An integral collocation method

Daniel Thomas Hayes

June 22, 2024
A new method is developed of which is applied to a problem involving a 1D wave equation in disguise.

1. Problem description

Let $u=u(x, y) \in \mathbb{R}$ with $x, y \in \mathbb{R}$. A 1D wave equation in disguise is

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial y^{2}}=0 . \tag{1}
\end{equation*}
$$

where we take $c=1$. The boundary conditions are

$$
\begin{gather*}
u=0 \text { at } x=-1 \text { for } y>-1, \tag{2}\\
u=0 \text { at } x=1 \text { for } y>-1, \tag{3}\\
u-\cos \left(\frac{\pi}{2} x\right)=0 \text { at } y=-1 \text { for }-1<x<1, \tag{4}\\
\frac{\partial u}{\partial y}=0 \text { at } y=-1 \text { for }-1<x<1 . \tag{5}
\end{gather*}
$$

On replacing the spatial variable y with the (time-delayed) variable $\tau=t-1$ where t is the time variable, above can be recognised as the wave equation in one space dimension. Then $u(x, t)$ denotes the transverse displacement of a tightly-stretched vibrating string. The string is fastened on the x axis at $x= \pm 1$ so that $u(\pm 1, t)=0$. Here we have $u(x, 0)=\cos \left(\frac{\pi}{2} x\right)$ is the initial shape of the string. The string is released from rest so that the initial transverse velocity distribution $u_{t}(x, 0)=0$. Here the constant c is given by $c^{2}=T / \rho$ where T is the tension in the string and ρ is the density (mass/unit length) of the string. It is known that here c is the speed at which the transverse waves propagate along the string.

2. Exact solution

We can find the exact solution to the problem in $\S 1$ for $x \in[-1,1]$ and $\forall y \geqslant-1$. By the method of separation of variables assume a solution of the form

$$
\begin{equation*}
u=X Y \tag{6}
\end{equation*}
$$

where $X=X(x)$ and $Y=Y(y)$. Then (1) implies

$$
\begin{equation*}
X^{\prime \prime} Y-X Y^{\prime \prime}=0 \tag{7}
\end{equation*}
$$

which implies

$$
\begin{equation*}
X^{\prime \prime}=-\lambda X \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
Y^{\prime \prime}=-\lambda Y \tag{9}
\end{equation*}
$$

where λ is the separation constant. The boundary conditions (2), (3) imply

$$
\begin{equation*}
X(-1)=X(1)=0 . \tag{10}
\end{equation*}
$$

For nontrivial solutions we have $\lambda=p^{2}>0$, then (8) implies

$$
\begin{equation*}
X=c_{0} \cos (p x)+c_{1} \sin (p x) \tag{11}
\end{equation*}
$$

where c_{0}, c_{1} are arbitrary constants. The boundary conditions (10) then imply

$$
\begin{equation*}
c_{0} \cos (p)-c_{1} \sin (p)=0 \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{0} \cos (p)+c_{1} \sin (p)=0 . \tag{13}
\end{equation*}
$$

Therefore we have case I : $p=n \pi, X_{n}=c_{1, n} \sin (n \pi x), \lambda_{n}=(n \pi)^{2}, n=1,2, \ldots, \infty$ or case II : $p=$ $\frac{\pi}{2}+n \pi, X_{n}=c_{0, n} \cos \left(\left(\frac{\pi}{2}+n \pi\right) x\right), \lambda_{n}=\left(\frac{\pi}{2}+n \pi\right)^{2}, n=0,1,2, \ldots, \infty$. Here $c_{0, n}, c_{1, n}$ are arbitrary constants. For case I we can not match the boundary condition (4). For case II we have that (9) becomes

$$
\begin{equation*}
Y_{n}^{\prime \prime}=-\left(\frac{\pi}{2}+n \pi\right)^{2} Y_{n} \tag{14}
\end{equation*}
$$

which implies

$$
\begin{equation*}
Y_{n}=c_{2, n} \cos \left(\left(\frac{\pi}{2}+n \pi\right) y\right)+c_{3, n} \sin \left(\left(\frac{\pi}{2}+n \pi\right) y\right) \tag{15}
\end{equation*}
$$

where $c_{2, n}, c_{3, n}$ are arbitrary constants. Using the superposition principle we then have

$$
\begin{equation*}
u=\sum_{n=0}^{\infty} c_{0, n} \cos \left(\left(\frac{\pi}{2}+n \pi\right) x\right)\left[c_{2, n} \cos \left(\left(\frac{\pi}{2}+n \pi\right) y\right)+c_{3, n} \sin \left(\left(\frac{\pi}{2}+n \pi\right) y\right)\right] \tag{16}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{\partial u}{\partial y}=\sum_{n=0}^{\infty} c_{0, n} \cos \left(\left(\frac{\pi}{2}+n \pi\right) x\right)\left[-c_{2, n} \sin \left(\left(\frac{\pi}{2}+n \pi\right) y\right)+c_{3, n} \cos \left(\left(\frac{\pi}{2}+n \pi\right) y\right)\right]\left[\frac{\pi}{2}+n \pi\right] . \tag{17}
\end{equation*}
$$

The boundary condition (4) implies

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{0, n} \cos \left(\left(\frac{\pi}{2}+n \pi\right) x\right)\left[c_{2, n} \cos \left(\left(\frac{\pi}{2}+n \pi\right)\right)-c_{3, n} \sin \left(\left(\frac{\pi}{2}+n \pi\right)\right)\right]=\cos \left(\frac{\pi}{2} x\right) . \tag{18}
\end{equation*}
$$

which implies

$$
\begin{equation*}
c_{0,0}\left[c_{2,0} \cos \left(\frac{\pi}{2}\right)-c_{3,0} \sin \left(\frac{\pi}{2}\right)\right]=1 \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{0, n}\left[c_{2, n} \cos \left(\frac{\pi}{2}+n \pi\right)-c_{3, n} \sin \left(\frac{\pi}{2}+n \pi\right)\right]=0 \tag{20}
\end{equation*}
$$

for $n>0$. The boundary condition (5) implies

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{0, n} \cos \left(\left(\frac{\pi}{2}+n \pi\right) x\right)\left[c_{2, n} \sin \left(\frac{\pi}{2}+n \pi\right)+c_{3, n} \cos \left(\frac{\pi}{2}+n \pi\right)\right]\left[\frac{\pi}{2}+n \pi\right]=0 \tag{21}
\end{equation*}
$$

which implies

$$
\begin{equation*}
c_{0, n}\left[c_{2, n} \sin \left(\frac{\pi}{2}+n \pi\right)+c_{3, n} \cos \left(\frac{\pi}{2}+n \pi\right)\right]=0 \tag{22}
\end{equation*}
$$

for $n \geqslant 0$. Therefore we have

$$
\begin{align*}
& c_{0,0}\left[c_{2,0} \cos \left(\frac{\pi}{2}\right)-c_{3,0} \sin \left(\frac{\pi}{2}\right)\right]=1, \tag{23}\\
& c_{0,0}\left[c_{2,0} \sin \left(\frac{\pi}{2}\right)+c_{3,0} \cos \left(\frac{\pi}{2}\right)\right]=0 \tag{24}
\end{align*}
$$

and $c_{0, n}=0$ for $n>0$. This implies $c_{0,0}=1, c_{2,0}=0, c_{3,0}=-1$. Our final exact solution is then

$$
\begin{equation*}
u=-\cos \left(\frac{\pi}{2} x\right) \sin \left(\frac{\pi}{2} y\right) \tag{25}
\end{equation*}
$$

of which can be checked by substitution into the problem in $\S 1$.

3. An integral collocation method

This method was inspired by $[1,2,3]$. We solve the problem in $\S 1$ numerically on $x \in[-1,1], y \in[-1,1]$ as follows. We start with the expansion

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}=\sum_{l=1}^{N+1} \tilde{u}_{l}(y) T_{l-1}(x) \tag{26}
\end{equation*}
$$

where $T_{l}(x)$ are Chebyshev functions with $\tilde{u}_{l}(y)$ as the unknown coefficients, and N is a positive integer. We define the vector

$$
\begin{equation*}
\overline{\mathbf{u}}^{(n)}=\left[\left.\frac{\partial^{n} u}{\partial x^{n}}\right|_{x=x_{1}},\left.\frac{\partial^{n} u}{\partial x^{n}}\right|_{x=x_{2}}, \ldots,\left.\frac{\partial^{n} u}{\partial x^{n}}\right|_{x=x_{N+1}}\right]^{T} \tag{27}
\end{equation*}
$$

for $n=0,1,2$. Here x_{i} are the Gauss-Lobatto points

$$
\begin{equation*}
x_{i}=\cos (\pi((i-1) / N)) \text { for } i=1,2, \ldots, N+1 \tag{28}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\overline{\mathbf{u}}^{(1)}=\widehat{W} \overline{\mathbf{u}}^{(2)}+\left.\frac{\partial u}{\partial x}\right|_{x=-1} \mathbf{1} \tag{29}
\end{equation*}
$$

where \widehat{W} is the integration matrix [2] for integrating with respect to x and 1 is a vector with all entries equal to one. It then follows that

$$
\begin{equation*}
\overline{\mathbf{u}}^{(0)}=\widehat{W}^{2} \overline{\mathbf{u}}^{(2)}+\left.\widehat{W} \frac{\partial u}{\partial x}\right|_{x=-1} \mathbf{1}+\left.u\right|_{x=-1} \mathbf{1} . \tag{30}
\end{equation*}
$$

The partial differential equation (1) at $x=x_{j}$ is

$$
\begin{equation*}
\sum_{l=1}^{N+1} \tilde{u}_{l}(y) T_{l-1}\left(x_{j}\right)-\sum_{q=1}^{N+1}\left(\widehat{W}^{2}\right)_{j, q} \sum_{l=1}^{N+1} \frac{\partial^{2} \tilde{u}_{l}(y)}{\partial y^{2}} T_{l-1}\left(x_{q}\right)-\frac{\partial^{2}}{\partial y^{2}}\left(\left.\frac{\partial u}{\partial x}\right|_{x=-1}\right) \sum_{q=1}^{N+1} \widehat{W}_{j, q}=0 \tag{31}
\end{equation*}
$$

The boundary condition (2) implies

$$
\begin{equation*}
\left.u\right|_{x=-1}=0 \tag{32}
\end{equation*}
$$

The boundary condition (3) implies

$$
\begin{equation*}
\sum_{q=1}^{N+1}\left(\widehat{W}^{2}\right)_{1, q} \sum_{l=1}^{N+1} \tilde{u}_{l}(y) T_{l-1}\left(x_{q}\right)+\left(\left.\frac{\partial u}{\partial x}\right|_{x=-1}\right) \sum_{q=1}^{N+1} \widehat{W}_{1, q}=0 \tag{33}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\left.\frac{\partial u}{\partial x}\right|_{x=-1}=\frac{-\sum_{q=1}^{N+1}\left(\widehat{W}^{2}\right)_{1, q} \sum_{l=1}^{N+1} \tilde{u}_{l}(y) T_{l-1}\left(x_{q}\right)}{\sum_{L=1}^{N+1} \widehat{W}_{1, L}} \tag{34}
\end{equation*}
$$

The partial differential equation (1) at $x=x_{j}$ becomes

Now let

$$
\begin{equation*}
\frac{\partial^{2} \tilde{u}_{l}(y)}{\partial y^{2}}=\sum_{m=1}^{M+1} \hat{u}_{l, m} T_{m-1}(y) \tag{36}
\end{equation*}
$$

where $\hat{u}_{l, m}$ are unknown coefficients to be found and M is a positive integer. We define the vector

$$
\begin{equation*}
\tilde{\mathbf{u}}_{1}(\mathbf{y})^{(n)}=\left[\left.\frac{\partial^{n} \tilde{u}_{l}(y)}{\partial y^{n}}\right|_{y=y_{1}},\left.\frac{\partial^{n} \tilde{u}_{l}(y)}{\partial y^{n}}\right|_{y=y_{2}}, \ldots,\left.\frac{\partial^{n} \tilde{u}_{l}(y)}{\partial y^{n}}\right|_{y=y_{M+1}}\right]^{T} \tag{37}
\end{equation*}
$$

for $n=0,1,2$. Here y_{i} are the Gauss-Lobatto points

$$
\begin{equation*}
y_{i}=\cos (\pi((i-1) / M)) \text { for } i=1,2, \ldots, M+1 \tag{38}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\tilde{\mathbf{u}}_{\mathbf{l}}(\mathbf{y})^{(1)}=\widehat{\widehat{W}} \tilde{\mathbf{u}}_{\mathbf{l}}(\mathbf{y})^{(2)}+\left.\frac{\partial \tilde{u}_{l}(y)}{\partial y}\right|_{y=-1} \tilde{\mathbf{1}} \tag{39}
\end{equation*}
$$

where $\widehat{\widehat{W}}$ is the integration matrix [2] for integrating with respect to y and $\tilde{1}$ is a vector with all entries equal to one. It then follows that

$$
\begin{equation*}
\tilde{\mathbf{u}}_{1}(\mathbf{y})^{(0)}=\widehat{\widehat{W}}^{2} \tilde{\mathbf{u}}_{\mathbf{l}}(\mathbf{y})^{(2)}+\left.\widehat{\widehat{W}} \frac{\partial \tilde{u}_{l}(y)}{\partial y}\right|_{y=-1} \tilde{\mathbf{1}}+\tilde{u}_{l}(-1) \tilde{\mathbf{1}} \tag{40}
\end{equation*}
$$

The partial differential equation (1) at $x=x_{j}, y=y_{k}$ is

$$
\begin{align*}
& \sum_{l=1}^{N+1}\left[\sum_{s=1}^{M+1}\left(\widehat{\widehat{W}}^{2}\right)_{k, s} \sum_{m=1}^{M+1} \hat{u}_{l, m} T_{m-1}\left(y_{s}\right)+\left.\sum_{s=1}^{M+1} \widehat{W}_{k, s} \frac{\partial \tilde{u}_{l}(y)}{\partial y}\right|_{y=-1}+\tilde{u}_{l}(-1)\right] T_{l-1}\left(x_{j}\right) \\
& -\sum_{q=1}^{N+1}\left(\widehat{W}^{2}\right)_{j, q} \sum_{l=1}^{N+1} \sum_{m=1}^{M+1} \hat{u}_{l, m} T_{m-1}\left(y_{k}\right) T_{l-1}\left(x_{q}\right)+\frac{\sum_{q=1}^{N+1}\left(\widehat{W}^{2}\right)_{1, q} \sum_{l=1}^{N+1} \sum_{m=1}^{M+1} \hat{u}_{l, m} T_{m-1}\left(y_{k}\right) T_{l-1}\left(x_{q}\right)}{\sum_{L=1}^{N+1} \widehat{W}_{1, L}} \sum_{Q=1}^{N+1} \widehat{W}_{j, Q}=0 . \tag{41}
\end{align*}
$$

Next we note from our previous expansions defined above that it can be deduced easily that

$$
\begin{align*}
& u=\sum_{l=1}^{N+1}\left[\sum_{m=1}^{M+1} \hat{u}_{l, m} \int_{-1}^{y} \int_{-1}^{\hat{y}} T_{m-1}(\hat{y}) d \hat{y} d \hat{\hat{y}}+\left.\frac{\partial \tilde{u}_{l}(y)}{\partial y}\right|_{y=-1}(y+1)+\tilde{u}_{l}(-1)\right] \int_{-1}^{x} \int_{-1}^{\hat{\hat{y}}} T_{l-1}(\hat{x}) d \hat{x} d \hat{\hat{x}} \\
&-\frac{\sum_{q=1}^{N+1}\left(\widehat{W}^{2}\right)_{1, q} \sum_{l=1}^{N+1}\left[\sum_{m=1}^{M+1} \hat{u}_{l, m} \int_{-1}^{y} \int_{-1}^{\hat{\hat{y}}} T_{m-1}(\hat{y}) d \hat{y} d \hat{\hat{y}}+\left.\frac{\partial \tilde{u}^{\prime}(y)}{\partial y}\right|_{y=-1}(y+1)+\tilde{u}_{l}(-1)\right] T_{l-1}\left(x_{q}\right)(x+1)}{\sum_{L=1}^{N+1} \widehat{W}_{1, L}} . \tag{42}
\end{align*}
$$

At this point we use Maple to solve (41) and the remaining boundary conditions (4,5) for $\hat{u}_{l, m},\left.\frac{\partial \tilde{u}_{l}(y)}{\partial y}\right|_{y=-1}$, and $\tilde{u}_{l}(-1)$ where $l=1,2, \ldots, N+1$ and $m=1,2, \ldots, M+1$. Note the boundary conditions $(4,5)$ are to be evaluated at a set of x points different to the x_{i} points in order for the number of equations to be solved to be equal to the number of variables it is to be solved for. For the boundary conditions $(4,5)$, we use (42) with the different x points

$$
\begin{equation*}
\xi_{i}=\cos (\pi i /(N+2)) \text { for } i=1,2, \ldots, N+1 \tag{43}
\end{equation*}
$$

The Maple code is omitted. For $M=N=20$, the obtained numerical solution is indistinguishable to the exact solution as in Figure 1 (left). The residual r is defined here as the outcome of substituting the numerical solution into the left hand side of the problem described in $\S 1$. For $M=N=20$ we have $\max |r| \approx 0.015$. The error e is defined here as the difference between the exact solution and numerical solution. In Figure 1 (right) we plot e and see that this method is accurate at $M=N=20$ with $\max |e| \approx 0.000015$.

Figure 1: (left) Plot of the exact/numerical solution u vs x and (right) plot of the error e vs x at the GaussLobatto points $y=y_{i}=\cos (\pi((i-1) / M))$ for $i=1,2, \ldots, M+1$. Here $M=N=20$. The curves get darker as y increases from negative one.

Acknowledgement

I acknowledge S. A. Suslov for his kind and helpful help.

References

[1] H-C. Ku and D. Hatziavramidis. Chebyshev expansion methods for the solution of the extended Graetz problem. J. Comp. Phys. Vol 56, pp. 495-512, 1984.
[2] D. Hatziavramidis and H-C. Ku. An integral Chebyshev expansion method for boundary-value problems of O. D. E type. Comp. \& Maths. with Appls. Vol 11. No. 6, pp. 581-586, 1985.
[3] S. A. Suslov, J. Perez-Barrera, and S. Cuevas. Electromagnetically driven flow of electrolyte in a thin annular layer: axisymmetric solutions. J. Fluid. Mech. Vol 828, pp. 573-600, 2017.

