Clarifying an Early Step in Hardy's Transcendence of π Proof

Timothy Jones

June 21, 2024

Abstract

We clarify and strengthen Hardy's footnote proof of an essential step in his proof of the transcendence of π. We show that $r i$ is algebraic if and only if r is algebraic.

Introduction

On page 223 Hardy gives a proof that π is transcendental [1]. His proof shows that πi does not solve a integer polynomial, but technically this isn't showing π doesn't so solve an integer polynomial. He needs to show that the one implies the other. Here is his one line proof.

If $a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n}=0$ and $y=x i$ then

$$
a_{0} y^{n}-a_{2} y^{n-2}+\cdots+i\left(a_{1} y^{n-1}-a_{3} y^{n-3}+\ldots\right)=0
$$

and so

$$
\left(a_{0} y^{n}-a_{2} y^{n-2}+\ldots\right)^{2}+\left(a_{1} y^{n-1}-a_{3} y^{n-3}+\ldots\right)^{2}=0 .
$$

This is very condensed and presupposes that $n \equiv 0 \bmod (4)$ which he doesn't stipulate. As just about all proofs of π 's transcendence require this step, we wish to remove this potential stumbling block.

The Idea

The idea is easily demonstrated. Consider $f(x)=a_{0} x^{4}+a_{1} x^{3}+a_{2} x^{2}+a_{3} x^{1}+a_{4} x^{0}$ and suppose $f(r)=0$. We can find a new set of coefficients of the same ilk as a_{i} such that if $g(x)$ has this set and $g(r i)=0$. This can be done as $i^{k} \in$ $\left\{i^{0}, i^{1}, i^{2}, i^{3}\right\}=\{1, i,-1,-i\}$. These powers of i correspond to classes from modulo 4 (remainders on division by 4) and any natural number power (our exponents) is in one of these classes. So $a_{0} x^{4}$ with $x=r i$ is the same; $a_{1} x^{3}$ with $r i$ is $a_{1} r^{3} i^{3}$ and this is $i\left(-a_{1}\right) r^{3}$. If we multiply this by i we get back to our original $a_{1} r^{3}$. Next $a_{2} r^{2} i^{2}=-a_{2} r^{2}$ and if we multiply this by -1 , we get back to the original. Next, $a_{1} r i$ is the original times i. The constant is easy. So

$$
g(r i)=a_{0}(r i)^{4}-a_{2}(r i)^{2}+a_{0}(r i)^{0}+i\left(a_{1}(r i)^{3}-a_{3}(r i)\right)=f(r)=0 .
$$

We are almost there. The multiply of i in the odd powers sum makes the coefficients pure imaginary numbers, a no-no. But if a complex number is 0 then its absolute value is zero and

$$
|g(x)|=\left(a_{0}(x)^{4}-a_{2}(x)^{2}+a_{0}(x)^{0}\right)^{2}+\left(a_{1}(r i)^{3}-a_{3}(r i)\right)^{2}
$$

is a polynomial with coefficients very much like our original $f(x)$. This $g(x)$ is such that $g(r i)=0$, as needed.

Looking back at Hardy's proof(?), you see what he is up to and also how he really does have to assume his n is divisible by 4 . Can we tighten the idea up to a real proof without this assumption. Next.

The Proof

Theorem 1. A number ri is an algebraic number if and only if r is an algebraic number.

Proof. Given any n degree polynomial $p(x)$, each term will be of the form $T_{j}(x)=$ $a_{j} x^{n-j}$. The degree of each term will be in one of the four modulo 4 classes: [0], [1], [2] or [3]. With one of multiply $m \in\{1, i,-1,-i\}, T_{j}(x i)=m T_{j}(x)$. Using these terms form $\operatorname{New}(x)=E(x)+i O(x)$ where E are alternating evens and O are alternating odds. If either $p(r i)$ or $N e w(r)$ are zero the other will be too and \mid new $(x) \mid$ is a polynomial with integer coefficients if $p(x)$ is.

Conclusion

There are places in Hardy's classic where he has an untoward step like this one. He leaves a lot to the reader. If the reader is steeped in techniques and can accept his word that a laborsome proof can be given, then all is well. But a novice reader might become forlorn at such fair. I hope this article helps such.

References

[1] G.H. Hardy and E.M.Wright, An Introduction to the Theory of Numbers, 6th ed., Oxford 2008.

