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Abstract

We clarify and strengthen Hardy’s footnote proof of an essential step in

his proof of the transcendence of π. We show that ri is algebraic if and only

if r is algebraic.

Introduction

On page 223 Hardy gives a proof that π is transcendental [1]. His proof shows

that πi does not solve a integer polynomial, but technically this isn’t showing π

doesn’t so solve an integer polynomial. He needs to show that the one implies the

other. Here is his one line proof.

If a0x
n + a1x

n−1 + · · · + an = 0 and y = xi then

a0y
n − a2y

n−2 + · · · + i(a1y
n−1 − a3y

n−3 + . . . ) = 0

and so

(a0y
n − a2y

n−2 + . . . )2 + (a1y
n−1 − a3y

n−3 + . . . )2 = 0.

This is very condensed and presupposes that n ≡ 0 mod(4) which he doesn’t

stipulate. As just about all proofs of π’s transcendence require this step, we wish

to remove this potential stumbling block.
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The Idea

The idea is easily demonstrated. Consider f(x) = a0x
4+a1x

3+a2x
2+a3x

1+a4x
0

and suppose f(r) = 0. We can find a new set of coefficients of the same ilk

as ai such that if g(x) has this set and g(ri) = 0. This can be done as ik ∈
{i0, i1, i2, i3} = {1, i,−1,−i}. These powers of i correspond to classes from

modulo 4 (remainders on division by 4) and any natural number power (our expo-

nents) is in one of these classes. So a0x
4 with x = ri is the same; a1x

3 with ri

is a1r
3i3 and this is i(−a1)r

3. If we multiply this by i we get back to our original

a1r
3. Next a2r

2i2 = −a2r
2 and if we multiply this by −1, we get back to the

original. Next, a1ri is the original times i. The constant is easy. So

g(ri) = a0(ri)
4 − a2(ri)

2 + a0(ri)
0 + i(a1(ri)

3 − a3(ri)) = f(r) = 0.

We are almost there. The multiply of i in the odd powers sum makes the coef-

ficients pure imaginary numbers, a no-no. But if a complex number is 0 then its

absolute value is zero and

|g(x)| = (a0(x)4 − a2(x)2 + a0(x)0)2 + (a1(ri)
3 − a3(ri))

2

is a polynomial with coefficients very much like our original f(x). This g(x) is

such that g(ri) = 0, as needed.

Looking back at Hardy’s proof(?), you see what he is up to and also how he

really does have to assume his n is divisible by 4. Can we tighten the idea up to a

real proof without this assumption. Next.

The Proof

Theorem 1. A number ri is an algebraic number if and only if r is an algebraic

number.

Proof. Given any n degree polynomial p(x), each term will be of the form Tj(x) =
ajx

n−j . The degree of each term will be in one of the four modulo 4 classes:

[0], [1], [2] or [3]. With one of multiply m ∈ {1, i,−1,−i}, Tj(xi) = mTj(x).
Using these terms form New(x) = E(x) + iO(x) where E are alternating evens

and O are alternating odds. If either p(ri) or New(r) are zero the other will be

too and |new(x)| is a polynomial with integer coefficients if p(x) is.
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Conclusion

There are places in Hardy’s classic where he has an untoward step like this one.

He leaves a lot to the reader. If the reader is steeped in techniques and can accept

his word that a laborsome proof can be given, then all is well. But a novice reader

might become forlorn at such fair. I hope this article helps such.
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