Clarifying an Early Step in Hardy's Transcendence of π Proof

Timothy Jones

July 5, 2024

Abstract

We clarify and strengthen Hardy's footnote proof of an essential step in his proof of the transcendence of π . We show that ri is algebraic if and only if r is algebraic.

Introduction

On page 223 Hardy gives a proof that π is transcendental [1]. His proof shows that πi does not solve a integer polynomial, but technically this isn't showing π doesn't so solve an integer polynomial. He needs to show that the one implies the other. Here is his one line proof.

If $a_0x^n + a_1x^{n-1} + \dots + a_n = 0$ and y = xi then

$$a_0y^n - a_2y^{n-2} + \dots + i(a_1y^{n-1} - a_3y^{n-3} + \dots) = 0$$

and so

$$(a_0y^n - a_2y^{n-2} + \dots)^2 + (a_1y^{n-1} - a_3y^{n-3} + \dots)^2 = 0.$$

This is very condensed and presupposes that $n \equiv 0 \mod(4)$ which he doesn't stipulate. As just about all proofs of π 's transcendence require this step, we wish to remove this potential stumbling block.

It should be noted that he is going to use a contrapositive argument in the main body of his proof: $p \Rightarrow q \Leftrightarrow \sim q \Rightarrow \sim q$. He needs to show that if r is algebraic then ri is algebraic. The contrapositive is *if* ri *is* not algebraic then r is not algebraic. His proof shows the antecedent true.

The Idea

The idea is easily demonstrated. Consider $f(x) = a_0 x^4 + a_1 x^3 + a_2 x^2 + a_3 x^1 + a_4 x^0$ and suppose f(r) = 0. We can find a new set of coefficients of the same ilk as a_i such that if g(x) has this set and g(ri) = 0. This can be done as $i^k \in$ $\{i^0, i^1, i^2, i^3\} = \{1, i, -1, -i\}$. These powers of *i* correspond to classes from modulo 4 (remainders on division by 4) and any natural number power (our exponents) is in one of these classes.

Let the terms of an nth degree integer polynomial be given by $t_k(x) = a_{n-k}x^k$, then any $t_k(ri)$ reduces to one of $\{1, i, -1, -i\}$ times $t_k(r)$. Here's the details for our polynomial f(x):

$$t_4(ri) = a_0(ri)^4 = a_0r^4i^4 = a_0r^4 = 1 \cdot t_4(r),$$

$$t_3(ri) = a_1(ri)^3 = a_1r^3i^3 = -ia_1r^3 = -i \cdot t_3(r),$$

$$t_2(ri) = a_2(ri)^2 = a_2r^2i^2 = -1a_2r^2 = -1 \cdot t_2(r),$$

$$t_1(ri) = a_3(ri)^1 = a_3r^1i^1 = ia_3r^1 = i \cdot t_1(r),$$

$$t_0(ri) = a_4(ri)^0 = a_4r^0i^0 = a_4r^0 = 1 \cdot t_0(r),$$

That's step one. Step two is to note that the right hand sides of the above equations when multiplied again by one of $\{1, i, -1, -i\}$ and then added re-constitute f(r). The details:

$$\begin{split} t_4(ri) &= 1 \cdot t_4(r) \text{ multiple by 1 for } t_4(r), \\ t_3(ri) &= -i \cdot t_3(r) \text{ multiple by i for } t_3(r), \\ t_2(ri) &= -1 \cdot t_2(r) \text{ multiple by } -1 \text{ for } t_2(r), \\ t_1(ri) &= i \cdot t_1(r) \text{ multiple by -i for } t_1(r), \\ t_0(ri) &= 1 \cdot t_0(r) \text{ multiple by 1 for } t_0(r), \end{split}$$

Doing the directive in these equations and adding, we arrive at

$$t_4(ri) + it_3(ri) - t_2(ri) - it_1(ri) + t_0(ri) = t_4(r) + t_3(r) + t_2(r) + t_1(r) + t_0(r),$$

but this is 0. Letting E(x) be alternating in sign even terms and O(x) alternating odd terms, we note E(ri) + iO(ri) = 0. Consider E(x) and O(x) are free of imaginary coefficients, so we almost could make g(x) = E(x) + iO(x) except for that *i* multiple. But $g(x) = |E(x) + iO(x)| = E^2(x) + O^2(x)$ has coefficients free of *i* in its coefficients. It works g(ri) = 0 with g(x) having integer coefficients.

Looking back at Hardy's proof(?), you see what he is up to and also how he really does have to assume his n is divisible by 4. Can we tighten the idea up to a real proof without this assumption. Next.

The Proof

All functions are integer polynomials.

Theorem 1. A number *ri* is an algebraic number if and only if *r* is an algebraic number.

Proof. \Rightarrow If ri is algebraic there exists functions such that f(ir) = E(r) + iO(r) = 0 with E(r) and O(r) integer polynomials without any terms with i in them. It follows that E(r) = O(r) = 0. That is r is algebraic.

 \Leftarrow If r is algebraic, there exists a function f(r) = 0. Each term of this function will be of the form $T_j(x) = a_j x^{n-j}$. The degree of each term will be in one of the four modulo 4 classes: [0], [1], [2] or [3]. Each term will have a multiple $m \in \{1, i, -1, -i\}$ such that $T_j(xi) = mT_j(x)$. Using these terms form New(ri) = E(ri) + iO(ri) = f(r) = 0 where E are alternating even terms and O are alternating odd terms. As $|New(x)| = E^2(x) + O^2(x) = 0$ is a integer polynomial such that it is 0 and ri, we have shown ri is algebraic.

Conclusion

There are places in Hardy's classic where he has an untoward step like this one. He leaves a lot to the reader. If the reader is steeped in techniques and can accept his word that a laborsome proof can be given, then all is well. But a novice reader might become forlorn at such fair. I hope this article helps such.

References

[1] G.H. Hardy and E.M.Wright, *An Introduction to the Theory of Numbers*, 6th ed., Oxford 2008.