 2.12 but with the signs of βx and βct flipped, as in

ct = γ(ct′ + βx′)

and

x = γ(x′ + βct′).

Multiplying x′ by x, we get

x′x = γ(x− βct)γ(x′ + βct′). (2.13)

We know that the speed of light is invariant in any IRF, so for a light beam, the Lorentz
transformation must guarantee that x = ct and x′ = ct′. In other words, c = x/t = x′/t′.
Hence, substituting these in for x′ and x in Equation 2.13, we get

ct′ct = γ(ct− βct)γ(ct′ + βct′)

= γct(1− β)γct′(1 + β)

= γ2ct′ct
(
1− β2

)
.

Dividing both sides by ct′ct, we get

1 = γ2
(
1− β2

)
.

Finally, dividing both sides by (1− β2) and taking the square root, we arrive at the
following expression for γ:

γ =
1√

1− β2
. (2.14)

We have hence derived the Lorentz transformation equations and their inverse as well
as γ, which we will call the Lorentz factor from here onward. Note that on a spacetime
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diagram, we will mainly be concerned with the ct and x coordinates, but like the Galilean
transformation equations, the Lorentz transformation equations leave the y and z coordinate
unchanged, that is, their unprimed and primed counterparts are equal. Therefore, we have
the following equations describing a Lorentz transformation:

ct′ = γ(ct− βx); (2.15)

x′ = γ(x− βct); (2.16)

y′ = y; (2.17)

z′ = z. (2.18)

We also have the following equations describing an inverse Lorentz transformation:

ct = γ(ct′ + βx′); (2.19)

x = γ(x′ + βct′); (2.20)

y = y′; (2.21)

z = z′. (2.22)

Note that if we wish to isolate t by itself, we can alternatively write Equations 2.15 and
2.19 as

t′ = γ

(
t− βx

c

)
= γ

(
t− vx

c2

)
(2.23)

and

t = γ

(
t′ +

βx′

c

)
= γ

(
t′ +

vx

c2

)
(2.24)

by dividing both sides of each equation by c. If we wish to work out only the difference
between the time components of the unprimed and primed time coordinates, we can take
out the expression containing x from Equations 2.23 and 2.24 to get

t′ = γt (2.25)

and

t = γt′; (2.26)
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or with time intervals, we get

∆t′ = γ∆t (2.27)

and

∆t = γ∆t′. (2.28)

2.4 Time Dilation
Time dilation is a relativistic effect that is a consequence of the invariance of the speed of
light and the Lorentz transformations. Time dilation is the slowing of time for an observer
in a moving IRF relative to another observer in a stationary IRF. That is to say, the faster
an object travels relative to an observer, it will appear to the observer that the object
experiences the flow of time more slowly. We have already derived the associated equation
that describes time dilation (see Equation 2.25), but we can visualise it using a spacetime
diagram and explore using a thought experiment.

Let us consider another hypothetical scenario similar to that in Section 2.2. Suppose
we have a person A standing stationary relative to the ground. Suppose we have another
person B travelling away from A to the right at 1/2 the speed of light. Figure 13 shows the
resultant spacetime diagram.

From Figure 13, we can clearly see that the ct-axis of S is not aligned with that of S ′.
Take ct = 3, which is what A would call “3 seconds” in his stationary IRF. However, ct′ = 3
is also what B would call “3 seconds” in his moving IRF. Notice from A’s perspective, the
point ct′ = 3 (which is what B calls “3 seconds”) appears to be at ct ≈ 3.46. In other words,
the notion of time for A and B are different in different IRFs — we say that time appears
to be dilated in B’s moving IRF relative to A. This is shown in Figure 13.

Assuming we are measuring time at a constant position of x = 0, using Equation 2.25,
which is the equation for time dilation of the primed IRF in the unprimed IRF, we can see
that indeed, what B would call “3 seconds” appears to be approximately 3.46 seconds (or
2
√
3 seconds to be exact) in A’s IRF:

t′ = γt

=
3√

1−
(
1
2

)2
=

3√
3
4

≈ 3.46.

However, from Equation 2.26, we can also see that an observer in a primed IRF would see
the time coordinates of an unprimed IRF dilate by the same factor γ. So for our hypothetical
scenario, while A sees B’s time to be dilated, B will also see A’s time as being dilated. This
is because B is motionless relative to himself and will see A moving at 1/2 the speed of light
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Figure 13: Worldlines of A and B in both A’s IRF S (lighter) and B’s IRF S ′ (darker) under
a Lorentz transformation, demonstrating time dilation.

to the left with A’s time being dilated by exactly the same factor γ. This is known as the
reciprocity of time dilation, which is shown in Figure 13.

Time dilation can also be explained using another example with a train. Suppose an
observer A stands motionless on a train relative to it. Inside the train, a light beam is
emitted from a laser on the ground to a mirror on the train’s ceiling and reflected back down
again. Suppose we have another observer B standing on a platform, motionless relative to
it inside a train station watching the train go past. The train travels to the right at some
velocity v relative to B. We will denote the height of the train as h, the horizontal distance
that B sees between the point at which the light beam is emitted and the point at which
the light beam hits the ceiling as ℓ, and the distance the emitted light beam (and hence
the reflected light beam) travels as α. This is shown in Figure 14. We will also denote A’s
measure of time in S as ∆τ and that of B’s in S ′ as ∆t′.

Let us discuss what happens in S first. Since the train’s height is h, we know that the
light beam will travel a distance of 2h from when it is emitted to when it is reflected back
down again. Since the light beam travels at a speed of c, the time taken for the light beam
to finish one bounce12 from A’s perspective is

12We will take “bounce” to mean “emission of the light beam from the laser on the ground to the mirror
on the ceiling and its reflection from the mirror back to the ground”.
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Figure 14: Bouncing light beam in both A’s IRF S (left) and B’s IRF S ′ (right), demon-
strating time dilation.

∆τ =
2h

c
. (2.29)

Rearranging for h, we get

h =
c∆τ

2
. (2.30)

However, things do not appear the same in S ′. Since the light beam now appears to
travel a distance of 2α, the time ∆t′ taken from the light beam to finish one bounce from
B’s perspective is

∆t′ =
2α

c
. (2.31)

Rearranging for α, we get

α =
c∆t′

2
. (2.32)

Using simple algebra, we also work out ℓ to be

ℓ =
v∆t′

2
, (2.33)

where v is the velocity of the train. By Pythagoras’s theorem, we know that

α2 = ℓ2 + h2. (2.34)
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Substituting expressions for α, ℓ, and h from Equations 2.32, 2.33, and 2.30, respectively,
we have (

c∆t′

2

)2

=
c2(∆t′)2

4

=

(
v∆t′

2

)2

+

(
c∆t′

2

)2

=
v2(∆t′)2

4
+

c2(∆τ)2

4
.

(2.35)

Multiplying both sides by 4 and rearranging so that only the ∆τ term is on the right-hand
side, we get

c2(∆t′)2 − v2(∆t′)2 = c2(∆τ)2. (2.36)

Dividing both sides by c2 and factoring out (∆t′)2, we get

(∆t′)2
(
1− v2

c2

)
= (∆τ)2. (2.37)

Dividing by (1− v2/c2) and taking the square root, we obtain

∆t′ =
∆τ√
1− v2

c2

=
∆τ√
1− β2

= γ∆τ. (2.38)

We have hence derived the equation for time dilation (Equation 2.38). ∆τ is called the
proper time interval or proper time, which is the time elapsed between two events measured
by an observer in their own rest IRF. We will discuss more about this in Section 2.6.

2.5 Length Contraction
Another consequence of the invariance of the speed of light is length contraction. Length
contraction is a phenomenon where the faster an object travels, the more its length appears to
contract in the direction of motion from a stationary observer’s perspective. Let us suppose
we have a metal rod with a length of

∆χ = χ2 − χ1

when measured by an observer A at rest relative to it in an IRF S, where χ1 and χ2 are
the endpoints of the rod. Let us suppose another observer B is moving away from the rod
at some velocity v. B will attempt to measure the length of the rod in his moving IRF S ′.
Figure 15 shows the resultant spacetime diagram. Note that we will denote the length of
the rod measured by B in his moving IRF S ′ as

∆x′ = x′
2 − x′

1.

23



x

ct

x′

ct′

∆χ

∆x′

A B

χ1 χ2

x′
1 x′

2

O

Figure 15: Worldlines of A, B, and the metal rod in both A’s IRF S (lighter) and B’s IRF
S ′ (darker) under a Lorentz transformation, demonstrating length contraction.

Because B is a moving observer (relative to A and the rod), we will also assume that the
times at which B measures each endpoint of the rod in S ′ are simultaneous according to his
IRF. Hence, the duration ∆t′ of the act of measuring by B in S ′ must be 0, that is, we have

∆t′ = t′2 − t′1 = 0,

implying that t′1 = t′2. Note that we will denote the time interval measured by A in S as the
proper time interval mentioned in Section 2.4, which is

∆τ = τ2 − τ1.

Using Equations 2.16 and 2.23, we can write ∆x′ and ∆t′ as

∆x′ = x′
2 − x′

1

= γ(χ2 − vτ2)− γ(χ1 − vτ1)

= γ(χ2 − χ1 − vτ2 + vτ1)

= γ(∆χ− v∆τ).

(2.39)

and
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∆t′ = t′2 − t′1

= γ
(
τ2 −

vχ2

c2

)
− γ

(
τ1 −

vχ1

c2

)
= γ

(
τ2 − τ1 −

vχ2

c2
+

vχ1

c2

)
= γ

(
∆τ − v∆χ

c2

)
.

(2.40)

Since ∆t′ is 0, we see that

∆τ =
v∆χ

c2
. (2.41)

Plugging Equation 2.41 in for ∆τ in Equation 2.39, we obtain

∆x′ = γ

(
∆χ− v2∆χ

c2

)
= γ∆χ(1− β2)

= ∆χ
1− β2√
1− β2

=
∆χ

γ
.

(2.42)

We have hence derived the equation for length contraction (Equation 2.42). ∆χ is called
the proper length, which is the length of an object measured by an observer in their own
IRF. We may also consider the same hypothetical scenario where the two observers A and
B are trying to measure a metal rod, but this time, we will let the metal rod move away
from A at some fixed velocity v such that the rod appears motionless relative to B. We will
denote the length of the rod measured by A in S and that measured by B in S ′ as ∆x and
∆χ, respectively. We will denote the duration of measurement by A and B in their own
respective IRFs as ∆t and ∆τ . Figure 16 shows the resultant spacetime diagram.

Because A is a moving observer (relative to B and the rod), the times at which A
measures each endpoint of the rod in S must be simultaneous according to his IRF. Hence,
the duration ∆t of the act of measuring by B in S ′ must be 0, that is, we have

∆t = t2 − t1 = 0,

implying that t1 = t2. Note that we will denote the time interval measured by B in S ′ as
the proper time interval mentioned in Section 2.4, which is

∆τ = τ2 − τ1.

Using Equations 2.20 and 2.24, we can write ∆x and ∆t as
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Figure 16: Worldlines of A, B, and the metal rod in both A’s IRF S (lighter) and B’s IRF
S ′ (darker) under a Lorentz transformation, demonstrating length contraction.

∆x = x2 − x1

= γ(χ2 + vτ2)− γ(χ1 + vτ1)

= γ(χ2 − χ1 + vτ2 − vτ1)

= γ(∆χ+ v∆τ).

(2.43)

and

∆t = t2 − t1

= γ
(
τ2 +

vχ2

c2

)
− γ

(
τ1 +

vχ1

c2

)
= γ

(
τ2 − τ1 +

vχ2

c2
− vχ1

c2

)
= γ

(
∆τ +

v∆χ

c2

)
.

(2.44)

Since ∆t is 0, we see that

∆τ = −v∆χ

c2
. (2.45)

Plugging Equation 2.45 in for ∆τ in Equation 2.43, we obtain

26



∆x = γ

(
∆χ− v2∆χ

c2

)
= γ∆χ(1− β2)

= ∆χ
1− β2√
1− β2

=
∆χ

γ
.

(2.46)

We have hence derived the other equation for length contraction (Equation 2.46).

2.6 The Spacetime Interval and Light Cones
Special relativity is about determining what quantities are relative in different IRFs and what
quantities remain invariant. We know that position, length, and simultaneity are relative to
different inertial observers under Lorentz transformations. We also know that in Galilean
relativity, the distance ∆r between two points in 3D Euclidean space,

∆r2 ≡ (∆x)2 + (∆y)2 + (∆z)2,

is invariant under a Galilean transformation. We can speculate that the quantity ∆s2 —
which is the 4D analogue of Euclidean distance called the spacetime interval, which we will
temporarily define as

(∆s)2 ≡ (c∆t)2 + (∆r)2 = (c∆t)2 + (∆x)2 + (∆y)2 + (∆z)2, (2.47)

is invariant under a Lorentz transformation; that is, we are trying to see if (∆s)2 = (∆s′)2,
or in full, if the equation

(c∆t)2 + (∆x)2 + (∆y)2 + (∆z)2 = (c∆t′)2 + (∆x′)2 + (∆y′)2 + (∆z′)2

is correct. Using Equations 2.15, 2.16, 2.17, and 2.18, we can compute (∆s′)2:

(∆s′)2 = γ2(c∆t− β∆x)2 + γ2(∆x− βc∆t)2 + (∆y)2 + (∆z)2

= γ2(c∆t)2 − 2γ2β(c∆t)(∆x) + γ2β2(∆x)2

+ γ2(∆x)2 − 2γ2β(c∆t)(∆x) + γ2β2(c∆t)2

+ (∆y)2 + (∆z)2

= γ2(c∆t)2(1 + β2) + γ2(∆x)2(1 + β2)

− 4γ2β(c∆t)(∆x) + (∆y)2 + (∆z)2

= (c∆t)2
1 + β2

1− β2
+ (∆x)2

1 + β2

1− β2
− (c∆t)(∆x)

4β

1− β2

+ (∆y)2 + (∆z)2

̸= (∆s)2.

(2.48)
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From Equation 2.48, we see that the definition of (∆s)2 given in Equation 2.47 is not
correct. However, we could define (∆s)2 as13

(∆s)2 ≡ (c∆t)2 − (∆r)2 = (c∆t)2 − (∆x)2 − (∆y)2 − (∆z)2. (2.49)

Using the definition given in Equation 2.49 and using Equations 2.15, 2.16, 2.17, and
2.18, we can compute (∆s′)2 once again:

(∆s′)2 = γ2(c∆t− β∆x)2 − γ2(∆x− βc∆t)2 − (∆y)2 − (∆z)2

= γ2(c∆t)2 − 2γ2β(c∆t)(∆x) + γ2β2(∆x)2

− γ2(∆x)2 + 2γ2β(c∆t)(∆x)− γ2β2(c∆t)2

− (∆y)2 − (∆z)2

= γ2(c∆t)2(1− β2)− γ2(∆x)2(1− β2)

− (∆y)2 − (∆z)2

= (c∆t)2
1− β2

1− β2
− (∆x)2

1− β2

1− β2
− (∆y)2 − (∆z)2.

= (c∆t)2 − (∆x)2 − (∆y)2 − (∆z)2

= (∆s)2.

(2.50)

From Equation 2.50, we can see that the definition of the spacetime interval (∆s)2 given
in Equation 2.49 allows it to remain invariant under a Lorentz transformation. For this
reason, (∆s)2 is called a Lorentz scalar, which is a scalar quantity that remains invariant
under a Lorentz transformation. We can also derive another equivalent expression for (∆s)2

from Equation 2.36 by substituting (∆r′)2/(∆t′)2 in for v2:

(c∆t′)2 − (v∆t′)2 = (c∆t′)2 −
(
∆r′

∆t′
∆t′

)2

= (c∆t′)2 − (∆r′)2

= (∆s)2

= (c∆τ)2,

implying that

∆τ =

√
(∆s)2

c2

for the proper time interval ∆τ , which is indeed what we obtain by using the formula for
time dilation (Equation 2.38):

13Some authors choose to define the spacetime interval as having a negative timelike component −(c∆t)2

and a positive spacelike component (∆r)2. Both definitions are valid since they show that time and space
are fundamentally different. Since the worldline of a light beam is given by (c∆t)2 = (∆r)2, we can either
subtract (c∆t)2 or (∆r)2 from both sides and define the resultant quantity as the spacetime interval. Here,
however, we will use the definition given by Equation 2.49.
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∆τ =
∆t

γ

= ∆t

√
1− v2

c2

= ∆t

√
1− (∆r)2

c2(∆t)2

=

√
(∆t)2 −

(
(∆t)2

(∆r)2

c2(∆t)2

)

=

√
(∆t)2 −

(
(∆r)2

c2

)
=

√
(∆s)2

c2
.

We will also define the proper distance ∆σ to be the square root of the negative of the
spacetime interval, namely,

∆σ =
√
−(∆s)2.

However, (∆s)2 being positive makes ∆σ have an imaginary value. Hence, we must set
some restrictions. Before setting these restrictions, let us discuss the concept of light cones in
spacetime, which is the path that a flash of light emitted from a single event travelling in all
directions would take through spacetime. This is visualised in Figure 17 on a 2D spacetime
diagram.14

We see from Figure 17 that the spacetime diagram is separated into two types of regions.
The blue region represents all events that are within the light cone, meaning that the events
are timelike separated relative to the origin.15 In other words, for any given event within
that region, an object is able to reach the event from the origin by travelling slower than the
speed of light. If two events are timelike separated relative to each other, then there exists
an IRF where both events occur at the same position but at different times. If two events are
timelike separated relative to each other, then this will always be the case for any IRF.

The red region represents all events that are outside the light cone, meaning that the
events are spacelike separated relative to the origin. In other words, for any given event within
that region, a light beam is unable to reach the event from the origin in any given amount
of time; or, an object must travel faster than the speed of light to reach the event, which
is impossible given our current knowledge of physics. If two events are spacelike separated
relative to each other, then there exists an IRF where both events occur at the same time but
at different positions. Similarly, if two events are spacelike separated relative to each other,
then this will always be the case for any IRF.

14Instead of the usual x-axis, we will instead have the r axis representing all of x, y, and z.
15The upper blue region represents the future light cone and the lower blue region represents the past light

cone; both regions are timelike separated relative to the origin.
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Figure 17: A 2D spacetime diagram showing the timelike region (blue), spacelike region
(red), a light cone, and some events.

All events lying on the light cone itself are lightlike separated relative to the origin. In
other words, for any given event on the light cone, it is exactly far enough away from the
origin that a light beam travelling from the origin is able to reach it. If two events are
lightlike separated relative to each other, then this will always be the case for any IRF.

Let us take event A as an example. We see that it is timelike separated relative to the
origin since it is in the blue region. Also, notice that the separation in time is greater than
that in space. Hence, we say that the separation between two events is timelike if

(c∆t)2 > (∆r)2,

implying that

(∆s)2 > 0.
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Let us take event E. We see that it is also timelike separated relative to the origin.
However, we also see that ∆r = −3 and c∆t = −4, so we have that c∆t < ∆r. This is why
we square each quantity (i.e. having (c∆t)2 and (∆r)2) instead of having

c∆t > ∆r

as the condition for a timelike separation; if we allow for negative values, then the definition
of a timelike interval would not hold. Hence, we set a restriction saying that the proper time
interval ∆τ is only defined for values of (∆s)2 > 0.

Event B is spacelike separated relative to the origin since it is in the red region. Notice
that the separation in space is greater than that in time. Hence, we say that the separation
between two events is spacelike if

(c∆t)2 < (∆r)2,

implying that

(∆s)2 < 0.

Let us now take event D. We see that it is also spacelike separated relative to the origin.
However, we see that ∆r = −4 and c∆t = −3, so we have that c∆t > ∆r. This is why,
again, we take the square of each quantity instead of having

c∆t < ∆r

as the condition for a spacelike separation. Hence, we set another restriction saying that the
proper distance ∆σ is only defined for values of (∆s)2 < 0.

Finally, let us take event C. We see that it is lightlike separated relative to the origin
since it lies on the light cone. Notice that the separation in time is equal to that in space.
Hence we say that the separation between two events is lightlike if

(c∆t)2 = (∆r)2,

implying that

(∆s)2 = 0.

To summarise, if two events are timelike separated (i.e. (∆s)2 > 0), then we get the
proper time interval between them, which is

∆τ =

√
(∆s)2

c2
=

√
(∆t)2 −

(
(∆x)2 + (∆y)2 + (∆z)2

c2

)
. (2.51)
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If two events are spacelike separated (i.e. (∆s)2 < 0), then we get the proper distance
between them, which is

∆σ =
√

−(∆s)2 =
√
−(c∆t)2 + (∆x)2 + (∆y)2 + (∆z)2. (2.52)

2.7 4-Vectors and the Minkowski Metric Tensor
A vector is a quantity with both a magnitude and a direction. On a 2D Cartesian coordinate
system, a position vector is represented by an arrow spanning from the origin to some other
point on the coordinate system, both of which are specified by coordinates (x, y). A 3D
position vector is analogous to a 2D Euclidean vector, but instead, it is specified by three
coordinates (x, y, z). Hence, we can see that a position vector represents the position of a
point in space. Consider a position vector u = (4, 3) on a 2D Cartesian coordinate system.
Figure 18 shows this.
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Figure 18: A 2D Cartesian coordinate system with a position vector u.

Notice that u can be written in terms of an x-vector component and a y-vector com-
ponent. To arrive at u, we go across 4 grids in the x direction and go up 3 grids in the y
direction. We will denote the x- and y-vector components of u as ux and uy, respectively.
They can each be further decomposed into a scalar (which we call the scalar component of
each vector component) and a basis vector. A scalar is a quantity with only a magnitude
and no direction. A basis vector is a unit vector used to represent the axes of a Cartesian
coordinate system, and a unit vector is a vector of length 1. Basis vectors in the x and y
direction are denoted as êx and êy, respectively. It follows that êx and êy have coordinates
(1, 0) and (0, 1), respectively.

Using a combination of scalar components and basis vectors, we write

ux = 4êx and uy = 3êy
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for the x- and y-vector components of u, respectively, and

u = ux + uy = 4êx + 3êy

for the position vector u = (4, 3). Figure 19 shows a fuller decomposition of u.
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Figure 19: A 2D Cartesian coordinate system with a position vector u.

Notice what happens if we make the basis vectors êx and êy each have a length of 2 units.
We will leave the position vector u unchanged. Figure 20 shows the resultant graph.

After we double the length of each basis vectors, we find that the scalar components
halve in length, that is, we have that

ux = 2êx and uy = 1.5êy.

By logic, if we halve the length of each basis vector, then the scalar components will
double in length. We see that the scalar components and basis vectors vary in opposite
ways. Hence, we say that the vector components ux and uy are contravariant components.
We will also replace any indices involving x and y with 1 and 2. Therefore, for any 2D
position vector r, we can express it as

r = r1 + r2 = r1ê1 + r2ê2.

We may also express r using covariant components — meaning that the scalar components
and basis vectors vary in the same way, like so:16

16For our purposes, we do not need to understand how covariant components actually work. We only need
to think of the covariant representation as another way of representing vectors. Here is a YouTube video
that perhaps will give you some insight into contravariant and covariant components: https://youtu.be/r
G2q77qunSw.
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Figure 20: A 2D Cartesian coordinate system with a position vector u and basis vectors
with doubled lengths.

r = r1 + r2 = r1ê1 + r2ê2.

Here, we can see that upper indices represent contravariant components and lower indices
represent covariant components. To generalise, we can express any vector r as a sum of the
products of a contravariant or covariant component with a basis vector. For contravariant
components, we write

r =
n∑

i=1

riêi = r1ê1 + r2ê2 + · · ·+ rnên. (2.53)

For covariant components, we write

r =
n∑

i=1

riêi = r1ê1 + r2ê2 + · · ·+ rnên. (2.54)

The covariant components ri of a vector r are given by the dot product of r with the
corresponding basis vector êi,17 as in

ri = r · êi.

In special relativity, we frequently deal with spacetime, which is four-dimensional. Hence,
we use 4-vectors to represent vectors in 4D. A 4-vector is a vector with a time component

17See Appendix B for vector operations.
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and three space components. The 4D analogue of the position vector in Euclidean space is
the 4-position X, which we denote using contravariant components as

Xµ =
∑
µ

Xµêµ

= X0ê0 +X1ê1 +X2ê2 +X3ê3

=
(
X0, X1, X2, X3

)
= (ct, x, y, z).

(2.55)

In Equation 2.55, we have an index variable µ that appears twice within a summation,
implying that we are summing Xµêµ over all possible values of µ. Hence, assuming the index
µ ranges over the values 0, 1, 2, and 3, we write Xµ as18

Xµ = Xµêµ. (2.56)

This is known as the Einstein summation convention or Einstein notation. Similarly,
denoting X using covariant components, we have19

Xµ =
∑
µ

Xµêµ

= X0ê0 +X1ê1 +X2ê2 +X3ê3

= (X0, X1, X2, X3)

= (ct,−x,−y,−z),

(2.57)

which, when expressed using Einstein notation, becomes20

Xµ = Xµêµ. (2.58)

We can hence see that

Xµ =


X0

X1

X2

X3

 =


X0

−X1

−X2

−X3

 (2.59)

and that
18Note that when Xµ is written on its own, it refers to the vector components of X expressed using

contravariant components.
19Note that when we mention contravariance or covariance, we only talk about a vector’s components

being contravariant or covariant. A vector remains unchanged no matter how we represent it, but it can be
represented by contravariant or covariant components. The same applies to tensors, as we will see later on
in this section.

20Similarly, when Xµ is written on its own, it refers to the vector components of X expressed using covariant
components.
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Xµ =


X0

X1

X2

X3

 =


X0

−X1

−X2

−X3

 . (2.60)

In special relativity, however, it is common to denote the 4-position X using contravariant
components because it is more familiar to our original understanding of how vectors work
or are represented. Though, we will quickly see the purpose of introducing the covariant
representation of X.

Recall that the spacetime interval (∆s)2 is written as

(∆s)2 = (c∆t)2 − (∆x)2 − (∆y)2 − (∆z)2.

We can also write (∆s)2 as the dot product or scalar product of the displacements of the
contravariant and covariant 4-positions, which we will call the 4-displacement, ∆X:

(∆s)2 = ∆Xµ∆Xµ

=
(
∆X0 ∆X1 ∆X2 ∆X3

)
∆X0

∆X1

∆X2

∆X3


= (c∆t)2 − (∆x)2 − (∆y)2 − (∆z)2.

(2.61)

Note that the expression ∆Xµ∆Xµ in Equation 2.61 uses Einstein notation, so to write
the summation out explicitly, we have

∆Xµ∆Xµ =
∑
µ

∆Xµ∆Xµ

= ∆X0∆X0 +∆X1∆X1 +∆X2∆X2 +∆X3∆X3

= (c∆t)(c∆t) + (−∆x)(∆x) + (−∆y)(∆y) + (−∆z)(∆z)

= (c∆t)2 − (∆x)2 − (∆y)2 − (∆z)2.

Given Equations 2.59 and 2.60, we can see that Xµ can be written in terms of the matrix
product of a specific 4× 4 matrix with Xµ and that Xµ can also be written in terms of the
matrix product of the same 4×4 matrix with Xµ. That 4×4 matrix is called the Minkowski
metric tensor, which we will denote as η. The contravariant and covariant representations
of η are equal, so we write21

21We have used a metric signature of (+ − − −) to define the Minkowski metric tensor η. Some authors
would define η as having a metric signature of (− + + +). Again, this is all down to convention and both are
valid, but we would have to then be consistent with the definitions of other quantities (such as the spacetime
interval (∆s)2).
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η = ηµν = ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (2.62)

Writing the matrices of ηµν and ηµν in index form, we have22

ηµν =


η00 η01 η02 η03

η10 η11 η12 η13

η20 η21 η22 η23

η30 η31 η32 η33

 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


and

ηµν =


η00 η01 η02 η03
η10 η11 η12 η13
η20 η21 η22 η23
η30 η31 η32 η33

 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


The Minkowski metric tensor is an example of a metric tensor ; a metric tensor is a

mathematical object that defines properties including distances, angles, and in the case of
special relativity, time and types of separation (timelike, spacelike, and lightlike) between
events in a geometric space or on a manifold.23 In the case of special relativity, it also captures
the causal structure of spacetime. In this paper and special relativity, the spacetime we
deal with, also called Minkowski spacetime, is flat, meaning the spatial components (x, y, z)
obey the Pythagorean theorem. In non-Euclidean geometry, the Pythagorean theorem for
distances no longer holds. Hence, the Minkowski metric tensor describes a space with flat
geometry.

Recall that the distance ∆r between two points in 3D Euclidean space is calculated using
the equation

∆r2 = (∆x)2 + (∆y)2 + (∆z)2.

Since 3D Euclidean distance consists of three components (x, y, z) each with a plus sign,
we know that the Euclidean metric tensor must have all its diagonal elements be +1. This
is similar to the 4D Minkowski metric tensor, which has all its diagonal elements being ±1.
Hence, setting (x, y, z) as equivalent to (X1, X2, X3) and expressing (∆r)2 in terms of the
Euclidean metric tensor (which we will denote as gij) in matrix notation, we have24

22For all 2D matrices, the left index denotes the row of the matrix and the right index denotes the column
of the matrix.

23A manifold is a geometric or topological space (or object) that locally resembles Euclidean space at each
point.

24See Appendix C for tensor operations.
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(∆r)2 = ∆X igij∆Xj

=
(
∆X1 ∆X2 ∆X3

)1 0 0
0 1 0
0 0 1

∆X1

∆X2

∆X3


= (∆x)2 + (∆y)2 + (∆z)2.

Here, the indices i and j range over the values 1, 2, and 3. We see that gij is the 3 × 3
identity matrix I3, which we may alternatively denote as a function called the Kronecker
delta δij, which is defined as

δij ≡

{
1 if i = j,

0 if i ̸= j.
(2.63)

Hence, another way of determining whether a space is flat or curved is by seeing if we
can apply a transformation to the metric tensor (describing that space) so that its entries
become the Kronecker delta δij (or δµν for a 4× 4 matrix).25 For the 3D case, the entries of
the Euclidean metric tensor already equal δij, hence the space is flat. For the 4D case, we
can apply the inverse Minkowski metric tensor η−1 to η, which is by definition equal to the
Minkowski metric tensor itself, to obtain the Kronecker delta, like so:26

η−1η = ηµσησν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1



1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1



=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


= δµν .

Hence, we know that Minkowski spacetime is flat.
We now know that gij and ηµν are metric tensors for 3D Euclidean space and 4D

Minkowski spacetime, respectively. They each determine the concept of distance and the
standard basis of the space they are describing. We have briefly discussed the concept of
basis vectors earlier in this section — in fact, the standard basis of a geometric space is
defined by basis vectors. More specifically, the standard basis of a geometric space is the set
of all orthonormal vectors (that is, vectors that each have a length of 1 and are mutually
orthogonal) — these are the basis vectors. For instance, in 3D Euclidean space, the standard
basis is made up of three orthonormal bases ê1, ê2, and ê3 (or three orthonormal dual bases

25Note that the entries of the identity matrix are equal to the Kronecker delta; the Kronecker delta is not
itself a matrix.

26Note that δµν = δµν = δµ
ν = δµν .
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ê1, ê2, and ê3),27 each of which has a length (or magnitude) of 1. They are defined as28

ê1 =
(
1 0 0

)
, ê2 =

(
0 1 0

)
, ê3 =

(
0 0 1

)
.

and

ê1 =

1
0
0

 , ê2 =

0
1
0

 , ê3 =

0
0
1

 .

Note that if two bases or dual bases are mutually orthogonal, their dot products are 0.29

That is,

ê1 · ê2 = ê1 · ê3 = ê2 · ê3 = 0,

ê1 · ê2 = ê1 · ê3 = ê2 · ê3 = 0.
(2.64)

However, the dot product of a basis vector or dual basis vector with themselves gives 1,
as in

ê1 · ê1 = ê2 · ê2 = ê3 · ê3 = 1,

ê1 · ê1 = ê2 · ê2 = ê3 · ê3 = 1.
(2.65)

Hence, we can see that the Euclidean metric tensor gij and its inverse gij can be expressed
in terms of the dot product of basis vectors and dual basis vectors, respectively. Using
Equations 2.64 and 2.65, we can write

gij = êi · êj =

ê1 · ê1 ê1 · ê2 ê1 · ê3

ê2 · ê1 ê2 · ê2 ê2 · ê3

ê3 · ê1 ê3 · ê2 ê3 · ê3

 =

1 0 0
0 1 0
0 0 1


and

gij = êi · êj =

ê1 · ê1 ê1 · ê2 ê1 · ê3

ê2 · ê1 ê2 · ê2 ê2 · ê3

ê3 · ê1 ê3 · ê2 ê3 · ê3

 =

1 0 0
0 1 0
0 0 1


The same applies to the standard basis and metric tensor of Minkowski spacetime. The

standard basis of Minkowski spacetime consists of four bases ê0, ê1, ê2, and ê3 (or four dual
bases ê0, ê1, ê2, and ê3), each defined as

ê0 =
(
1 0 0 0

)
, ê1 =

(
0 i 0 0

)
, ê2 =

(
0 0 i 0

)
, ê3 =

(
0 0 0 i

)
(2.66)

27Dual bases are bases with covariant scalar components.
28In some cases, we will represent dual vectors or dual bases using row vectors. We may for our purposes

regard it as convention.
29See Appendix B for vector operations.
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and

ê0 =


1
0
0
0

 , ê1 =


0
−i
0
0

 , ê2 =


0
0
−i
0

 , ê3 =


0
0
0
−i

 , (2.67)

where i2 = −1. The reason why the spatial dual basis vectors each have a component
containing a −i is due to the following definition:

êµ · êν = δµν .

That is, when we take the dot product of a basis vector êν and a dual basis vector êµ

with the same index (i.e. where µ = ν), we get 1.30 Otherwise, we get 0.
Note that the spatial basis vectors and basis dual vectors each have a length of 1 since

|i| = |−i| = 131 but in a complex geometric space. We can see that the Minkowski metric
tensor ηµν and its inverse ηµν can be expressed in terms of the dot product of basis vectors
and dual basis vectors, respectively. Using Equations 2.66 and 2.67, we can write

ηµν = êµ · êν =


ê0 · ê0 ê0 · ê1 ê0 · ê2 ê0 · ê3

ê1 · ê0 ê1 · ê1 ê1 · ê2 ê1 · ê3

ê2 · ê0 ê2 · ê1 ê2 · ê2 ê2 · ê3

ê3 · ê0 ê3 · ê1 ê3 · ê2 ê3 · ê3

 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


and

ηµν = êµ · êν =


ê0 · ê0 ê0 · ê1 ê0 · ê2 ê0 · ê3

ê1 · ê0 ê1 · ê1 ê1 · ê2 ê1 · ê3

ê2 · ê0 ê2 · ê1 ê2 · ê2 ê2 · ê3

ê3 · ê0 ê3 · ê1 ê3 · ê2 ê3 · ê3

 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


Let us now return to discussing 4-vectors. Using the Minkowski metric tensor η, we can

convert between the contravariant 4-displacement ∆Xµ and the covariant 4-displacement
∆Xµ, as in

30We can verify this: (−i)(i) = −(i2) = −(−1) = 1.
31The vertical bars || represent the absolute value or magnitude of a number; this is analogous to the

double vertical bars ∥∥, which represent the length of a vector.
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∆Xµ = ηµν∆Xν

=


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1



∆X0

∆X1

∆X2

∆X3



=


∆X0

−∆X1

−∆X2

−∆X3



=


∆ct
∆x
∆y
∆z



(2.68)

and

∆Xµ = ηµν∆Xν

=


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1



∆X0

∆X1

∆X2

∆X3



=


∆X0

−∆X1

−∆X2

−∆X3



=


∆ct
−∆x
−∆y
−∆z

 .

(2.69)

The spacetime interval is thus given by

(∆s)2 = ∆Xµηµν∆Xν

=
(
∆X0 ∆X1 ∆X2 ∆X3

)
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1



∆X0

∆X1

∆X2

∆X3


= (c∆t)2 − (∆x)2 − (∆y)2 − (∆z)2.

(2.70)

Equivalently, the spacetime interval can also be obtained by
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(∆s)2 = ∆Xµη
µν∆Xν

=
(
∆X0 ∆X1 ∆X2 ∆X3

)
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1



∆X0

∆X1

∆X2

∆X3


= (c∆t)2 − (∆x)2 − (∆y)2 − (∆z)2.

(2.71)

2.8 The Lorentz Transformation Matrix
We know that a Lorentz transformation from X to X′ involves the following four equations:

ct′ = γ(ct− βx)

x′ = γ(x− βct)

y′ = y

z′ = z.

We can hence define the Lorentz transformation matrix Λ to be the matrix such that

X′ = ΛX. (2.72)

In index and matrix notation, the Lorentz transformation from X to X′ is written as

X ′µ = Λµ
νX

ν =


Λ0

0 Λ0
1 Λ0

2 Λ0
3

Λ1
0 Λ1

1 Λ1
2 Λ1

3

Λ2
0 Λ2

1 Λ2
2 Λ2

3

Λ3
0 Λ3

1 Λ3
2 Λ3

3



X0

X1

X2

X3

 , (2.73)

which, when more explicitly written, is also expressed as
X ′0

X ′1

X ′2

X ′3

 =


γ −γβ 0 0

−γβ γ 0 0
0 0 1 0
0 0 0 1



ct
x
y
z



=


γ(ct− βx)
γ(x− βct)

y
z



=


ct′

x′

y′

z′

 .

(2.74)

Since we have the Lorentz transformation matrix Λ that transforms 4-vectors from an
unprimed IRF to a primed IRF, we may define the inverse Lorentz transformation matrix
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Λ−1 to be the matrix that transforms 4-vectors from a primed IRF to an unprimed IRF.
Since Λ−1 is the inverse of Λ, it is the matrix such that

Λ−1Λ = ΛΛ−1 = I4, (2.75)

where I4 is the 4× 4 identity matrix, written as

I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

The inverse Lorentz matrix is denoted as (Λ−1)µν ; however, we will alternatively denote
it as Λ̃µ

ν . Hence, the transformation from X′ to X under an inverse Lorentz transformation
is given by

Xµ = Λ̃µ
νX

′ν =


Λ̃0

0 Λ̃0
1 Λ̃0

2 Λ̃0
3

Λ̃1
0 Λ̃1

1 Λ̃1
2 Λ̃1

3

Λ̃2
0 Λ̃2

1 Λ̃2
2 Λ̃2

3

Λ̃3
0 Λ̃3

1 Λ̃3
2 Λ̃3

3



X ′0

X ′1

X ′2

X ′3

 , (2.76)

which, when explicitly written, is also expressed as
X0

X1

X2

X3

 =


γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1



ct′

x′

y′

z′



=


γ(ct′ + βx′)
γ(x′ + βct′)

y′

z′



=


ct
x
y
z

 ,

(2.77)

corresponding accurately to the inverse Lorentz transformation equations below:

ct = γ(ct+ βx)

x = γ(x+ βct)

y = y′

z = z′.

We can multiply and check that Equation 2.75 does indeed hold:
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Λ−1Λ =


γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1




γ −γβ 0 0
−γβ γ 0 0
0 0 1 0
0 0 0 1



=


γ2 − γ2β2 −γ2β + γ2β 0 0
γ2β − γ2β γ2 − γ2β2 0 0

0 0 1 0
0 0 0 1



=


γ2(1− β2) 0 0 0

0 γ2(1− β2) 0 0
0 0 1 0
0 0 0 1



=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


= I4.

3 Electrodynamics

3.1 Maxwell’s Equations
Maxwell’s equations are four partial differential equations that govern the behaviour of elec-
tric and magnetic fields, involving the divergence and curl operators.32 The first equation is
Gauss’s law for electricity, written as

∇ · E =
ρ

ϵ0
. (3.1)

Equation 3.1 states that the divergence of the electric field is proportional to the charge
density. For instance, a proton has a positive charge density, implying that the electric field
diverges outwards from the proton (i.e. positive divergence). The constant ϵ0 is called the
vacuum electric permittivity, defined as 8.854 187 812 8(13) × 10−12 F/m (farads per metre).
However, in the absence of a charge, as is the case for electric and magnetic fields in free
space, Gauss’s law for electricity becomes

∇ · E = 0. (3.2)

The second equation is Gauss’s law for magnetism, written as

∇ ·B = 0. (3.3)

32See Appendix D for vector calculus operators.
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Equation 3.3 states that there is no divergence of the magnetic field since the presence of
one necessitates the existence of magnetic monopoles, which is impossible given our current
knowledge of physics.

The third equation is Faraday’s law of induction, written as

∇× E = −∂B

∂t
. (3.4)

Equation 3.4 states that the curl of the electric field is equal to the negative of the rate
of change of the magnetic field. One example is the production of a magnetic field (similar
to that of a bar magnet) as current flows through a solenoid.

The fourth and final law is Ampère’s law, written as

∇×B = µ0

(
J+ ϵ0

∂E

∂t

)
. (3.5)

Equation 3.5 states that the curl of the magnetic field is proportional to the sum of the
current density of a wire and the rate of change of the electric field with respect to time.
One example is the production of a rotational magnetic field around a straight wire in which
a current is flowing through. The constant µ0 is called the vacuum magnetic permeability,
defined as 1.256 637 062 12(19)× 10−6 N/A2 (newtons per ampere). However, in the absence
of an electric current, as is the case for electric and magnetic fields in free space, Ampere’s
law becomes

∇×B = µ0ϵ0
∂E

∂t
. (3.6)

3.2 Derivation of the Constancy of the Speed of Light
In this section, we will go through the mathematical derivation of the constancy of the speed
of light c, making use of Maxwell’s equations. Note that we will assume an absence of charge
and current throughout the derivation (meaning we are deriving the speed of light in free
space). First, we take the curl of Faraday’s law of induction (Equation 3.4) to get

∇× (∇× E) = ∇×
(
−∂B

∂t

)
= − ∂

∂t
(∇×B). (3.7)

Using the curl of curl identity in vector calculus, which is

∇× (∇× E) = ∇(∇ · E)−∇2E,

we can plug the rightmost expression from Equation 3.7 in for ∇× (∇× E) to get

∇(∇ · E)−∇2E = − ∂

∂t
(∇×B). (3.8)
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Assuming an absence of current, using Equation 3.6, we see that

− ∂

∂t
(∇×B) = −µ0ϵ0

∂2E

∂t2
. (3.9)

Plugging Equation 3.9 into Equation 3.8, we obtain

∇(∇ · E)−∇2E = −µ0ϵ0
∂2E

∂t2
.

Because we are assuming an absence of charge (i.e. in free space), the divergence of the
electric field is 0 (see Equation 3.2), implying that its gradient is also 0. Hence, we get

∇2E = µ0ϵ0
∂2E

∂t2
. (3.10)

Note that the negative signs are cancelled out in Equation 3.10. The equation above is
the 3D wave equation, however, we only need to focus on the propagation of a wave in the
x direction, meaning we take ∇2 to be the second derivative with respect to x. Then, from
equation 3.10, we have

µ0ϵ0
∂2E

∂t2
=

∂2E

∂x2

=
∂

∂x

(
∂E

∂x

)
=

∂

∂x

(
∂E

∂t

∂t

∂x

)
.

(3.11)

Since the velocity of the propagating wave in the x direction is

v =
∂x

∂t
,

we can rewrite Equation 3.11 as

∂2E

∂x2
=

∂

∂x

(
∂E

∂t

1

v

)
=

∂

∂t

∂t

∂x

(
∂E

∂t

1

v

)
=

∂

∂t

1

v

(
∂E

∂t

1

v

)
.

Hence, we are left with the equation

∂2E

∂x2
=

1

v2
∂2E

∂t2
. (3.12)
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From Equations 3.10 and 3.12, we can see that

1

v2
= µ0ϵ0,

and so

v =
1

√
µ0ϵ0

= c. (3.13)

Since µ0 and ϵ0 are constants, 1/
√
µ0ϵ0 must also be a constant. And since light is

an electromagnetic wave, Equation 3.13 is valid in describing the speed of light following
Maxwell’s equations. We have hence derived the constancy of the speed of light c.

3.3 Lorentz Force and the Electromagnetic Tensor
In this section, we will discuss the mathematical formulation of the force exerted on charged
particles by electric and magnetic fields. We will also introduce (later on) a new type of
tensor related to the electric and magnetic fields and some new 4-vectors that will help us
with the mathematical formulation.

The force exerted on a charged particle by an electric field, called the electric force, is
given by

FE = qE,

where q denotes the charge of the particle and E denotes the electric field (which is a vector
field). The force exerted on a charged particle by a magnetic field, called the magnetic force,
is given by

FB = q(v ×B),

where B denotes the magnetic field (which is a vector field) and × denotes the cross prod-
uct.33 The total force F exerted on the charged particle is thus given by

F = FE + FB = q(E+ v ×B). (3.14)

Equation 3.14 is called the Lorentz force law. From Equation 3.14, we can see that for a
motionless particle (relative to some observer), the magnetic force on the particle vanishes.
It is also the case that the faster the particle, the larger the magnetic force on the particle.

We can write Equation 3.14 in full in terms of its components (Fx, Fy, Fz), as in

Fx = q(Ex + vyBz − vzBy),

Fy = q(Ey + vzBx − vxBz),

Fz = q(Ez + vxBy − vyBx).

(3.15)

33See Appendix B for vector operations.
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Before we continue with the Lorentz force law, it would be convenient to introduce two
new quantities here. The first quantity we will introduce is the electric potential ϕ, which
is a scalar field. It is defined as the electric potential energy U divided by the charge of a
particle q, as in

ϕ =
U

q
. (3.16)

The other quantity we will introduce is the magnetic vector potential A, which is a vector
field. Magnetic vector potential is defined as a quantity such that its curl is the magnetic
field B. Hence, we have our first important equation linking magnetic vector potential and
the magnetic field:

B = ∇×A. (3.17)

We know that Equation 3.17 is valid because if we look at Gauss’s law for magnetism
(Equation 3.3), substituting the equivalent expression ∇ × A for B into Equation 3.3, we
get

∇ · (∇×A) = 0.

This follows from a vector identity in vector calculus, stating that the divergence of the
curl of any vector field is 0. Another important equation that we will need later on is one
relating the electric field E, magnetic vector potential A, and electric potential ϕ. The
equation is

E = −∇ϕ− ∂A

∂t
. (3.18)

By rearranging Equation 3.18 and taking the curl on both sides, we recover Faraday’s
law of induction:

∇× E+∇× (∇ϕ) = ∇× E

= − ∂

∂t
(∇×A)

= −∂B

∂t
.

The reason why ∇×E+∇× (∇ϕ) = ∇×E is that the curl of the gradient of ϕ evaluates
to 0. This follows from another vector calculus identity stating that the curl of the gradient
of any scalar field is 0.

We will now introduce two new 4-vectors. The first one is the 4-potential, denoted as A.
The 4-potential comprises a scalar quantity ϕ/c as the time component and components of
a 3-vector34 A as the spatial components. The contravariant form of A is given by

34A 3-vector is a vector in 3D.
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Aµ = ηµνAν

=
(
A0, A1, A2, A3

)
=

(
ϕ

c
,Ax, Ay, Az

)
.

(3.19)

The covariant form of A is given by

Aµ = ηµνA
ν

= (A0, A1, A2, A3)

=

(
ϕ

c
,−Ax,−Ay,−Az

)
.

(3.20)

The other 4-vector we will introduce is the 4-gradient, denoted as ∂. The 4-gradient
consists of a partial derivative with respect to time (multiplied by some scaling factor) and
the ordinary del operator (that is, derivatives with respect to x, y, and z).35

The contravariant form of ∂ is given by

∂µ = ηµν∂ν

=
(
∂0, ∂1, ∂2, ∂3

)
=

(
∂

∂X0

,
∂

∂X1

,
∂

∂X2

,
∂

∂X3

)
=

(
1

c

∂

∂t
,−∇

)
=

(
1

c

∂

∂t
,− ∂

∂x
,− ∂

∂y
,− ∂

∂z

)
.

(3.21)

The covariant form of ∂ is given by

∂µ = ηµν∂
ν

= (∂0, ∂1, ∂2, ∂3)

=

(
∂

∂X0
,

∂

∂X1
,

∂

∂X2
,

∂

∂X3

)
=

(
1

c

∂

∂t
,∇

)
=

(
1

c

∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
.

(3.22)

Let us now expand Equations 3.17 and 3.18 and see what happens. We can write B and
E in terms of their x, y, and z components. Writing out Equation 3.17 in full, we get

35See Appendix D fro vector calculus operators.
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Bx =
∂Az

∂y
− ∂Ay

∂z
,

By =
∂Az

∂x
− ∂Ax

∂z
,

Bz =
∂Ay

∂x
− ∂Ax

∂y
.

(3.23)

We can write Equation 3.23 in terms of ∂µ and Aµ, as in

Bx =
(
−∂2A3 + ∂3A2

)
,

By =
(
−∂1A3 + ∂3A1

)
,

Bz =
(
−∂1A2 + ∂2A1

)
.

(3.24)

Let us now turn to Equation 3.18. Writing it out fully, we get

Ex = −∂ϕ

∂x
− ∂Ax

∂t
,

Ey = −∂ϕ

∂y
− ∂Ay

∂t
,

Ez = −∂ϕ

∂z
− ∂Az

∂t
.

(3.25)

We can write Equation 3.25 in terms of ∂µ and Aµ, as in

Ex = c
(
∂1A0 − ∂0A1

)
,

Ey = c
(
∂2A0 − ∂0A2

)
,

Ez = c
(
∂3A0 − ∂0A3

)
.

(3.26)

Here, we shall introduce a new 4 × 4 tensor called the electromagnetic tensor, denoted
as F. We will now abbreviate the term “electromagnetic tensor” as “EM tensor”. In matrix
form, the contravariant form of F is expressed as

F µν = ηµσFσρη
ρν =


F 00 F 01 F 02 F 03

F 10 F 11 F 12 F 13

F 20 F 21 F 22 F 23

F 30 F 31 F 32 F 33

 . (3.27)

We will also use the following definition for F µν :

F µν ≡ ∂µAν − ∂νAµ. (3.28)

Finally, from Equations 3.24, 3.26, 3.27, and 3.28 we see that the contravariant form of
the EM tensor is given by
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F µν =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0

 . (3.29)

The covariant form of the EM tensor is expressed in matrix form as

Fµν = ηµσF
σρηρν =


F00 F01 F02 F03

F10 F11 F12 F13

F20 F21 F22 F23

F30 F31 F32 F33

 . (3.30)

Similar to the definition of F µν given in Equation 3.28, we define Fµν as

Fµν ≡ ∂µAν − ∂νAµ. (3.31)

Using the same approach as we did for deriving F µν or by using the covariant Minkowski
metric tensor η twice to lower the indices of F µν (see Equation 3.30),36 we see that Fµν is
given by

Fµν =


0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By

−Ey/c Bz 0 −Bx

−Ez/c −By Bx 0

 . (3.32)

For the sake of completeness, we will write the corresponding expressions for the mixed
EM tensors F µ

ν and Fµ
ν :

F µ
ν = F µσησν

= ηµσFσν

=


F 0

0 F 0
1 F 0

2 F 0
3

F 1
0 F 1

1 F 1
2 F 1

3

F 2
0 F 2

1 F 2
2 F 2

3

F 3
0 F 3

1 F 3
2 F 3

3



=


0 Ex/c Ey/c Ez/c

Ex/c 0 Bz −By

Ey/c −Bz 0 Bx

Ez/c By −Bx 0

 ;

(3.33)

36See Appendix C for tensor operations.

51



Fµ
ν = Fµση

σν

= ηµσF
σν

=


F0

0 F0
1 F0

2 F0
3

F1
0 F1

1 F1
2 F1

3

F2
0 F2

1 F2
2 F2

3

F3
0 F3

1 F3
2 F3

3



=


0 −Ex/c −Ey/c −Ez/c

−Ex/c 0 Bz −By

−Ey/c −Bz 0 Bx

−Ez/c By −Bx 0

 .

(3.34)

Now that we are more familiar with the EM tensor F, let us move onto other 4-vectors
and the representation of the Lorentz force law using the EM tensor and 4-vectors. We know
that the infinitesimal proper time interval dτ is written as

dτ =
dt

γ

as per the definition of the proper time interval given by Equation 2.51. Rearranging for γ,
we find that

γ =
dt

dτ
. (3.35)

Velocity in 4D is represented by the 4-velocity vector, denoted as U, which is given by

U =
dX

dτ
. (3.36)

The contravariant form of U is given by

Uµ = ηµνUν

=
dXµ

dτ
=

(
U0, U1, U2, U3

)
=

(
dX0

dτ
,
dX1

dτ
,
dX2

dτ
,
dX3

dτ

)
=

(
cdt

dτ
,
dx

dτ
,
dy

dτ
,
dz

dτ

)
.

(3.37)

Using Equation 3.35, we can also write
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Uµ = γ
dXµ

dt

=

(
γ
dX0

dt
, γ

dX1

dt
, γ

dX2

dt
, γ

dX3

dt

)
= (γc, γvx, γvy, γvz) .

(3.38)

The covariant form of U is given by

Uµ = ηµνU
ν

=
dXµ

dτ
= (U0, U1, U2, U3)

=

(
dX0

dτ
,
dX1

dτ
,
dX2

dτ
,
dX3

dτ

)
=

(
cdt

dτ
,−dx

dτ
,−dy

dτ
,−dz

dτ

)
.

(3.39)

Using Equation 3.35, we can also write

Uµ = γ
dXµ

dt

=

(
γ
dX0

dt
, γ

dX1

dt
, γ

dX2

dt
, γ

dX3

dt

)
= (γc,−γvx,−γvy,−γvz) .

(3.40)

Similar to that of velocity in 3D, momentum in 4D is represented by the 4-momentum
vector, denoted as P, which is given by

P = mU, (3.41)

where m is an object’s rest mass, which is the mass of an object measured in its own IRF.
Rest mass m is defined as

m =
mrel

γ
,

where mrel is relativistic mass, which is the mass of an object measured by an observer
moving relative to it at some velocity v. The contravariant form of P is given by

P µ = ηµνPν

= mUµ

=
(
P 0, P 1, P 2, P 3

)
= (γmc, γmvx, γmvy, γmvz).

(3.42)

The covariant form of P is given by
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Pµ = ηµνP
ν

= mUµ

= (P0, P1, P2, P3)

= (γmc,−γmvx,−γmvy,−γmvz).

(3.43)

We know that in classical mechanics, force F is expressed as

F =
dp

dt
, (3.44)

where the non-relativistic (or classical) momentum p is the product of the rest mass m of
the object under question with its velocity v, as in

p = mv = (mvx,mvy,mvz).

Force in 4D is represented by the 4-force vector, denoted as f. In our case, we will let f
represent the Lorentz force, given by

f =
dP

dτ
= m

dU

dτ
= m

d2X

dτ 2
. (3.45)

The contravariant form of f is given by

fµ =
dP µ

dτ

=

(
dP 0

dτ
,
dP 1

dτ
,
dP 2

dτ
,
dP 3

dτ

)
=

(
m
dU0

dτ
,m

dU1

dτ
,m

dU2

dτ
,m

dU3

dτ

)
=

(
γmc

d

dτ
, γm

dvx
dτ

, γm
dvy
dτ

, γm
dvz
dτ

)
.

(3.46)

The covariant form of f is given by

fµ =
dPµ

dτ

=

(
dP0

dτ
,
dP1

dτ
,
dP2

dτ
,
dP3

dτ

)
=

(
m
dU0

dτ
,m

dU1

dτ
,m

dU2

dτ
,m

dU3

dτ

)
=

(
γmc

d

dτ
,−γm

dvx
dτ

,−γm
dvy
dτ

,−γm
dvz
dτ

)
.

(3.47)

Working with the contravariant form of f first, we can now relate the x, y, and z com-
ponents of fµ with Equation 3.14, as in
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f 1 =
dP 1

dτ
= γm

dvx
dτ

= γq(Ex + vyBz − vzBy),

f 2 =
dP 2

dτ
= γm

dvy
dτ

= γq(Ey + vzBx − vxBz),

f 3 =
dP 3

dτ
= γm

dvz
dτ

= γq(Ez + vxBy − vyBx).

(3.48)

In accordance with the EM tensor, assuming the index i ranges over the values 1, 2, and
3, we may also write the following for f i:

f i = qF iνUν

= q
(
F i0U0 + F i1U1 + F i2U2 + F i3U3

)
= γq

(
F i0c− F i1vx − F i2vy − F i3vz

)
= γq(Ex + vyBz − vzBy) + γq(Ey + vzBx − vxBz) + γq(Ez + vxBy − vyBx)

= γq(E+ v ×B).

(3.49)

Notice that dividing f i by γ gives the classical or Newtonian force vector whilst also
giving us Equation 3.14. Hence, using Equation 3.49, we can define the contravariant form
of f as

fµ = qF µνUν

= q


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0




γc

−γvx
−γvy
−γvz



= γq


(Exvx + Eyvy + Ezvz) /c

(Ex + vyBz − vzBy)

(Ey + vzBx − vxBz)

(Ez + vxBy − vyBx)

 .

(3.50)

Using Equation 3.50, we can therefore see that

f 0 =
dP 0

dτ

= m
d

dτ
γc

= qF 0νUν

= q
(
F 00U0 + F 01U1 + F 02U2 + F 03U3

)
=

γq

c
(Exvx + Eyvy + Ezvz)

=
γq

c
(E · v).

(3.51)

By mass-energy equivalence, energy E is given by
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E = γmc2 = mrelc
2. (3.52)

Therefore, from Equations 3.51 and 3.52, we see that

f 0 =
1

c

dE
dτ

= m
d

dτ
γc,

and thus

cf 0 =
dE
dτ

= m
d

dτ
γc2 = γq(E · v). (3.53)

We can also define the contravariant form of f as

fµ = qF µ
νU

ν

= q


0 Ex/c Ey/c Ez/c

Ex/c 0 Bz −By

Ey/c −Bz 0 Bx

Ez/c By −Bx 0




γc

γvx
γvy
γvz



= γq


(Exvx + Eyvy + Ezvz) /c

(Ex + vyBz − vzBy)

(Ey + vzBx − vxBz)

(Ez + vxBy − vyBx)

 .

(3.54)

Applying the same logic, the covariant form of f is defined as

fµ = qFµνU
ν

= q


0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By

−Ey/c Bz 0 −Bx

−Ez/c −By Bx 0




γc

γvx
γvy
γvz



= γq


(Exvx + Eyvy + Ezvz) /c

−(Ex + vyBz − vzBy)

−(Ey + vzBx − vxBz)

−(Ez + vxBy − vyBx)


(3.55)

and
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fµ = qFµ
νUν

= q


0 −Ex/c −Ey/c −Ez/c

−Ex/c 0 Bz −By

−Ey/c −Bz 0 Bx

−Ez/c By −Bx 0




γc

−γvx
−γvy
−γvz



= γq


(Exvx + Eyvy + Ezvz) /c

−(Ex + vyBz − vzBy)

−(Ey + vzBx − vxBz)

−(Ez + vxBy − vyBx)

 .

(3.56)

A Matrix Multiplication
Suppose we have a 2× 2 matrix A and a 2× 1 matrix B, which we can write as

A =

(
a11 a12
a21 a22

)
and B =

(
b11
b21

)
.

The matrix product C of A and B is given by

C = AB,

which can also be written as

C =

(
a11 a12
a21 a22

)(
b11
b21

)
=

(
a11b11 + a12b21
a21b11 + a22b21

)
=

(
c11
c21

)
.

Let us consider another example where we have a 4× 4 matrix D and a 4× 1 matrix E,
written as

D =


d11 d12 d13 d14
d21 d22 d23 d24
d31 d32 d33 d34
d41 d42 d43 d44

 and E =


e11
e21
e31
e41

 .

The matrix product F of D and E is given by
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F =


d11 d12 d13 d14
d21 d22 d23 d24
d31 d32 d33 d34
d41 d42 d43 d44



e11
e21
e31
e41



=


d11e11 + d12e21 + d13e31 + d14e41
d21e11 + d22e21 + d23e31 + d24e41
d31e11 + d32e21 + d33e31 + d34e41
d41e11 + d42e21 + d43e31 + d44e41



=


f11
f21
f31
f41

 .

Notice that when we multiply a 2 × 2 matrix by a 2 × 1 matrix, we get a 2 × 1 matrix,
and when we multiply a 4 × 4 matrix by a 4 × 1 matrix, we get a 4 × 1 matrix. We may
hence generalise this can say that when we multiply an m × n matrix by an n × p matrix,
we get a m× p matrix.37 Note that the matrix product of two matrices is only defined if the
number of columns in the first matrix equals the number of rows in the second matrix, both
denoted by n.

Generalising even further, we can express any matrix multiplication between two arbi-
trary matrices X and Y as

XY =


x11 x12 · · · x1n

x21 x22 · · · x2n
... ... . . . ...

xm1 xm2 · · · xmn



y11 y12 · · · y1p
y21 y22 · · · y2p
... ... . . . ...

yn1 yn2 · · · ynp



=


x11y11 + · · ·+ x1nyn1 x11y12 + · · ·+ x1nyn2 · · · x11y1p + · · ·+ x1nynp
x21y11 + · · ·+ x2nyn1 x21y12 + · · ·+ x2nyn2 · · · x21y1p + · · ·+ x2nynp

... ... . . . ...
xm1y11 + · · ·+ xmnyn1 xm1y12 + · · ·+ xmnyn2 · · · xm1y1p + · · ·+ xmnynp



=


z11 z12 · · · z1p
z21 z22 · · · z2n
... ... . . . ...

zm1 zm2 · · · zmp


= Z.

One thing to note here is that generally, for two arbitrary matrices X and Y, the matrix
product XY does not equal YX. That is to say, matrix multiplication is not commutative.
Another thing to note is that matrix multiplication is associative. To illustrate, suppose we

37Here, m denotes the number of rows in the first matrix, n denotes the number of columns in the first
matrix and the number of rows in the second matrix, and p denotes the number of columns in the second
matrix.
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have three arbitrary matrices A, B, and C. Also, suppose we have the following matrix
product:

ABC.

To compute ABC, we can either compute BC first and then multiply it by A, as in

A(BC),

or we can compute AB first and then multiply it by C, as in

(AB)C.

Both ways of computing ABC are equal.

B Vector Operations

B.1 The Dot Product
In Cartesian coordinates, the dot product (or the scalar product) between two vectors v =
(v1, v2, · · · , vn) and w = (w1, w2, · · · , wn)

38 is expressed as

v ·w =
n∑

i=1

viwi = v1w1 + v2w2 + · · ·+ vnwn.

The geometric definition of the dot product of two vectors v and w is given by

v ·w = ∥v∥∥w∥ cos θ,

where θ is the angle between v and w. In matrix form, the dot product of two vectors v
and w is given by the matrix product of vT and w, written as

v ·w = vTw =
(
v1 v2 · · · vn

)

w1

w2
...
wn

 = v1w1 + v2w2 + · · ·+ vnwn,

where T denotes the transpose of a matrix. Transposing a matrix flips it over its diagonal,
meaning its row and column indices are switched. That is to say, for an arbitrary m × n
matrix M, its transpose MT is an n×m matrix.

38Note that the subscripts here do not specifically denote covariance; the lower indices are simply for
labelling.
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B.2 The Cross Product
The cross product of two vectors is only defined in 3D. Hence, in Cartesian coordinates, the
cross product of two vectors v = (v1, v2, v3) and w = (w1, w2, w3) is expressed as

v ×w =

∣∣∣∣∣∣
êx êy êz

v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣
= êx(v2w3 − v3w2)− êy(v1w3 − v3w1) + êz(v1w2 − v2w1)

= êx(v2w3 − v3w2) + êy(v3w1 − v1w3) + êz(v1w2 − v2w1),

where the vertical bars enclosing the 3× 3 matrix represents the determinant of the matrix.
The geometric definition of the cross product of two vectors v and w is given by

v ×w = ∥v∥∥w∥ sin (θ) n,

where θ is the angle between v and w and n is the unit vector perpendicular to v and w.

C Tensor Operations

C.1 The Tensor-Vector Product
Suppose we have a (0, 2)-tensor39 Aµν with covariant components and a (1, 0)-tensor40 Bν

with contravariant components. We can express Tµν and Xν as

Aµν =


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

 and Bν =


B1

B2

B3

B4

 .

The tensor-vector product Cµ of Aµν and Bν is written as

Cµ = AµνB
ν ,

which can also be expressed as41

39A tensor of type (n,m) means a tensor with n contravariant indices and m covariant indices.
40A tensor of type (1, 0) is simply a vector.
41The tensor-vector product is essentially the same as the matrix product but for tensors and vectors,

which can be expressed in matrix form.
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Cµ =


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44



B1

B2

B3

B4



=


A11B

1 + A12B
2 + A13B

3 + A14B
4

A21B
1 + A22B

2 + A23B
3 + A24B

4

A31B
1 + A32B

2 + A33B
3 + A34B

4

A41B
1 + A42B

2 + A43B
3 + A44B

4



=


C1

C2

C3

C4

 .

Now suppose we have a (2, 0)-tensor Dµν with contravariant components and a (0, 1)-
tensor42 Eν with covariant components. We can express Dµν and Eν as

Dµν =


D11 D12 D13 D14

D21 D22 D23 D24

D31 D32 D33 D34

D41 D42 D43 D44

 and Eν =


E1

E2

E3

E4

 .

The tensor-vector product F µ of Dµν and Eν is given by

F µ = DµνEν

=


D11 D12 D13 D14

D21 D22 D23 D24

D31 D32 D33 D34

D41 D42 D43 D44



E1

E2

E3

E4



=


D11E1 +D12E2 +D13E3 +D14E4

D21E1 +D22E2 +D23E3 +D24E4

D31E1 +D32E2 +D33E3 +D34E4

D41E1 +D42E2 +D43E3 +D44E4



=


F 1

F 2

F 3

F 4

 .

Suppose we have a (1, 1)-tensor Gµ
ν with mixed components and the (1, 0)-tensor Bν

with contravariant components (which we have introduced before). We can express Gµ
ν and

Bν as
42A tensor of type (0, 1) is a covector.
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Gµ
ν =


G0

0 G0
1 G0

2 G0
3

G1
0 G1

1 G1
2 G1

3

G2
0 G2

1 G2
2 G2

3

G3
0 G3

1 G3
2 G3

3

 and Bν =


B0

B1

B2

B3

 .

The tensor-vector product Hµ of Gµ
ν and Bν is given by

Hµ = Gµ
νB

ν

=


G0

0 G0
1 G0

2 G0
3

G1
0 G1

1 G1
2 G1

3

G2
0 G2

1 G2
2 G2

3

G3
0 G3

1 G3
2 G3

3



B0

B1

B2

B3



=


G1

1B
1 +G1

2B
2 +G1

3B
3 +G1

4B
4

G2
1B

1 +G2
2B

2 +G2
3B

3 +G2
4B

4

G3
1B

1 +G3
2B

2 +G3
3B

3 +G3
4B

4

G4
1B

1 +G4
2B

2 +G4
3B

3 +G4
4B

4



=


H1

H2

H3

H4

 .

Suppose we have a (1, 1)-tensor Jµν with mixed components and the (0, 1)-tensor Eν with
covariant components (which we have introduced before). We can express Jµ

ν and Eν as

Jµ
ν =


J0

0 J0
1 J0

2 J0
3

J1
0 J1

1 J1
2 J1

3

J2
0 J2

1 J2
2 J2

3

J3
0 J3

1 J3
2 J3

3

 and Eν =


E0

E1

E2

E3

 .

The tensor-vector product Kµ of Jµν and Eν is given by
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Kµ = Jµ
νEν

=


J0

0 J0
1 J0

2 J0
3

J1
0 J1

1 J1
2 J1

3

J2
0 J2

1 J2
2 J2

3

J3
0 J3

1 J3
2 J3

3



E0

E1

E2

E3



=


J1

1E1 + J1
2E2 + J1

3E3 + J1
4E4

J2
1E1 + J2

2E2 + J2
3E3 + J2

4E4

J3
1E1 + J3

2E2 + J3
3E3 + J3

4E4

J4
1E1 + J4

2E2 + J4
3E3 + J4

4E4



=


K1

K2

K3

K4

 .

C.2 Tensor Contraction and Raising and Lowering Indices
Suppose we have a metric tensor gµν with covariant components and a vector vν with con-
travariant components. If we take their tensor-vector product

gµνv
ν ,

then we produce the vector with covariant components (also called a covector)

vµ.

Notice that the index µ in vµ is lowered, that is, we have gone from vν to vµ. The process
of taking the tensor-vector product of a covariant metric tensor with a vector and obtaining
a covector with a lower index is called lowering the index. It also seems that the index ν
has “disappeared”; this is because we know from Einstein’s summation convention that the
summation over the index ν is implied. This process is called tensor contraction, where
indices belonging to different tensors with summation implied are contracted to produce a
new tensor.

Now suppose we have the inverse metric tensor gµν with contravariant components and
a covector vν with covariant components. If we take their tensor-vector product

gµνvν ,

then we produce a vector with contravariant components, written as vµ. Notice that the
index µ in vµ is raised; the process of taking the tensor-vector product of a contravariant
metric tensor with a covector and obtaining a vector with a lower index is called raising the
index. We also see that the index ν is contracted due to the implied summation.
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Following this logic, we can formulate the subsequent expressions for tensor contractions
of two tensors V and W :

T µ
ν = V µσWσν = V µ

σW
σ
ν ,

Tµ
ν = VµσW

σν = Vµ
σWσ

ν ,

as well as

T µν = V µσWσ
ν = V µ

σW
σν ,

Tµν = VµσW
σ
ν = Vµ

σWσν .

D Vector Calculus Operators

D.1 The Del Operator
The del operator is a vector operator which can act on scalar or vector fields (more precisely,
scalar- or vector-valued functions). In three dimensions, its components consist of partial
derivatives with respect to x, y, and z. The del operator is written as

∇ ≡
(

∂

∂x
,
∂

∂y
,
∂

∂z

)
= êx

∂

∂x
+ êy

∂

∂y
+ êz

∂

∂z
.

D.2 The Gradient Operator
The gradient operator is essentially a generalisation of the ordinary derivative. It applies to
a scalar field and outputs a vector field. The gradient is a measure of the direction and rate
of greatest change at each point on a scalar field. The gradient of a scalar-valued function
S of three variables x, y, and z is written as

∇S(x, y, z) =

(
∂S

∂x
,
∂S

∂y
,
∂S

∂z

)
= êx

∂S

∂x
+ êy

∂S

∂y
+ êz

∂S

∂z
.

D.3 The Divergence Operator
The divergence operator applies to a vector field and outputs a scalar field. Divergence is a
measure of how much a vector field flows outwards or inwards from a point. The divergence
of a vector-valued function F of three components Fx, Fy, and Fz is written as

∇ · F(Fx, Fy, Fz) =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
· (Fx, Fy, Fz)

=
∂Fx

∂x
+

∂Fy

∂y
+

∂Fz

∂z
.
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D.4 The Curl Operator
The curl operator applies to a vector field and outputs a vector field. Curl is a measure
of how much a vector field rotates or circulates about a point and the general direction of
the rotation. The curl of a vector-valued function F of three components Fx, Fy, and Fz is
written as

∇× F(Fx, Fy, Fz) =

∣∣∣∣∣∣∣∣
êx êy êz

∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

∣∣∣∣∣∣∣∣
= êx

(
∂Fz

∂y
− ∂Fy

∂z

)
− êy

(
∂Fz

∂x
− ∂Fx

∂z

)
+ êz

(
∂Fy

∂x
− ∂Fx

∂y

)
= êx

(
∂Fz

∂y
− ∂Fy

∂z

)
+ êy

(
∂Fx

∂z
− ∂Fz

∂x

)
+ êz

(
∂Fy

∂x
− ∂Fx

∂y

)
.

D.5 The Laplace Operator
The Laplace operator (also known as the Laplacian) applies to a scalar field and outputs a
scalar field. The Laplacian is equal to the divergence of the gradient (of a scalar field). The
Laplacian of a scalar-valued function S of three variables x, y, and z is written as

∇2S(x, y, z) = ∇ · ∇S(x, y, z)

=

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
·
(
∂S

∂x
,
∂S

∂y
,
∂S

∂z

)
=

∂2S

∂x2
+

∂2S

∂y2
+

∂2S

∂z2
.
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