Clarifying an Early Step in Hardy's Transcendence of π Proof

Timothy Jones

July 5, 2024

Abstract

We clarify and strengthen Hardy's footnote proof of an essential step in his proof of the transcendence of π. We show that $r i$ is algebraic if and only if r is algebraic.

Introduction

On page 223 Hardy gives a proof that π is transcendental [1]. His proof shows that πi does not solve a integer polynomial, but technically this isn't showing π doesn't so solve an integer polynomial. He needs to show that the one implies the other. Here is his one line proof.

If $a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n}=0$ and $y=x i$ then

$$
a_{0} y^{n}-a_{2} y^{n-2}+\cdots+i\left(a_{1} y^{n-1}-a_{3} y^{n-3}+\ldots\right)=0
$$

and so

$$
\left(a_{0} y^{n}-a_{2} y^{n-2}+\ldots\right)^{2}+\left(a_{1} y^{n-1}-a_{3} y^{n-3}+\ldots\right)^{2}=0 .
$$

This is very condensed and presupposes that $n \equiv 0 \bmod (4)$ which he doesn't stipulate. As just about all proofs of π 's transcendence require this step, we wish to remove this potential stumbling block.

It should be noted that he is going to use a contrapositive argument in the main body of his proof: $p \Rightarrow q \Leftrightarrow \sim q \Rightarrow \sim q$. He needs to show that if r is algebraic then $r i$ is algebraic. The contrapositive is if ri is not algebraic then r is not algebraic. His proof shows the antecedent true.

The Idea

The idea is easily demonstrated. Consider $f(x)=a_{0} x^{4}+a_{1} x^{3}+a_{2} x^{2}+a_{3} x^{1}+a_{4} x^{0}$ and suppose $f(r)=0$. We can find a new set of coefficients of the same ilk as a_{i} such that if $g(x)$ has this set and $g(r i)=0$. This can be done as $i^{k} \in$ $\left\{i^{0}, i^{1}, i^{2}, i^{3}\right\}=\{1, i,-1,-i\}$. These powers of i correspond to classes from modulo 4 (remainders on division by 4) and any natural number power (our exponents) is in one of these classes.

Let the terms of an nth degree integer polynomial be given by $t_{k}(x)=a_{n-k} x^{k}$, then any $t_{k}(r i)$ reduces to one of $\{1, i,-1,-i\}$ times $t_{k}(r)$. Here's the details for our polynomial $f(x)$:

$$
\begin{gathered}
t_{4}(r i)=a_{0}(r i)^{4}=a_{0} r^{4} i^{4}=a_{0} r^{4}=1 \cdot t_{4}(r), \\
t_{3}(r i)=a_{1}(r i)^{3}=a_{1} r^{3} i^{3}=-i a_{1} r^{3}=-i \cdot t_{3}(r), \\
t_{2}(r i)=a_{2}(r i)^{2}=a_{2} r^{2} i^{2}=-1 a_{2} r^{2}=-1 \cdot t_{2}(r), \\
t_{1}(r i)=a_{3}(r i)^{1}=a_{3} r^{1} i^{1}=i a_{3} r^{1}=i \cdot t_{1}(r), \\
t_{0}(r i)=a_{4}(r i)^{0}=a_{4} r^{0} i^{0}=a_{4} r^{0}=1 \cdot t_{0}(r),
\end{gathered}
$$

That's step one. Step two is to note that the right hand sides of the above equations when multiplied again by one of $\{1, i,-1,-i\}$ and then added re-constitute $f(r)$. The details:

$$
\begin{gathered}
t_{4}(r i)=1 \cdot t_{4}(r) \text { multiple by } 1 \text { for } t_{4}(r), \\
t_{3}(r i)=-i \cdot t_{3}(r) \text { multiple by } i \text { for } t_{3}(r), \\
t_{2}(r i)=-1 \cdot t_{2}(r) \text { multiple by }-1 \text { for } t_{2}(r), \\
t_{1}(r i)=i \cdot t_{1}(r) \text { multiple by }-i \text { for } t_{1}(r), \\
t_{0}(r i)=1 \cdot t_{0}(r) \text { multiple by } 1 \text { for } t_{0}(r),
\end{gathered}
$$

Doing the directive in these equations and adding, we arrive at
$t_{4}(r i)+i t_{3}(r i)-t_{2}(r i)-i t_{1}(r i)+t_{0}(r i)=t_{4}(r)+t_{3}(r)+t_{2}(r)+t_{1}(r)+t_{0}(r)$,
but this is 0 . Letting $E(x)$ be alternating in sign even terms and $O(x)$ alternating odd terms, we note $E(r i)+i O(r i)=0$. Consider $E(x)$ and $O(x)$ are free of imaginary coefficients, so we almost could make $g(x)=E(x)+i O(x)$ except for that i multiple. But $g(x)=|E(x)+i O(x)|=E^{2}(x)+O^{2}(x)$ has coefficients free of i in its coefficients. It works $g(r i)=0$ with $g(x)$ having integer coefficients.

Looking back at Hardy's proof(?), you see what he is up to and also how he really does have to assume his n is divisible by 4 . Can we tighten the idea up to a real proof without this assumption. Next.

The Proof

All functions are integer polynomials.
Theorem 1. A number ri is an algebraic number if and only if r is an algebraic number.

Proof. \Rightarrow If ri is algebraic there exists functions such that $f(i r)=E(r)+$ $i O(r)=0$ with $E(r)$ and $O(r)$ integer polynomials without any terms with i in them. It follows that $E(r)=O(r)=0$. That is r is algebraic.
\Leftarrow If r is algebraic, there exists a function $f(r)=0$. Each term of this function will be of the form $T_{j}(x)=a_{j} x^{n-j}$. The degree of each term will be in one of the four modulo 4 classes: [0], [1], [2] or [3]. Each term will have a multiple $m \in\{1, i,-1,-i\}$ such that $T_{j}(x i)=m T_{j}(x)$. Using these terms form $N e w(r i)=E(r i)+i O(r i)=f(r)=0$ where E are alternating even terms and O are alternating odd terms. As $|\operatorname{New}(x)|=E^{2}(x)+O^{2}(x)=0$ is a integer polynomial such that it is 0 and $r i$, we have shown $r i$ is algebraic.

Conclusion

There are places in Hardy's classic where he has an untoward step like this one. He leaves a lot to the reader. If the reader is steeped in techniques and can accept his word that a laborsome proof can be given, then all is well. But a novice reader might become forlorn at such fair. I hope this article helps such.

References

[1] G.H. Hardy and E.M.Wright, An Introduction to the Theory of Numbers, 6th ed., Oxford 2008.

