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A new method is developed of which is applied to a problem involving a 1D wave equation in disguise.

1. Problem description

Let u = u(x, y) ∈ R with x, y ∈ R. A 1D wave equation in disguise is

∂2u

∂x2
− 1

c2
∂2u

∂y2
= 0. (1)

where we take c = 1. The boundary conditions are

u = 0 at x = −1 for y > −1, (2)

u = 0 at x = 1 for y > −1, (3)

u− cos(
π

2
x) = 0 at y = −1 for− 1 < x < 1, (4)

∂u

∂y
= 0 at y = −1 for− 1 < x < 1. (5)

On replacing the spatial variable y with the (time-delayed) variable τ = t− 1 where t is the time variable,
above can be recognised as the wave equation in one space dimension. Then u(x, t) denotes the transverse
displacement of a tightly-stretched vibrating string. The string is fastened on the x axis at x = ±1 so that
u(±1, t) = 0. Here we have u(x, 0) = cos(π

2
x) is the initial shape of the string. The string is released

from rest so that the initial transverse velocity distribution ut(x, 0) = 0. Here the constant c is given by
c2 = T/ρ where T is the tension in the string and ρ is the density (mass/unit length) of the string. It is
known that here c is the speed at which the transverse waves propagate along the string.

2. Exact solution

We can find the exact solution to the problem in §1 for x ∈ [−1, 1] and ∀ y > −1. By the method of
separation of variables assume a solution of the form

u = XY (6)

where X = X(x) and Y = Y (y). Then (1) implies

X ′′Y −XY ′′ = 0 (7)

which implies
X ′′ = −λX (8)

and
Y ′′ = −λY (9)

where λ is the separation constant. The boundary conditions (2), (3) imply

X(−1) = X(1) = 0. (10)

For nontrivial solutions we have λ = p2 > 0, then (8) implies

X = c0 cos(px) + c1 sin(px) (11)

where c0, c1 are arbitrary constants. The boundary conditions (10) then imply

c0 cos(p)− c1 sin(p) = 0 (12)

and
c0 cos(p) + c1 sin(p) = 0. (13)
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Therefore we have case I : p = nπ, Xn = c1,n sin(nπx), λn = (nπ)2, n = 1, 2, . . . ,∞ or case II : p =
π
2

+ nπ, Xn = c0,n cos((π
2

+ nπ)x), λn = (π
2

+ nπ)2, n = 0, 1, 2, . . . ,∞. Here c0,n, c1,n are arbitrary
constants. For case I we can not match the boundary condition (4). For case II we have that (9) becomes

Y ′′n = −(
π

2
+ nπ)2Yn (14)

which implies
Yn = c2,n cos((

π

2
+ nπ)y) + c3,n sin((

π

2
+ nπ)y) (15)

where c2,n, c3,n are arbitrary constants. Using the superposition principle we then have

u =
∞∑
n=0

c0,n cos((
π

2
+ nπ)x)[c2,n cos((

π

2
+ nπ)y) + c3,n sin((

π

2
+ nπ)y)]. (16)

Then

∂u

∂y
=
∞∑
n=0

c0,n cos((
π

2
+ nπ)x)[−c2,n sin((

π

2
+ nπ)y) + c3,n cos((

π

2
+ nπ)y)][

π

2
+ nπ]. (17)

The boundary condition (4) implies

∞∑
n=0

c0,n cos((
π

2
+ nπ)x)[c2,n cos((

π

2
+ nπ))− c3,n sin((

π

2
+ nπ))] = cos(

π

2
x). (18)

which implies
c0,0[c2,0 cos(

π

2
)− c3,0 sin(

π

2
)] = 1. (19)

and
c0,n[c2,n cos(

π

2
+ nπ)− c3,n sin(

π

2
+ nπ)] = 0 (20)

for n > 0. The boundary condition (5) implies

∞∑
n=0

c0,n cos((
π

2
+ nπ)x)[c2,n sin(

π

2
+ nπ) + c3,n cos(

π

2
+ nπ)][

π

2
+ nπ] = 0 (21)

which implies
c0,n[c2,n sin(

π

2
+ nπ) + c3,n cos(

π

2
+ nπ)] = 0 (22)

for n > 0. Therefore we have
c0,0[c2,0 cos(

π

2
)− c3,0 sin(

π

2
)] = 1, (23)

c0,0[c2,0 sin(
π

2
) + c3,0 cos(

π

2
)] = 0 (24)

and c0,n = 0 for n > 0. This implies c0,0 = 1, c2,0 = 0, c3,0 = −1. Our final exact solution is then

u = − cos(
π

2
x) sin(

π

2
y) (25)

of which can be checked by substitution into the problem in §1.

3. An integral collocation method

This method was inspired by [1, 2, 3]. We solve the problem in §1 numerically on x ∈ [−1, 1], y ∈ [−1, 1]
as follows. We start with the expansion

∂2u

∂x2
=

N+1∑
l=1

ũl(y)Tl−1(x) (26)
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where Tl(x) are Chebyshev functions with ũl(y) as the unknown coefficients, and N is a positive integer.
We define the vector

ū(n) = [
∂nu

∂xn
|x=x1 ,

∂nu

∂xn
|x=x2 , . . . ,

∂nu

∂xn
|x=xN+1

]T (27)

for n = 0, 1, 2. Here xi are the Gauss–Lobatto points

xi = cos(π((i− 1)/N)) for i = 1, 2, . . . , N + 1. (28)

Then we have
ū(1) = Ŵ ū(2) +

∂u

∂x
|x=−11 (29)

where Ŵ is the integration matrix [2] for integrating with respect to x and 1 is a vector with all entries
equal to one. It then follows that

ū(0) = Ŵ 2ū(2) + Ŵ
∂u

∂x
|x=−11 + u|x=−11. (30)

The partial differential equation (1) at x = xj is

N+1∑
l=1

ũl(y)Tl−1(xj)−
N+1∑
q=1

(Ŵ 2)j,q

N+1∑
l=1

∂2ũl(y)

∂y2
Tl−1(xq)−

∂2

∂y2
(
∂u

∂x
|x=−1)

N+1∑
q=1

Ŵj,q = 0. (31)

The boundary condition (2) implies
u|x=−1 = 0. (32)

The boundary condition (3) implies

N+1∑
q=1

(Ŵ 2)1,q

N+1∑
l=1

ũl(y)Tl−1(xq) + (
∂u

∂x
|x=−1)

N+1∑
q=1

Ŵ1,q = 0 (33)

which implies
∂u

∂x
|x=−1 =

−
∑N+1

q=1 (Ŵ 2)1,q
∑N+1

l=1 ũl(y)Tl−1(xq)∑N+1
L=1 Ŵ1,L

. (34)

The partial differential equation (1) at x = xj becomes

N+1∑
l=1

ũl(y)Tl−1(xj)−
N+1∑
q=1

(Ŵ 2)j,q

N+1∑
l=1

∂2ũl(y)

∂y2
Tl−1(xq) +

∑N+1
q=1 (Ŵ 2)1,q

∑N+1
l=1

∂2ũl(y)

∂y2 Tl−1(xq)∑N+1
L=1 Ŵ1,L

N+1∑
Q=1

Ŵj,Q = 0. (35)

Now let
∂2ũl(y)

∂y2
=

M+1∑
m=1

ûl,mTm−1(y) (36)

where ûl,m are unknown coefficients to be found and M is a positive integer. We define the vector

ũl(y)(n) = [
∂nũl(y)

∂yn
|y=y1 ,

∂nũl(y)

∂yn
|y=y2 , . . . ,

∂nũl(y)

∂yn
|y=yM+1

]T (37)

for n = 0, 1, 2. Here yi are the Gauss–Lobatto points

yi = cos(π((i− 1)/M)) for i = 1, 2, . . . ,M + 1. (38)

Then we have

ũl(y)(1) =
̂̂
W ũl(y)(2) +

∂ũl(y)

∂y
|y=−11̃ (39)

where ̂̂
W is the integration matrix [2] for integrating with respect to y and 1̃ is a vector with all entries

equal to one. It then follows that

ũl(y)(0) =
̂̂
W

2

ũl(y)(2) +
̂̂
W
∂ũl(y)

∂y
|y=−11̃ + ũl(−1)1̃. (40)
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The partial differential equation (1) at x = xj , y = yk is

N+1∑
l=1

[

M+1∑
s=1

(
̂̂
W

2

)k,s

M+1∑
m=1

ûl,mTm−1(ys) +

M+1∑
s=1

̂̂
Wk,s

∂ũl(y)

∂y
|y=−1 + ũl(−1)]Tl−1(xj)

−
N+1∑
q=1

(Ŵ 2)j,q

N+1∑
l=1

M+1∑
m=1

ûl,mTm−1(yk)Tl−1(xq) +

∑N+1
q=1 (Ŵ 2)1,q

∑N+1
l=1

∑M+1
m=1 ûl,mTm−1(yk)Tl−1(xq)∑N+1

L=1 Ŵ1,L

N+1∑
Q=1

Ŵj,Q = 0. (41)

Next we note from our previous expansions defined above that it can be deduced easily that

u =

N+1∑
l=1

[

M+1∑
m=1

ûl,m

∫ y

−1

∫ ˆ̂y

−1
Tm−1(ŷ) dŷ dˆ̂y +

∂ũl(y)

∂y
|y=−1(y + 1) + ũl(−1)]

∫ x

−1

∫ ˆ̂x

−1
Tl−1(x̂) dx̂ dˆ̂x

−
∑N+1

q=1 (Ŵ 2)1,q
∑N+1

l=1 [
∑M+1

m=1 ûl,m
∫ y
−1

∫ ˆ̂y
−1 Tm−1(ŷ) dŷ dˆ̂y +

∂ũl(y)
∂y
|y=−1(y + 1) + ũl(−1)]Tl−1(xq)(x+ 1)∑N+1

L=1 Ŵ1,L

. (42)

At this point we use Maple to solve (41) and the remaining boundary conditions (4,5) for ûl,m, ∂ũl(y)
∂y
|y=−1,

and ũl(−1) where l = 1, 2, . . . , N + 1 and m = 1, 2, . . . ,M + 1. Note the boundary conditions (4,5) are
to be evaluated at a set of x points different to the xi points in order for the number of equations to be
solved to be equal to the number of variables it is to be solved for. For the boundary conditions (4,5), we
use (42) with the different x points

ξi = cos(πi/(N + 2)) for i = 1, 2, . . . , N + 1. (43)

The Maple code is omitted. For M = N = 20, the obtained numerical solution is indistinguishable to
the exact solution as in Figure 1 (left). The residual r is defined here as the outcome of substituting the
numerical solution into the left hand side of the problem described in §1. For M = N = 20 we have
max |r| ≈ 0.015. The error e is defined here as the difference between the exact solution and numerical
solution. In Figure 1 (right) we plot e and see that this method is accurate at M = N = 20 with
max |e| ≈ 0.000015.

Figure 1: (left) Plot of the exact/numerical solution u vs x and (right) plot of the error e vs x at the Gauss–
Lobatto points y = yi = cos(π((i− 1)/M)) for i = 1, 2, . . . ,M + 1. Here M = N = 20. The curves get
darker as y increases from negative one.
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