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abstract: 

In this paper, we want to show how the phenomenon of inertia can be explained in classical mech-
anics in a unified theory of gravity and inertia. This is achieved by correctly implementing Mach’s 
principle and the idea of inertia being of gravitational origin. As a basis, we use the inertia-free 
mechanics of H.J. Treder. We want to show that it realises Mach’s principle in the sense that the in-
ertial frames of reference are completely determined by the relative motion of all particles in the 
universe. The theory is valid in arbitrary frames of reference and yields the exact Newtonian ficti-
tious forces for translational and rotational motion of any non-inertial frame. Inertial mass and ficti-
tious forces can be explained as of gravitational origin while the former at the same time remains 
isotropic, as demanded by experiment. We will show how inertial and gravitational mass are related 
to each other, providing an explanation for the weak equivalence principle. In the lowest order v/c 
of the theory, Newtonian mechanics is obtained, but including the fictitious forces. As correction in 
the next order, the theory yields Gravitoelectromagnetism. We show, that a Lorentz-type force equa-
tion valid in arbitrary accelerated frames can be derived. Ultimately, it is possible to formulate clas-
sical mechanics without a priori introducing the gravitational constant. Instead, an expression for it 
can be derived from the theory itself, allowing for an explanation of the strength of gravity.

1. Introduction: 

The origin of inertia is still unknown. Neither classical mechanics nor general relativity provide a 
satisfactory explanation for the inertial properties of matter. A possible approach to this problem 
was proposed by Mach, as what became later known as Mach’s principle [1]. He argued, that only 
relative quantities are determined by the dynamical laws of the universe, and in turn, only this relat-
ive quantities must enter the dynamical laws of the universe. Mach wrote that “ […] The universe is
not twice given, with an earth at rest and an earth in motion; but only once, with its relative mo-
tions, alone determinable.“ According to Mach, the inertial frames of reference, the frames in which
Newton’s laws of motion hold, should be completely determined by the relative motion of all 
particles in the universe. And not like in Newtonian theory, by a postulated absolute space, which is 
unobservable. Fictitious forces should therefore arise when a body is accelerated relative to the  
other masses in the universe, instead of absolute space. Criticizing Newton in his bucket experi-
ment, with which he had intended to demonstrate the role of absolute space in the occurrence of the 
fictitious forces, Mach said that “it (the bucket experiment) only informs us, that the relative motion
of the water with respect to the sides of the vessel produces no noticeable centrifugal forces, but that
such forces are produced by its relative rotation with respect to the mass of the Earth and the other 
celestial bodies. “ and that “no one is competent to say how the experiment would turn out if the 
sides of the vessel increased in thickness and mass till they were ultimately several leagues thick” 
[1, p. 216 f]. This last statement already hints at the influence of not just the motion, but also the 
mass of other particles in the universe on the inertia of a body.
Mach himself did not attach any particular importance to the explanation of inertial mass. In his 
opinion, it is just empirically defined by Newton’s third law: If two bodies act on each other, they 

experience accelerations in opposite directions and of magnitude
a1

a2

=
m2

m1

. Inertial mass is then 



just empirically defined as the inverse of the ratio of accelerations. Mach held the opinion that 
“every venture beyond this will only be productive in obscurity”.
However, Mach’s demand that only relative quantities enter the dynamical laws of the universe, im-
plies that inertial mass is not an intrinsic property of matter, but results from an interaction with all 
other particles in the universe. This is an immediate consequence of the fact that a Lagrange func-
tion satisfying Mach’s principle must necessarily depend on purely relative quantities

.

First Friedländer [2, p. 17], and later Einstein suggested, based on the equivalence principle, that 
this interaction should be gravity. In his definition of Mach’s principle [3] he argued that “the G-
field (the metric tensor) is completely defined by the masses of the bodies (of the universe)”. Since 
the metric tensor determines the inertial mass of a body in special and general relativity, his defini-
tion implied that inertial mass is of gravitational origin. His general theory of relativity was inten-
ded to incorporate this idea, but, according to his own words, failed to do so: A particle in an empty 
universe, which corresponds to flat Minkowski space, does have a non-vanishing inertial mass. If it 
were indeed, according to his definition, completely determined by the gravitational interaction with
other masses, this could not be the case [4]). As we shall see though, it is this idea of inertia being of
gravitational origin, together with Mach’s principle, which, if implemented correctly, allows for a 
theory correctly accounting for the inertial properties of matter. Ultimately, this will allow to ex-
plain the strength of gravity and explain Newton’s constant G.
Historically, there were many attempts to build theories realising both ideas. As was proposed by 
Barbour & Bertotti [5], a non-relativistic theory realising Mach’s principle should be invariant un-
der transformations of the form

, (1.1)

with A an orthogonal matrix and g a displacement vector. This invariance ensures the dependence
of the theory on purely relative quantities, as demanded by Mach’s principle. First, Barbour & Ber-
totti [6] and later also Lynden-Bell & Katz [7] developed a mathematically equivalent non-relativ-
istic theory invariant under (1.1). However, they didn’t incorporate the idea of inertia being of grav-
itational origin and therefore, were unable to obtain the correct fictitious forces. As we will see later,
it is for this reason they were not able to provide an explanation for the gravitational constant.
Many, especially earlier, attempts to incorporate both ideas resulted in theories only depending on 
relative distances rij=|⃗ri−r⃗ j| between particles, and their derivatives [5, 8-11]. Most were for ex-
ample built on the velocity dependent Weber potential [9-11]:

, (1.2)

with f the gravitational constant and c the speed of light. This potential then takes the role of both 
kinetic and potential energy. Those theories do indeed explain inertia as of gravitational origin, 
since the kinetic energy is part of the gravitational potential. At the same time are invariant under 
(1.1). However, they lead to an anisotropic inertial mass, which is ruled out experimentally1). This 
also has led to a refutation of theories built on such velocity dependent potentials.
Another remarkable attempt to explain inertia as of gravitational origin was made by Sciama [12]. 
In a model using the gravitoelectromagnetic equations he postulated that a particle always moves in 
a way that in its rest frame the total gravitational field is zero. He could then show how an inertial 
term m a could be derived from what appeared as purely a vector potential in the particles rest 
frame. As we will see later, his idea is precisely the way how the inertia term arises from the gravit-
ational field in a theory built on a velocity dependent gravitational potential. Although it is well 

1) The relative anisotropy of inertia expected by such potentials due to the contribution of e.g. the Milky Way to a 

particle’s inertia is roughly 10−9
, while the latest upper bound from experiment is 10−34

[16]
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known that Gravitoelectromagnetism is even present in linearised general relativity, Sciama’s ideas 
have never been built into a complete theory, neither non-relativistic nor relativistic. 
Consequently, until today there exists no accepted theory successfully incorporating both Mach’s 
principle and Einstein’s idea of inertial mass resulting from gravitational interaction. But, as we will
see, it is exactly those theories which are able to successfully explain inertia. It makes sense, to first 
look for a non-relativistic theory, correctly implementing both ideas, and later contemplate how 
they can be extended to a relativistic theory. In this paper we therefore only deal with a non-relativ-
istic theory, a relativistic generalisation will be discussed in a subsequent paper.
A largely unknown theory which is capable of implementing both Mach’s principle and Einstein’s 
idea is the inertia free mechanics of H.J. Treder [13, 14], on which we want to draw attention. It is 
built on the Riemann-potential, which was originally used by Riemann in his theory of electromag-
netism [15, p. 325 f]

, (1.3)

with v⃗ ij= v⃗ i−v⃗ j , which again takes the role of both kinetic and potential energy. In this paper, we 
want to present and further develop this theory. It is capable of implementing both Mach’s principle 
and the idea of inertia having a gravitational origin, without predicting it to be anisotropic. As a 
consequence, it yields a unified description of gravity and inertia. It can explain inertial mass as 
well as all the Newtonian fictitious forces as of gravitational origin, allowing us to derive the weak 
equivalence principle. The inertial frames of reference are determined by all other particles in the 
universe and the exact Newtonian fictitious forces arise in any non-inertial frame, for translational 
and rotational acceleration. Ultimately, we will show that this allows to formulate classical mechan-
ics without a priori introducing a gravitational constant. Instead, it can be derived from the theory it-
self, allowing for an explanation of the strength of gravity. 

2. The inertia free mechanics:

In this section, we first want to present the inertia-free mechanics of H.J. Treder [13, 14]. It is built 
on the Lagrange function:

, (2.1)

with the kinetic and potential energy

(2.2)

         . (2.3)

Here v⃗ ij= v⃗ i−v⃗ j , r ij=|⃗r i−r⃗ j| , β⃗= v⃗
c

. f is the gravitational constant, c the speed of light. b is 

a dimensionless constant. This Lagrangian is invariant under any transformation r⃗→ r⃗+ g⃗ (t ) . We 
will later (section 5) show how it can be extended to also be invariant under the full transformation 
(1.1) and as a consequence will completely satisfy Mach‘s principle. 
It was shown by Treder that the energy corresponding to this Lagrangian is E=T+V with T and V 
given by (2.2) and (2.3), respectively. This quantity denotes the energy of the universe and is con-
served, it holds

 .
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The generalised momentum of some particle k following from the Lagrange function (2.1) is

, (2.4)

with the potential and vector potential:

(2.5)

(2.6)

and the inertial mass:

. (2.7)

This equation provides a relation between the inertial mass and the gravitational mass mk . It 
shows, that the inertial mass (2.7) is induced by the gravity of all other masses in the universe. At 
the same time, it is isotropic, as demanded by experiment. This can be seen by its scalar character2). 
By demanding the strict equivalence of inertial and gravitational mass mk

*=mk , Treder obtained 
as self-consistency condition of the theory

. (2.8)

He interpreted this equation in the way that it determined the average gravitational potential of the 
universe for a given gravitational constant. Apart from leading to problems with the equations of 
motion and ambiguities, we believe that the true value of the theory lies in not having to postulate 
any gravitational constant at all, as will be shown in the next section. Further, by demanding the 
validity of (2.9), Treder applied the weak equivalence principle. As we will also see in the next sec-
tion, this requirement is unnecessary. It will come out of the theory by itself, as a result of it cor-
rectly describing inertial mass as of gravitational origin.
Further, equation (2.4) implies that the total momentum of the universe is zero

. (2.9)

Treder also derived an equation of motion from the Lagrangian for a simplified model of two 
particles moving in front of a distant background consisting of the other particles. In the next sec-
tion, we will derive the exact equations of motion, therefore we don’t present it here.

3. Equation of motion, the equivalence principle and Gravitoelectromagnetism:

In this section, we want to derive the equations of motion following from the Lagrangian (2.1). We 
will show that it is possible to formulate classical mechanics without a priori postulating the equi-
valence principle or the gravitational constant. Instead, we will derive both from the theory. We 
show that Newtonian mechanics is re-obtained in the lowest order β. As correction, Gravitoelectro-
magnetism arises in the higher orders and a Lorentz-type force equation can be obtained. 
In the Lagrangian (2.1)3)

2) If one used a Lagrangian based on the Weber potential (1.2) instead of the Riemann potential (1.3), then (2.7) would 
have tensorial character and thus be anisotropic.
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, (3.1)

the gravitational constant appears in both terms, kinetic and potential energy. It is therefore nothing 
more than a constant factor, which doesn’t change the equations of motion. One can drop it and 
write

. (3.2)

Consequently, it is not necessary to a priori introduce any gravitational constant; it will come out 
naturally later.
By using β⃗ kj

2=β⃗ k
2+β⃗ j

2−2 ⟨ β⃗ k , β⃗ j⟩ and gathering together all terms involving the k th particle, 
one obtains for its Lagrangian

. (3.3)

The first three terms in this expression are the Lagrangian for a particle in a gravitoelectromagnetic 
field with a factor of 2 at the magnetic term (we will see later that the correct relativistic value of 4 
from 1st PN of GR comes out in the equations of motion). The only difference is that the inertial 
“mass“ is given by4):

(3.4)

It is interesting to notice that the gravitomagnetic contribution to (3.3) arises due to the dependence 
of the Lagrangian (3.2) on the relative velocities. Expression (3.4) is a scalar, showing again that in-
ertial mass is isotropic. Also, this equation provides a relation between gravitational and inertial 
mass, showing that the latter is a derived quantity. As we will see in a moment, this will allow us to 
explain the weak equivalence principle, instead of having to postulate it. 
Applying the Euler-Lagrange equations:

(3.5)

to (3.3), one obtains the equation of motion

. (3.6)

Here, the gravitoelectric and magnetic fields are given by

(3.7)

. (3.8)

The partial time derivative in (3.7) means that only the velocity in A is to be differentiated in time.
If one divides eq. (3.6) by the inertial mass mk

* , one obtains

. (3.9)

3) For simplicity and it being the natural choice, we set b=1. Treder used the value of b=3/2 to get the correct value for 
the perihelion shift of Mercury. Since we only have a non-relativistic theory which is to be generalised relativistically, 
we don’t bother with getting the correct value here.
4) The unit of this expression is not the one of a mass since we dropped f in the Lagrange function (3.1). If we kept it, 
the units would be correct, but f will cancel out in the equations of motion anyway. Consequently, nothing of what is 
said about the inertial mass in the following is altered by this “wrong” units.

E⃗k :=−∑
j≠k

m j

r kj
3 r⃗kj⋅(1−β⃗ kj

2)+ 2
c

∂ A⃗k

∂ t

B⃗kj :=∇⃗ k×A⃗kj+β⃗ k×∇⃗kφ kj

mk
* ∂ v⃗k

∂ t
=mk E⃗k−2mk⋅∑

j≠k

β⃗ kj×B⃗ kj

mk
*=mk

2φ k

c2

Lk=
1
2

mk
*⋅vk

2+mkφ k−2mk ⟨ A⃗k , β⃗ k ⟩+∑
j≠k

mk m j

rkj

⋅β j
2

d
dt
∂L
∂ v⃗k

= ∂L
∂ r⃗k

L=∑
i> j

f mi m j

r ij

(1+β⃗ ij
2)

L=∑
i> j

mim j

rij

(1+β⃗ ij
2)

∂ v⃗k

∂ t
= c2

2φ k

( E⃗k−2∑
j≠k

β⃗ kj×B⃗ kj)



In the lowest order
v
c

this reduces to

, (3.10)

which is the Newtonian law of gravity with the gravitational constant given by5):

. (3.11)

It comes out naturally and does not have to be put in by hand. And so does the weak equivalence 
principle, as can be seen by equation (3.9, 3.10): No inertial mass appears in it, implying the univer-
sality of free fall. Both are a direct consequence of the inertial mass being induced by gravity, ac-
cording to (3.4). We will discuss this in more detail in section 7.

As correction to Newton’s law of gravity, in the next order
v
c

we get Gravitoelectromagnetism, as

can be seen in equation (3.9). It can also be written as:

, (3.12)

with the gravitoelectromagnetic force:

. (3.13)

Unlike in the conventional Lorentz force, the magnetic part of the force here depends on the relative
velocities. The equation of motion (3.13) is invariant under any transformation r⃗→ r⃗+ g⃗ (t) , as 
was the Lagrangian (3.2) it was derived from6). Therefore, it is indeed valid in arbitrary linear accel-
erated frames of reference. This can be seen from the fact that the potentials (2.5 & 2.6) behave un-
der such a transformation as

(3.14)

, (3.15)

and therefore the fields (3.7 & 3.8) as:

(3.16)

(3.17)

with V⃗=d g⃗
dt

. 

5) An equation like (3.15) has been obtained in various works on Mach’s principle [9, 12].
6) This of course also applies to (3.6) and (3.9)
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4. The relativity of linear acceleration and the origin of inertia:

In this section, we want to show how the inertial frames of reference are defined by the motion of 
all particles in the universe, as demanded by Mach’s principle. Also, we show that any linear accel-
eration relative to those frames yields the exact Newtonian fictitious forces and further, that these 
forces are of gravitational origin. Since our Lagrangian is by now only invariant under transforma-
tions r⃗→ r⃗+ g⃗ (t) , we will restrict ourselves to linear accelerations here. In the next section, we 
will show how it can be made invariant under the complete set of transformations (1.1) and then 
discuss rotational accelerations.
In the force (3.13) acting on the particle k, we can identify the fictitious force as that dependent on 
the accelerations of the other particles

. (4.1)

Indeed, according to the transformation law (3.14), this force behaves under a transformation
v⃗→ v⃗+ V⃗ as

. (4.2)

It therefore automatically yields the additional Newtonian inertial force when transformed into a 
new frame, accelerating relative to the old one. The inertial frames are those in which this force 
vanishes, which is equivalent to the condition:

            . (4.3)

The left side is dependent on the acceleration of all other particles in the universe. Therefore, the in-
ertial frames are determined by the motion of all other particles in the universe, as demanded by 
Mach’s principle. Especially, any frame accelerated relative to the one defined by (4.3) will experi-
ence a fictitious force

, (4.4)

which means that the fictitious force arise in any frame accelerated relative to the rest-frame defined
by the universe via (4.2).
The fictitious force (4.1) also gives rise to a “dragging” effect: If some particle j accelerates, this in-
duces a drag force on particle k equal to:

.

If now the whole universe would be accelerating uniformly with
d V⃗
dt

, then the whole fictitious 

force on the particle k would be again equal to (4.4). The universe drags the particle with it. Even 
though the particle is resting in the rest-frame of absolute space, it experiences the same fictitious 

force as if it were in a non-inertial frame accelerating with −d V⃗
dt

. In Newtonian mechanics, the 

particles acceleration in this case would be zero: It would not recognise the motion of the universe. 
The inertial frame of reference is again defined by (4.2), which means that we have to transform 

into a frame accelerating with
d V⃗
dt

in order to satisfy the condition. The inertial frame is the one 

co-accelerating with the universe. It can thus be seen, that the role of absolute space as the universal
inertial frame has been removed. As demanded by Mach’s critique, it no longer plays any role in 
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when fictitious forces arise, but only the accelerations relative to the other particles in the universe 
matter.
The above mentioned is a manifestation of the relativity of linear acceleration, which is realised in 
the theory. It is dynamically equivalent if particle is accelerating, or the rest of the universe is accel-
erating in the opposite direction. The reason for this is that only accelerations relative to the uni-
verse enter the equation of motion (3.6). This was already shown by Treder for a simplified model. 
If we bring the fictitious force (4.1) to the other side in (3.6), we can write the left side as 

. (4.5)

Indeed, this expression contains only accelerations relative to the other particles.
From (4.1), it can also clearly be seen that the fictitious force is, as is the inertial mass, of gravita-
tional origin. It is just the gravitoelectric induction force. We can also show how the whole inertia 
term of a particle

can be derived from what appears as purely a vector potential in his rest frame. The mechanism is 
the same that had been proposed by Sciama [11]. The term (4.5) is just the vector potential A⃗k

' as 
seen in the particles rest frame:

. (4.6)

In this frame, the equation of motion therefore reads:

, (4.7)

whereas the generalised momentum is

. (4.8)

Indeed, no inertia term is present. Equation (4.7) also expresses that the total gravitational field in 
the particle’s rest frame is zero; this is what had been postulated by Sciama. If we now transform 
into an arbitrary moving frame, the particle’s velocity in this system is v⃗k . We get according to 
the transformation law (3.14):

(4.9)

and for the equation of motion (4.7) again:

   . (4.10)

One can see how the inertia term arises from what appears as purely the vector potential in the 
particle’s rest frame. 

5. The relativity of rotation:

As was stated in the beginning, the Lagrangian (2.1) is only invariant under translations
r⃗→ r⃗+ g⃗ (t ) , but not under rotations, and therefore not under the full transformation (1.1). In this 
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ations (1.1). We will then be able to obtain the same results that were obtained for linear accelera-
tion in the previous section, also for rotational acceleration. 
To extend the Lagrangian, we adopt an idea used by Lynden-Bell & Katz in their approach to 
Mach’s principle [7]. We write

(5.1)

and minimise with respect to Ω

. (5.2)

This yields

(5.3)

(5.4)

. (5.5)

As in the paper of Lynden-Bell & Katz, J is the angular momentum of the universe around its centre
of mass, I its moment of inertia around the centre of mass7). Equation (5.2) expresses that the total 
angular momentum M of the universe is zero, just like the regular momentum P according to (2.12).
The presence of the additional rij terms doesn’t change the behaviour of (5.1) under rotations 
compared to the expression obtained by Lynden-Bell & Katz

, (5.6)

since distances remain invariant. Therefore, the Lagrangian

(5.7)

is also invariant under arbitrary rotations. 
With the definitions

(5.8)

, (5.9)

one obtains for the equation of motion for some particle k

.(5.10)

The gravitoelectric and magnetic fields are the ones introduced in (3.7 & 3.8), as seen in a frame ro-
tating with an angular velocity Ω⃗

(5.11)

7) Since the gravitational constant had been dropped in the Lagrangian (3.2) and consequently the kinetic energy (4.1), 
the units are different from the usual units of J and I. 
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. (5.12)

The inertial “mass” is again given by

. (5.13)

If one divides by
2φ k

c2 , one can write eq. (5.10) in the form

(5.14)

(5.15)

.(5.16)

Here, F⃗ k
GEM is the gravitoelectromagnetic force introduced in (3.13), as seen in a frame rotating 

with an angular velocity Ω⃗ . F⃗ k
fic is again an additional fictitious force, caused by the rotation 

of the universe. It exactly agrees with the Newtonian expression. Gk is again given by (3.11).
We can see again, that the inertial frames of reference are determined by all other particles in the 
universe,  as demanded by Mach’s principle: The fictitious force (5.15) vanishes in exactly that 
frame of reference where Ω⃗=0 . This is according to (5.3) equivalent to the condition

. (5.17)

The left side of this equation is purely dependent on relative quantities between all particles in the 
universe, cf. equations (5.4 & 5.5). 
Since the Lagrangian (5.7) is independent of the rotation of the frame chosen to write it in, so is the 
equation of motion (5.14). Ω⃗ is the angular frequency of the universe perceived in this frame. 
Consequently, the exact Newtonian fictitious forces arise automatically in any frame rotating relat-
ive to the one defined by (5.17), just like it was the case for linear acceleration (cf. eq. 4.4). This 
also again implies that a particle at rest in the rest-frame of absolute space would experience the 
same centrifugal forces if the rest of the universe were rotating, then it would experience if itself 
would be rotating with the same angular frequency. In Newtonian mechanics, this is not the case: 
The particle would experience no force if just the universe were rotating. This is a manifestation of 
the relativity of rotation. It is dynamically equivalent if the particle is rotating or the universe is ro-
tating in the other direction. This is mathematically expressed by the fact that only rotations relative
to the universe enter the Lagrange function (5.7).
This also answers Mach’s criticism to Newton’s bucket: The Newtonian fictitious forces arise in any
frame rotating relative to the one defined by all other masses in the universe via (5.17). The water in
the bucket is pushed upwards because it is rotating relative to the universe, not absolute space like 
in Newtonian theory. If now the walls of the bucket would hypothetically become thicker and 
thicker, ultimately consisting of the matter of the entire universe, then the water wouldn’t be pushed
up against the walls at all anymore, because the inertial frame would be that co-rotating with the 
universe, which is in this case the walls if the bucket. But this is exactly the one, in which the water 
rests.
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6. Frame-dragging as consequence of Mach’s principle:

Like in the linear case, the relativity of rotation gives rise to a dragging effect, which agrees qualit-
atively with the frame-dragging effect predicted by General relativity. Assume therefore some mass 
distribution around the origin, rotating with a velocity v⃗=ω⃗× r⃗ . According to (5.9), this gives 
rise to a vector potential

, (6.1)

where ω⃗ '=ω⃗−Ω⃗ is the angular frequency of the mass distribution relative to the universe, V is its
volume. We assume the distribution to be continuous and therefore replaced the sum by an integral 
in the second step. Assuming our mass distribution to be small compared to the universe, it won’t 
influence the angular frequency of the universe Ω⃗ much. We can treat it as constant and pull it out
of the integral to write (6.1) as

. (6.2)

The far field expression for (6.1) is well known to be

. (6.3)

This expression agrees with the one obtained in linearised gravity for the same situation, except for 
the dependence on the relative angular frequency, instead of the absolute one. Therefore, from (6.2) 
all the well known results can be derived for any mass distribution. 
For the equation of motion we neglect anything beyond first order in the particle velocity v⃗k and 
the source velocities v⃗ j , as well as the fictitious forces caused by the rotation of the universe 
(which we assume to be small). Then we obtain

(6.4)

(6.5)

(6.6)

.(6.7)

The equation of motion is again independent of the rotation of the frame chosen to write it in, as 
was already pointed out in the previous section. It agrees with the one obtained from linearised GR 
in the same order considered, apart from the last term in (6.4) (an additional acceleration which 
comes out of this theory) and a factor of 2 at the gravitomagnetic induction term in (6.5). The poten-
tials also agree with the ones obtained in linearised GR. There is, however, one crucial difference: 
The vector potential and the equation of motion, and therefore also the whole dragging effect, de-
pend on the relative angular velocity ω⃗ '=ω⃗−Ω⃗ of the mass distribution with respect to the uni-

verse, as well as the velocity β⃗ k
'=β⃗ k−

Ω⃗
c
×r⃗ k . In GR, it depends on the absolute angular velocity

ω⃗ . This is again a manifestation of Mach’s principle and the aforementioned relativity of rota-
tion.
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We have thus shown that already a classical theory implementing Mach’s principle and Einstein’s 
idea of inertia being a gravitational effect gives rise to the frame-dragging effect. No curved space-
time or relativistic physics is necessary for it. As we have seen, it is just a consequence of the iner-
tial frames of reference being defined by all other masses in the universe, as demanded by Mach’s 
principle. If a mass distribution is rotating, the inertial frame for a particle close to it is one slightly 
co-rotating, depending on the distance and the mass of the distribution. 

7. The gravitational constant:

We have shown in section 3 that the kinetic and potential energy being proportional to the gravita-
tional potential, and therefore the gravitational constant, allows for its elimination from the Lag-
rangian (3.1). This is not possible with the Newtonian kinetic energy or even the Machian one ob-
tained by Lynden-Bell & Katz

. (7.1)

This kinetic energy is not proportional to the gravitational potential and therefore does not depend 
on f. We can conclude that what finally allowed us to obtain an expression for the gravitational con-
stant was the ability of the theory to correctly explain inertial mass as of gravitational origin.
Equation (3.11)

(7.2)

also allows us to shed light on the physical reason for the existence of the constant G. It is not the 
gravitational field itself, which has G built into it, but the inertial masses (3.4)

(7.3)

have built in the factor 1/G, which is a direct result of their gravitational origin. Indeed, the mass on 
the right side is the gravitational mass, the one on the left side is the inertial mass. 1/G is the factor 
relating the two. Its value represents how large the inertial mass caused by the entire universe is. 
The gravitational constant is the inverse of this value (cf. the derivation of eq. (3.9 & 3.10) from 
(3.6)).
This also explains why the gravity appears to be such a weak force. One can approximately calcu-
late the value of (7.2). For an approximately homogeneous universe, we have

, (7.4)

where M u , Ru are the mass and radius of the observable universe. For the gravitational constant, 
this yields

. (7.5)

Since there is such a huge amount of matter in the universe, bodies have a very large inertial mass, 
and consequently, only experience very small gravitational accelerations. If there was considerably 
less matter in the universe, gravity would be predicted to be much stronger. E.g. if the universe con-
sisted only of the Milky Way, then gravity would be roughly 107 times stronger than it is in our 
universe, at least if c would keep its known value in such a situation. This conclusion was also 
reached by Sciama & Treder for similar expressions for G as (7.5) [12, 14]. 
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It is well known that expression (7.5) is confirmed by observation. Plugging in the observed values
M u≈1053  kg , Ru≈4⋅1026  m and c≈3⋅108  m s−1 one gets

. (7.6)

Indeed,
G M u

Ru c2 ∼1 is one of the unexplained “cosmological coincidences”. In common theories, it 

is a coincidence; in the theory presented here, it is a confirmed prediction. If the matter content of 
the universe or its density were considerably different from what is observed, common theories 
would remain valid, whereagainst the theory presented here would be disproved8).
Equation (7.6) is an agreement to a very good accuracy since the mass and the radius of the uni-
verse are only known by orders of magnitude, and a homogeneous universe is only a rough approx-
imation. Also, this is the result of a non-relativistic theory. The main contribution to (7.4) comes 
from the most distant masses in the universe, for which retardation effects are expected to be non-
negligible. Those can only be treated properly in a relativistic theory of what was presented here. It 
is therefore very unlikely that this relation is just a coincidence, rather than being anchored in an un-
derlying theory like the one presented here. As was argued in the previous section, it is to be expec-
ted that a correct relativistic theory must also provide a relation like (7.2).

8. Conclusion:

We have shown how the phenomenon of inertia in non-relativistic mechanics can be explained in a 
unified theory of gravity and inertia. This was achieved by incorporating both Mach’s principle and 
the idea of inertia being a gravitational effect. As a basis, we have used H.J. Treder’s inertia-free 
mechanics. Mach’s principle is fulfilled in the way that the inertial frames of reference are com-
pletely determined by the relative motion of all particles in the universe. The theory is valid in arbit-
rary frames of reference and yields the correct Newtonian fictitious forces for translational and rota-
tional motion of any non-inertial frame. The fictitious forces, as well as the inertial mass, were ex-
plained as being of gravitational origin, which also allowed us to derive the weak equivalence prin-
ciple. In the lowest order β, Newtonian theory has been re-obtained; the corrections in the next or-
ders have been shown to be Gravitoelectromagnetism. Due to the theory’s ability to explain the phe-
nomenon of inertia, it does not need to postulate the gravitational constant. Instead, it allows to de-
rive it from the theory itself, explaining the strength of gravity. This leads us to believe that this is 
the correct formulation of classical non-relativistic mechanics. Also, it shows that the appearance of 
the unexplained constant G in common theories is tied to their inability to correctly explain inertia.
Consequently, a correct relativistic theory should be a generalisation of what was presented here. It 
should explicitly incorporate Mach’s principle and inertia being of gravitational origin. Like for the 
non-relativistic version, it should not contain any gravitational constant a priori, but instead allow 
for a derivation of it from the theory itself. Further, the unification of gravity and inertia allows to 
draw some important conclusions on the nature of mass and the elementary particles themselves, 
showing directly a road towards a relativistic generalisation of what was presented here. This will 
be discussed in a subsequent paper.
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