Energy of an ideal Fermi gas and the Riemann Zeta function Marcello Colozzo

Abstract

The values assumed by the Riemann Zeta function on even natural integers contribute to the calculation of the total energy of an ideal Fermi gas in a non-relativistic and strongly degenerate regime.

The Fermi-Dirac integral

If $\mathbb{R}^+ = [0, +\infty)$, let's consider

$$f: \quad \mathbb{R}^+_{t \longrightarrow f(t), \quad \forall t \in \mathbb{R}^+} \qquad (1)$$

Precisely, f is the *Fermi-Dirac function*:

$$f(t,y) = \frac{1}{e^{\frac{t-f_1(y)}{y}} + 1}$$
(2)

where y > 0 is a parameter, while $f_1 \in C^{\omega}(\mathbb{R}^+)$ is positive in \mathbb{R}^+ and not necessarily equipped with an elementary expression.

Let's define the function

$$\Lambda\left(t\right) = \lim_{y \to 0^{+}} f\left(t, y\right) \tag{3}$$

If $f_1(0) \stackrel{def}{=} t_0 > 0$

$$\lim_{y \to 0^+} \frac{t - f_1(y)}{y} = \begin{cases} -\infty, & 0 \le t \le t_0 \\ +\infty, & t > t_0 \\ \frac{0}{0}, & t = t_0 \end{cases}$$
(4)

 \mathbf{SO}

$$\Lambda(t) \equiv f(y,0) = \begin{cases} \frac{1}{e^{-\infty}+1} = 1^{-}, & 0 \le t \le t_0 \\ \frac{1}{e^{+\infty}+1} = 0^{+}, & t > t_0 \end{cases}$$
(5)

In Fig. 1 we report the trend of f(y, 0).

1

Figure 1: Trend of the Fermi-Dirac function for y = 0.

In Quantum Statistical Mechanics (QSM) [1] some quantities are represented by a class of functions that cannot be expressed in elementary terms:

Definition 1 Fermi-Dirac integral

$$F_D(y) = \int_0^{+\infty} \varphi(t) f(t, y) dt$$
(6)

where f(t, y) is the Fermi-Dirac function (2), while $\varphi(t) \ge 0$ is a function with derivatives of a high order and such as to make the integral on the second member of the equation convergent (6).

From (6):

$$F_D(y) = \int_0^{+\infty} \frac{\varphi(t) dt}{e^{\frac{t-f_1(y)}{y}} + 1}$$

$$\tag{7}$$

From the study of the sign of the integrating function in (7) and from known properties of generalized integrals, we have $0 \leq F_D(y) < +\infty$, $\forall y \in \mathbb{R}^+$, where the inequality in the strict sense $< +\infty$ follows from the hypothesis of convergence of the corresponding integral.

Given this, the theorem holds:

Theorem 2 (Sommerfeld expansion)

For $0 < y \ll f_1(0)$, up to exponentially small terms:

$$F_D(y) = \Phi(f_1(y)) + 2y \sum_{k=1}^{+\infty} u_k(y)$$
(8)

where:

$$\Phi(t) = \int_0^t \varphi(t') dt'$$

$$u_k(y) = y^{2k-1} \varphi^{(2k-1)}(f_1(y)) \left(1 - 2^{1-2k}\right) \zeta(2k)$$
(9)

Here is $\varphi^{(2k-1)}(t) = \frac{d^{2k-1}}{dt^{2k-1}}\varphi(t)$, while ζ is the Riemann zeta function [2].

Dimostrazione. Performing the variable change:

$$x = \frac{t - f_1\left(y\right)}{y} \tag{10}$$

The integral (7) becomes:

$$F_D(y) = y \int_{-\frac{f_1(y)}{y}}^{+\infty} \frac{\varphi(f_1(y) + xy) \, dx}{e^x + 1} \tag{11}$$

For the decomposition property:

$$F_D(y) = y \underbrace{\int_{-\frac{f_1(y)}{y}}^{0} \frac{\varphi(f_1(y) + xy) \, dx}{e^x + 1}}_{\stackrel{def}{=} I_1(y)} + y \int_{0}^{+\infty} \frac{\varphi(f_1(y) + xy) \, dx}{e^x + 1}$$
(12)

In $I_1(y)$ we set x' = -x

$$I_{1}(y) = \int_{0}^{\frac{f_{1}(y)}{y}} \frac{\varphi(f_{1}(y) - x'y) \, dx'}{e^{-x'} + 1}$$

Redefining the mute variable x'

$$I_1(y) = \int_0^{\frac{f_1(y)}{y}} \frac{\varphi(f_1(y) - xy) \, dx}{e^{-x} + 1} \tag{13}$$

Furthermore

$$\frac{1}{e^{-x}+1} = 1 - \frac{1}{e^x+1}$$

which when replaced (13) returns

$$I_{1}(y) = I_{2}(y) - \int_{0}^{\frac{f_{1}(y)}{y}} \frac{\varphi(f_{1}(y) - xy) dx}{e^{x} + 1}$$
(14)

where

$$I_2(y) \stackrel{def}{=} \int_0^{\frac{f_1(y)}{y}} \varphi(f_1(y) - xy) \, dx \tag{15}$$

If in the integral (15) we set x' = -x and then redefine the integration variable, we obtain:

$$I_{2}(y) = \int_{-\frac{f_{1}(y)}{y}}^{0} \varphi(f_{1}(y) + xy) dx$$
(16)

Restoring the old variable $t = f_1(y) + xy$ we have:

$$I_2(y) = \frac{1}{y} \int_0^{f_1(y)} \varphi(t) dt$$
(17)

Replacing (17) in (14):

$$I_{1}(y) = \frac{1}{y} \int_{0}^{f_{1}(y)} \varphi(t) dt - \int_{0}^{\frac{f_{1}(y)}{y}} \frac{\varphi(f_{1}(y) - xy) dx}{e^{x} + 1}$$
(18)

From (12):

$$F_D(y) = yI_1(y) + \int_0^{+\infty} \frac{\varphi(f_1(y) + xy) \, dx}{e^x + 1} \tag{19}$$

Replacing (18) in (19):

$$F_D(y) = \int_0^{f_1(y)} \varphi(t) dt - y \int_0^{\frac{f_1(y)}{y}} \frac{\varphi(f_1(y) - xy) dx}{e^x + 1} + y \int_0^{+\infty} \frac{\varphi(f_1(y) + xy) dx}{e^x + 1}$$
(20)

which is an exact expression for $F_D(y)$. In QSM the limit $0 < y \ll f_1(0) = t_0$ is important. Considering $y \ll f_1(y)$ for $0 < y \ll t_0$, in the second integral on the second member of (20) we can place $+\infty$ in the upper limit of integration. This approximation is legitimate thanks to the speed of convergence due to the exponential in the denominator¹. In that order of approximation:

$$F_D(y) = \int_0^{f_1(y)} \varphi(t) dt + y \int_0^{+\infty} \frac{\varphi(f_1(y) + xy) - \varphi(f_1(y) - xy)}{e^x + 1} dx$$
(21)

¹This is equivalent to neglecting exponentially small terms.

For the hypotheses made on $\varphi(t)$, we can develop $\varphi(f_1(y) + xy) - \varphi(f_1(y) - xy)$ in power series of x and then perform a series integration:

$$\varphi(f_1(y) + xy) - \varphi(f_1(y) - xy) = \sum_{k=0}^{+\infty} \frac{1}{k!} \left[\frac{d^k}{dx^k} (f_1(y) + xy) - \varphi(f_1(y) - xy) \right]_{x=0} x^k$$

Calculating the derivatives

$$\left[\frac{d^{k}}{dx^{k}}\left(f_{1}\left(y\right)+xy\right)-\varphi\left(f_{1}\left(y\right)-xy\right)\right]_{x=0} = \begin{cases} 2y^{k}\varphi^{\left(k\right)}\left(f_{1}\left(y\right)\right), & \text{per } k \text{ pari}\\ 0, & \text{per } k \text{ dispari} \end{cases}$$

i.e.

$$\varphi(f_1(y) + xy) - \varphi(f_1(y) - xy) = 2\sum_{k=1}^{+\infty} \frac{y^k \varphi^{(k)}(f_1(y))}{(2k-1)!} x^{2k-1}$$

which replaced in (21):

$$F_D(y) = \int_0^{f_1(y)} \varphi(t) dt + 2y \sum_{k=1}^{+\infty} \frac{y^k \varphi^{(k)}(f_1(y))}{(2k-1)!} \int_0^{+\infty} \frac{x^{2k-1}}{e^x + 1} dx$$
(22)

We therefore have a series of functions whose terms contain the integrals

$$\int_0^{+\infty} \frac{x^{2k-1}}{e^x + 1} dx$$

We set

$$J(\sigma) = \int_0^{+\infty} \frac{x^{\sigma-1}}{e^x + 1} dx, \quad (\sigma > 0)$$
(23)

We write

$$\frac{1}{e^x + 1} = \frac{e^{-x}}{1 + e^{-x}}$$

 $(1 + e^{-x})^{-1}$ is the sum of a series:

$$\frac{1}{1+e^{-x}} = \sum_{n=0}^{+\infty} (-1)^n e^{-nx} \Longrightarrow \frac{1}{e^x+1} = e^{-x} \sum_{n=0}^{+\infty} (-1)^n e^{-nx}$$

which replaced in (23):

$$J(\sigma) = \sum_{n=0}^{+\infty} (-1)^n e^{-nx} \int_0^{+\infty} x^{\sigma-1} e^{-(n+1)x} dx$$
(24)

Performing the change of variable y = (n + 1) x

$$J(\sigma) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(n+1)^{\sigma}} \int_0^{+\infty} y^{\sigma-1} e^{-y} dy$$
(25)

The integral is the representation of the Eulerian function gamma for $\sigma > 0$:

$$\Gamma\left(\sigma\right) = \int_{0}^{+\infty} y^{\sigma-1} e^{-y} dy$$

The series

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{(n+1)^{\sigma}} = \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^{\sigma}}$$

converges for $\sigma > 0$ and its sum is:

$$\sum_{n=1}^{+\infty} \frac{\left(-1\right)^n}{n^{\sigma}} = \left(1 - 2^{1-\sigma}\right) \zeta\left(\sigma\right)$$
(26)

where $\zeta(\sigma)$ is the Riemann zeta function [2]. In tal modo otteniamo la seguente espressione per $J(\sigma)$

$$J(\sigma) = (1 - 2^{1-\sigma}) \Gamma(\sigma) \zeta(\sigma), \quad \forall \sigma > 0$$
(27)

In particular

$$\int_{0}^{+\infty} \frac{x^{2k-1}}{e^x + 1} dx = \left(1 - 2^{1-2k}\right) (2k-1)! \zeta(2k)$$
(28)

because $\Gamma(2k) = (2k-1)!$. The statement follows from the substitution of (28) in (22).

Notation 3 $\zeta(2k)$ is expressed through Bernoulli numbers [2].

1 Physical interpretation

We have: $t \equiv \varepsilon$ (energy of a single fermion of an ideal Fermi gas); $y \equiv \Theta = k_B T$ where k_B is the Boltzmann constant and T is the thermodynamic equilibrium temperature of the gas (therefore Θ is the temperature expressed in energy units); $f_1(y) \equiv \mu(\Theta)$ is the *chemical potential* of the gas. So the Fermi-Dirac integral can be rewritten:

$$F_D(\theta) = \int_0^{+\infty} \frac{\varphi(\varepsilon) d\varepsilon}{e^{\frac{\varepsilon - \mu(\theta)}{\theta}} + 1}$$
(29)

The function $\varphi(\varepsilon)$ can be $g(\varepsilon)$ or $\varepsilon g(\varepsilon)$, where $g(\varepsilon)$ is the single fermion density of states²: $g(\varepsilon_0) d\varepsilon$ is the number of energy states $\varepsilon \in [\varepsilon_0, \varepsilon_0 + d\varepsilon]$. If $\varphi(t) = g(\varepsilon)$, the Fermi-Dirac integral is the total number N of fermions in the gas. Since this number does not depend on the temperature Θ , we have the following normalization condition:

$$N = \int_{0}^{+\infty} \frac{g\left(\varepsilon\right) d\varepsilon}{e^{\frac{\varepsilon - \mu(\theta)}{\theta}} + 1} \tag{30}$$

N doesn't depend on Θ

$$N = \left[\int_{0}^{+\infty} \frac{g\left(\varepsilon\right) d\varepsilon}{e^{\frac{\varepsilon-\mu(\theta)}{\theta}} + 1}\right]_{\theta=0} = \int_{0}^{\varepsilon_{F}} g\left(\varepsilon\right) d\varepsilon$$

where $\varepsilon_F = \mu(0)$ it is the *Fermi energy* or the energy of the highest level occupied at the temperature of absolute zero. If $G(\varepsilon)$ è ithe number of energy states $\leq \varepsilon$ i.e. $g(\varepsilon) = \frac{dG(\varepsilon)}{d\varepsilon}$, then the functional relation $G(\varepsilon_F) = N$ uniquely defines the Fermi energy, and in cases where $G(\varepsilon_F) = N$ can be made explicit, it allows us to determine ε_F as a function of the

 $^{^{2}}$ This quantity is determined starting from the Hamiltonian of a single fermion. The simplest case is that of a gas not subjected to external force fields.

number N of fermions and therefore, of the density of the number of fermions. It turns out that ε_F increases as the fermion concentration increases. In this case, the limit $\Theta \ll \varepsilon_F$ which allows applying the Sommerfeld theorem (8) is also verified for Θ in the room temperature range³. This circumstance occurs for the conduction electrons of a metal which with good approximation make up an ideal Fermi gas. More precisely, the total energy of an ideal Fermi gas is obtained by assuming $\varphi(\varepsilon) = \varepsilon g(\varepsilon)$

$$E\left(\Theta\right) = \int_{0}^{+\infty} \frac{\varepsilon g\left(\varepsilon\right) d\varepsilon}{e^{\frac{\varepsilon - \mu(\theta)}{\theta}} + 1}$$
(31)

In the strong degeneracy limit ($\Theta \ll \varepsilon_F$) the Sommerfeld expansion for $E(\Theta)$ is:

$$E\left(\Theta\right) = \int_{0}^{\mu(\Theta)} \varepsilon g\left(\varepsilon\right) d\varepsilon + 2\Theta \sum_{k=1}^{+\infty} \Theta^{2k} \left[\frac{d^{2k-1}}{dx^{2k-1}} \left(\varepsilon g\left(\varepsilon\right)\right)\right]_{\varepsilon=\mu(\Theta)} \left(1 - 2^{1-2k}\right) \zeta\left(2k\right)$$
(32)

The first integral is the contribution to the total energy coming from fermions having energy $\leq \mu(\Theta)$. The series, however, expresses the contribution coming from fermions with energy $\geq \mu(\Theta)$. The *k*th term of the series is proportional to $\zeta(2k)$.

References

- [1] Landau L.D., Lifsits E.M., Fisica statistica. Editori Riuniti
- [2] Edwards H.M., *Riemann's Zeta Function*. Dover Publications, inc. Mineola, New York.

³In general, for a temperature range $\Theta < \varepsilon_F$, the Fermi gas is said to be *degenerate* in the sense that it exhibits a deviation from the behavior predicted by classical statistical mechanics. If $\Theta \ll \varepsilon_F$, the gas is strongly degenerate and for $\Theta = 0$ it is totally degenerate.