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Abstract. In this paper, we show how the phenomenon of inertia can be ex-

plained in non-relativistic classical mechanics using a unified theory of gravity

and inertia. As a basis, we used the inertia-free mechanics of H.J. Treder. It

can implement both Mach’s principle and the idea of inertia having a gravita-

tional origin without the shortcomings of an anisotropic inertial mass. Inertia

arises from a velocity-dependent part of the gravitational potential. Thus, it will

be possible to formulate classical mechanics with postulating neither the weak

equivalence principle, nor a gravitational constant, nor any concept of inertial

mass or inertial forces a priori. We will show that all four can be derived from

the theory. The theory is valid in arbitrary accelerated frames of reference and

the inertial frames are determined by all other particles in the universe, as de-

manded by Mach’s principle. The exact Newtonian inertial forces will appear in

any non-inertial frame, for translational and rotational acceleration, showing that

they are not fictitious, but real parts of the gravitational force. In the lowest order

v/c of the theory, Newtonian mechanics is obtained. The corrections that appear

are shown to be just the terms present in Gravitoelectromagnetism. Ultimately,

explaining inertia as a gravitational effect will allow us to derive an expression

for the gravitational constant, enabling us to explain the apparent weakness of

gravity.

Such a unified theory of gravity and inertia has profound implications for the

nature of mass and structure of elementary particles, as well as the origin of

relativistic and quantum effects. This suggests a very different path towards a

combined theory of relativity, gravity, and quantum mechanics, as well as elemen-

tary particles. This will be discussed in a subsequent paper.
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1. Introduction

The origin of inertia remains unknown. Neither classical mechanics nor

general relativity provides a satisfactory explanation for the inertial properties of

matter. As this problem is already manifestly present in classical mechanics, it is

necessary to first look for a non-relativistic theory that correctly explains the origin

of inertia. Subsequently, one can deal with the relativistic case, using this theory as a

starting point, to not carry over this shortcoming of Newtonian mechanics. It turns

out that the solution of the non-relativistic problem of the origin of inertia indeed

has profound and far-reaching consequences for the nature of mass and structure

of the elementary particles, suggesting a very different origin of relativistic and

quantum effects. In this paper, we therefore only deal with the classical, non-

relativistic problem, and discuss the quantum-relativistic in a subsequent paper.

The question about the origin of inertia can be divided into two sub-

questions. The first is “What is the origin of the inertial forces that arise when

a body is accelerated?“ and the second is “An acceleration relative to what causes

inertial forces to appear?”. The first question is necessarily closely related to the

origin of inertial mass.

Although the first question remains unanswered to this day, the second one

has already been addressed by Newton. He postulated that there exists an absolute

space, and that a body experiences inertial forces when it accelerates relative to

it. He tried to prove this in his famous bucket experiment. A bucket hung by a

long cord was filled with water and the cord was twisted. Then, an external force

holds the bucket in place. The water surface remains flat. Afterwards, the bucket

is released and begins to spin. At first, the water remains at rest, but after a while,

it starts to more and more co-rotate with the bucket. Its surface is then pushed up

the walls of the bucket and forms a parabolic shape. Newton argued that this is

proof of acceleration being absolute, that is, the inertial forces arise when a body is

accelerating (in this case rotating) relative to absolute space. One could always tell

whether a body is accelerating, since then the water would be pushed up against

the walls. On the other hand, the water surface is flat when the bucket is rotating

relative to the water at the beginning, but curved, when the water is co-rotating

to the bucket. Thus, the rotation of the water relative to the bucket appears to

play no role in whether inertial forces arise or not. Criticizing Newton in his bucket

experiment, Mach [1] objected that ‘it (the bucket experiment) only informs us, that

the motion of the water relative to the sides of the vessel produces no noticeable
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centrifugal forces, but that such forces are produced by its rotation relative to the

mass of the Earth and the other celestial bodies.’ and that ‘no one is competent

to say how the experiment would turn out if the sides of the vessel increased in

thickness and mass till they were ultimately several leagues thick’ [1, p. 216 f]. This

last statement already hints at the influence of the motion of the water relative to

other particles in the universe on the question of when a body experiences inertial

forces. And further, that the strength of this influence is weighted by the masses

of those bodies. Indeed, Mach argued, that only relative quantities are determined

by the dynamical laws of the universe, and in turn, only these relative quantities

must enter the dynamical laws of the universe. He wrote that ‘[. . . ] The universe

is not twice given, with an earth at rest and an earth in motion; but only once,

with its relative motions, alone determinable.’ Thus, as was also first demanded for

such purely relative mechanics by Huygens [2] and later also Poincaré [3,4] (see also

Treder [5]), no absolute quantities like the positions rk or velocities vk must enter

the Lagrange function of the universe. Instead, it must purely depend on relative

quantities rij = |ri − rj|, ṙij , vij = vi − vj. Therefore, the kinetic energy must

have the general form

T =
∑
i>j

mimjf(rij, ṙij,vij). (1.1)

According to Mach, also the inertial frames of reference, the frames in which New-

ton’s laws of motion hold, should be completely determined by the relative motion

of all particles in the universe, which is a direct consequence of a kinetic energy of

the form (1.1). And not like in Newtonian theory, by a postulated absolute space,

which is unobservable. Consequently, inertial forces should arise when a body is

accelerated relative to the other masses in the universe, instead of absolute space.

For the first question, there was no answer to it given by Newton at all.

Newton’s second law

F = ma (1.2)

only holds in an inertial frame of reference and when you go into a non-inertial

frame, the inertial forces have to be postulated. The force on the right side of (1.2)

doesn’t automatically obey the transformation law

F → F+ma (1.3)
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when transformed into an accelerated frame moving with a velocity V(t). This one

can easily see, especially for the Newtonian gravitational force

Fk =
∑
j ̸=k

Gmkmj

r3kj
rkj. (1.4)

There was also no answer given by Mach. He also did not attach any particular

importance to the explanation of inertial mass. In his opinion, it is just empirically

defined by Newton’s third law: If two bodies act on each other, they experience

accelerations in opposite directions and of magnitude a1/a2 = m2/m1 . Inertial mass

is then just empirically defined as the inverse of the ratio of accelerations. Mach held

the opinion that ‘every venture beyond this will only be productive in obscurity.’

However, Mach’s demand that only relative quantities enter the dynamical laws of

the universe, already implies that inertial mass is not an intrinsic property of matter,

but results from an interaction with all other particles in the universe. This is an

immediate mathematical consequence of a kinetic energy satisfying Mach’s principle

having the form (1.1). A hint on the nature of this interaction lies in the empirical

equality of gravitational and inertial acceleration, as well as the proportionality

between inertial and gravitational mass (today termed the equivalence principle).

This suggests that inertial mass and forces are of gravitational origin, that is, a

part of the gravitational force itself. It was first proposed by Friedlaender [6, p.

17], that ‘[...] the correct form of the law of inertia will only then have been found

when relative inertia as an effect of masses on each other and gravitation, which is

also an effect of masses on each other, have been derived on the basis of a unified

law.’ This was later picked up by Einstein. In [7] he argued that ‘the G-field (the

metric tensor) is completely defined by the masses of the bodies (of the universe)’.

Since the metric tensor determines the inertial mass of a body in special and general

relativity, his definition implied that inertial mass is of gravitational origin. His

general theory of relativity was intended to incorporate this idea, but, according to

his own words, failed to do so: A particle in an empty universe, which corresponds

to flat Minkowski space, does have a non-vanishing inertial mass. If it were indeed,

according to his definition, completely determined by the gravitational interaction

with other masses, this could not be the case [8].

However, it is clear, that both answers to each question together and cor-

rectly implemented will result in a theory correctly accounting for the inertial prop-

erties of matter. Historically, there were many attempts to build theories at least

partially incorporating both ideas. As was proposed by Barbour & Bertotti [9], a
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non-relativistic theory realizing Mach’s principle should be invariant under trans-

formations of the form

r → A(t)r+ g(t), (1.5)

with A an orthogonal matrix and g a displacement vector. This invariance ensures

the dependence of the theory on purely relative quantities, for translational and

rotational motion, as demanded by Mach’s principle. First, Barbour & Bertotti

[10] and later also Lynden-Bell & Katz [11] developed a mathematically equivalent

non-relativistic theory invariant under (1.5). However, they chose a too restricted

set of solutions and thus were unable to explain the inertial forces, although their

theory is in principle capable of doing so. Further, they didn’t incorporate the idea

of inertia being of gravitational origin. It is for this reason they were not able to

derive the concepts of inertial mass, the weak equivalence principle as well as obtain

an explanation for the gravitational constant. We will discuss this at the end of

section V.

Many, especially earlier, attempts to incorporate both ideas resulted in theo-

ries based on velocity-dependent gravitational potentials, only depending on relative

distances rij =| ri − rj | between particles, and their rates of changes ṙij [9, 12-15].

Most were for example built on the velocity-dependent Weber potential [13-15]

VWeber = −Gmimj

rij
(1−

ṙ2ij
2c2

), (1.6)

with G the gravitational constant and c the speed of light. This potential then

takes the role of both kinetic and potential energy. Those theories indeed explain

inertia as of gravitational origin, since the kinetic energy is part of the gravitational

potential. At the same time, they are invariant under (1.5). However, they lead to

an anisotropic inertial mass, which is ruled out experimentally1). In addition, they

also yield the wrong inertial forces. This has led to a general refutation of theories

built on such velocity-dependent potentials, which is unjustified, as we shall see in

a moment.

Another remarkable attempt to explain inertia as of gravitational origin was

made by Sciama [16]. He considered a gravitational field including an induction

term (a gravitoelectric field), given by

E = G(∇φ+
1

c

∂A

∂t
),

1The relative anisotropy of inertia expected by such potentials due to the contribution of e.g. the
Milky Way to a particle’s inertia is roughly 10−9, while the latest upper bound from experiment
is 10−34[20]

https://www.overleaf.com/project/66d266f29285946cf96796c0#sdfootnote1sym


7

with

φ(r) =

∫
R3

ρ(r′)

|r− r′|
d3r′,

A(r) =

∫
R3

ρ(r′)β(r′)

|r− r′|
d3r′

the gravitoelectric potential and vector potential. He made the crucial observation

that then an inertial term automatically arises from the gravitational field when

transforming into any accelerated frame moving with a velocity v(t), since the

vector potential A transforms as

A → A+ φ
v

c
.

In a toy model using the gravitoelectromagnetic equations, he postulated that a

particle always moves in a way that in its rest frame, the total gravitational field

is zero. He could then show that the equations of motion read in a frame moving

relative to it with a velocity v(t)

φ

c2
∂v

∂t
= ∇φ+

1

c

∂A

∂t
, (1.7)

where the term on the left side takes the role of the inertia term m∗a, with the

inertial mass then given by

m∗ = m
φ

c2
.

In the same way, in any frame moving again relative to this one, an additional

inertial force is generated by the induction term on the right side of (1.7). Thus,

Sciama had shown how inertia could be derived from a gravitoelectric field. Another

crucial observation is that the gravitational constant cancels out on both sides of

the equation (1.7). This implies that no gravitational constant has to be introduced

in Sciama’s toy model a priori. Instead, by dividing both sides of (1.7) by φ/c2 and

comparing the first term with Newton’s law, Sciama obtained as an expression for

the gravitational constant

G =
c2

φ
. (1.8)

As we will see later, his idea is precisely how inertia arises from the gravitational field

in a theory built on a velocity-dependent gravitational potential. The reason why

one does not need to postulate the gravitational constant, but can instead derive an

expression for it is, as in Sciama’s theory, the theory’s ability to describe gravity and

inertia in a unified law. Although it is well known that Gravitoelectromagnetism

is present in linearized general relativity, Sciama’s idea has never been built into a

complete theory, neither non-relativistic nor relativistic.
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A theory that is in principle capable of successfully implementing both

Mach’s principle and the idea of inertia being of gravitational origin is the inertia-

free mechanics of H.J. Treder [5, 17, 18], on which we want to draw attention

and build up our work. It uses the Riemann potential as a velocity-dependent

gravitational potential, which was originally used by Riemann in his theory of elec-

tromagnetism [19, p. 325 f]

VRiemann = −Gmimj

rij
(1−

v2
ij

c2
), (1.9)

with vij = vi − vj, which again takes the role of both kinetic and potential energy.

It can implement both Mach’s principle (after a suitable extension to rotational

invariance) and the idea of inertia having a gravitational origin, without the short-

coming of an anisotropic inertial mass. The theory will yield a unified description

of gravity and inertia, the latter arising from the velocity-dependent part of the

gravitational potential (1.9). Consequently, it will be possible to formulate classi-

cal mechanics without postulating the weak equivalence principle, a gravitational

constant, or any concept of inertial mass or inertial forces a priori. We will show

that all four can be derived from the theory. The inertial frames of reference are

determined by all other particles in the universe, as demanded by Mach’s princi-

ple. The exact Newtonian inertial forces will appear in any non-inertial frame, for

translational and rotational acceleration. In the lowest order v/c we will re-obtain

Newtonian mechanics, in the higher orders the theory gives rise to Gravitoelectro-

magnetism. Ultimately, we will derive an expression for the gravitational constant

from the theory, allowing for an explanation of the apparent weakness of gravity.

2. The inertia-free mechanics

In this section, we want to present the inertia-free mechanics of H.J. Treder

[5, 17, 18]. As we already saw, the Newtonian kinetic energy

T =
∑
i

mi

2
v2
i

doesn’t meet the requirements of Mach’s principle. A theory incorporating it must

necessarily depend on purely relative quantities, thus the kinetic energy must have

the form (1.1). Further, we saw that it must not depend on the rates of changes of

the distances ṙij , since this leads to mass anisotropy. Therefore, it must have the

form

T =
∑
i>j

mimjf(rij)v
2
ij,
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with f some arbitrary function. If we now implement the idea of inertia being of

gravitational origin, we choosef(rij) = b G
c2rij

with b some dimensionless number, G

the gravitational constant, and c the speed of light2). This makes the kinetic energy

a velocity-dependent part of the gravitational potential

T = b
∑
i>j

Gmimj

c2rij
v2
ij. (2.1)

Together with the usual Newtonian gravitational potential

V =
∑
i>j

Gmimj

rij
, (2.2)

this yields the velocity-dependent Riemann potential, the Lagrange function of the

inertia-free mechanics

L =
∑
i>j

Gmimj

rij
(1 + β2

ij), (2.3)

with β = v/c. This Lagrangian is invariant under any transformation r → r+g(t).

We will later (section 5) show how it can be extended to also be invariant under

the full transformation (1.5) and as a consequence will completely satisfy Mach‘s

principle.

Treder has shown that the energy corresponding to this Lagrangian is

E=T+V with T and V given by (2.1) and (2.2), respectively. This quantity de-

notes the energy of the universe and is conserved, it holds

dE

dt
= 0.

The generalized momentum of some particle k following from the Lagrange function

(2.3) is

Pk =
∂L

∂vk

= m∗
kvk −

2bmkG

c
Ak, (2.4)

with the gravitoelectric potential and vector potential of the particles

φk =
∑
j ̸=k

mj

rkj
, (2.5)

Ak =
∑
j ̸=k

mj

rkj
βj (2.6)

and the inertial mass

m∗
k =

2bGφk

c2
mk. (2.7)

2It must be noted that choosing c to be the speed of light here is not necessary and in fact, there
is no strict physical reason for doing so. But it is convenient to do so, since it is undesirable to
introduce another arbitrary velocity which doesn’t appear anywhere else. Further, the structure
of the relativistic theory, which has the theory presented here as classical limit also shows that it
is indeed the speed of light.
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This equation provides a relation between the inertial mass and the gravitational

mass mk. It shows, that the inertial mass (2.7) is induced by the gravity of all

other masses in the universe. At the same time, it is isotropic, as demanded by the

experiment. This can be seen by its scalar character3).

By demanding the strict equivalence of inertial and gravitational mass m∗
k =

mk, like is done in Newtonian theory, Treder obtained as a self-consistency condition

of the theory
2bGφk

c2
= 1 (2.8)

He interpreted this equation in the way that it determined the average gravitational

potential of the universe for a given gravitational constant. By demanding m∗
k =

mk, Treder applied the weak equivalence principle. Apart from leading to problems

with the equations of motion and ambiguities, this requirement is unnecessary. It

will come out of the theory by itself, as a result of it correctly describing inertia as

of gravitational origin. This will automatically yield a relation between inertial and

gravitational mass and ultimately allow us to formulate classical mechanics without

a priori introducing a gravitational constant. It, too, can be derived from the theory

itself.

Further, equation (2.4) implies that the total momentum of the universe is

zero

P =
∑
k

Pk = 0, (2.9)

since this is a symmetric sum over an antisymmetric quantity in the particle labels.

Treder also derived an equation of motion from the Lagrangian for a simplified

model of two particles moving in front of a distant background consisting of the

other particles. In the next section, we will derive the exact equations of motion,

therefore we don’t present it here.

3. The equation of motion

In this section, we want to derive the equations of motion following from the

Lagrangian (2.3). We will show that it is possible to formulate classical mechanics

with postulating neither the weak equivalence principle nor a gravitational constant,

nor any concept of inertial mass a priori. Instead, we will derive all three from the

theory. We show that Newtonian mechanics is re-obtained in the lowest order β.

3If one used a Lagrangian based on the Weber potential (1.6) instead of the Riemann potential
(1.9), then (2.7) would have tensorial character and thus be anisotropic.
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As a correction, Gravitoelectromagnetism arises in the higher orders and a Lorentz-

type force equation can be obtained. In the Lagrangian (2.3)4)

L =
∑
i>j

Gmimj

rij
(1 + β2

ij), (3.1)

the gravitational constant appears in both terms, kinetic and potential energy. It is

therefore nothing more than a constant factor, which doesn’t change the equations

of motion. We can drop it and write

L =
∑
i>j

mimj

rij
(1 + β2

ij). (3.2)

Consequently, it is not necessary to a priori introduce any gravitational constant,

it will come out naturally later. It is important to notice that this step is possible

independent of the choice of units. We have not specified any specific system of

units to set G=1. It is a pure consequence of kinetic and potential energy both

being proportional to G.

By using β2
ij = β2

i + β2
j − 2βi · βj and gathering together all terms involving

the k th particle, one obtains for its Lagrangian

Lk =
1

2
m∗

kv
2
k +mkφk − 2mkβk ·Ak +

∑
j ̸=k

mkmj

rkj
β2
j (3.3)

The first three terms in this expression are the Lagrangian for a particle in a gravi-

toelectromagnetic field, with a factor of 2 at the magnetic term. It is interesting to

notice that the gravitomagnetic contribution to (3.3) arises due to the dependence

of the Lagrangian (3.2) on the relative velocities. The inertial “mass“ of the particle

is given by5)

m∗
k =

2φk

c2
mk. (3.4)

We have thus derived an expression for the inertial mass. It is a scalar, showing

again that inertial mass is isotropic. Notice, that we haven’t introduced any concept

of inertial mass a priori. All that appeared in the velocity-dependent gravitational

potential were, by definition, gravitational masses. With the relation (3.4) between

gravitational and inertial mass we have also derived the weak equivalence principle,

that (inertial) mass and weight (gravitational mass) are locally in identical ratio for

4For simplicity and it being the natural choice, we set b=1. Treder used the value of b=3/2 to
get the correct value for the perihelion shift of Mercury. Since we only have a non-relativistic
theory which is to be generalised relativistically, we don’t bother with getting the correct value
here. Nevertheless, we already get 2/3 of the correct value 43” from a purely classical theory.
5The unit of this expression is not the one of a mass since we dropped G in the Lagrange function
(3.2). If we kept it, the units would be correct, but G will cancel out in the equations of motion
anyway. Consequently, nothing of what is said about the inertial mass in the following is altered
by this “wrong” units.
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all bodies. We want to remind at this point, that this is not possible in Newtonian

mechanics. There is no reason to justify that inertial and gravitational mass in the

Newtonian Lagrangian

T =
∑
i

m∗
i

2
v2
i +

∑
i>j

Gmimj

rij
(3.5)

are proportional or even equal to each other. It has to be postulated by applying

the equivalence principle, for which no theoretical a priori justification exists. In

the theory presented here, it is a consequence of the kinetic energy being a velocity-

dependent part of the gravitational potential, as expressed by the Lagrangian (3.2).

For the generalized momentum, we obtain from (3.3)

Pk =
∂L

∂vk

= m∗
kvk −

2mk

c
Ak. (3.6)

Applying the Euler-Lagrange equations

d

dt

∂L

∂vk

=
∂L

∂rk

to (3.3), one obtains the equation of motion

m∗
k

∂vk

∂t
= Ek − 2mk

∑
j ̸=k

βkj ×Bkj. (3.7)

Here, the gravitoelectric and magnetic fields are given by

Ek := −
∑
j ̸=k

mj

r3kj
rkj(1− β2

kj) +
2

c

∂Ak

∂t
, (3.8)

Bkj := ∇k ×Ak + βk ×∇kφk (3.9)

The partial time derivative in (3.8) means that only the velocity in A is to be

differentiated in time. If one divides eq. (3.7) by the inertial mass m∗
k , one obtains

∂vk

∂t
=

c2

2φk

(Ek − 2
∑
j ̸=k

βkj ×Bkj). (3.10)

In the lowest order v/c this reduces to

∂vk

∂t
=

c2

2φk

∇kφk, (3.11)

which is Newton’s law of gravity with the gravitational constant given by6)

Gk =
c2

2φk

. (3.12)

It comes out naturally and does not have to be put in by hand. Equations (3.10

& 3.11) again show the weak equivalence principle: No inertial mass appears in it,

6An equation like (3.12) has been obtained in various works on Mach’s principle [13, 16], cf. also
eq (1.8).
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implying the universality of free fall. Both are a direct consequence of the inertial

mass being induced by gravity, according to (3.4). We will discuss this in more

detail in section 7.

As a correction to Newton’s law of gravity, we get Gravitoelectromagnetism,

as can be seen by the full equation (3.10). It can also be written as

mk
∂vk

∂t
= Fk, (3.13)

with the gravitoelectromagnetic force

Fk = mkGk(Ek − 2
∑
j ̸=k

βkj ×Bkj). (3.14)

Unlike in the conventional Lorentz force, the magnetic part of the force here depends

on the relative velocities. The equation of motion (3.14) is invariant under any

transformation r → r + g(t), as was the Lagrangian (3.2) it was derived from7).

Therefore, it is indeed valid in arbitrary linear accelerated frames of reference. This

can be seen from the fact that the potentials (2.5 & 2.6) behave under such a

transformation as

Ak → Ak + φk
V

c
, (3.15)

φk → φk, (3.16)

and therefore the fields (3.8 & 3.9) as

Ek → Ek +
2φk

c2
∂V

∂t
, (3.17)

Bk → Bk, (3.18)

withV(t) := dg/dt. This results in the claimed invariance of (3.14) under r →
r+ g(t).

4. The origin of inertia and the relativity of linear acceleration

In this section, we want to show how the inertial frames of reference are de-

fined by the motion of all particles in the universe, as demanded by Mach’s principle.

Also, we show that any linear acceleration relative to those frames yields the exact

Newtonian inertial forces and, further, that these forces are of gravitational origin.

Since our Lagrangian is by now only invariant under transformations r → r+ g(t),

we will restrict ourselves to linear accelerations here. In the next section, we will

show how it can be made invariant under the complete set of transformations (1.5)

and show, that the same then also applies to rotational accelerations.

7This, of course, also applies to (3.7) and (3.10)
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In the force (3.14) acting on the particle k, we can identify the inertial force

as that dependent on the accelerations of the other particles

Finert
k =

2mkGk

c

∂Ak

∂t
. (4.1)

Indeed, according to the transformation law (3.15), this force behaves under a

transformation v → v+V(t) as

Finert
k → Finert

k +mk
∂V

∂t
. (4.2)

It therefore automatically yields the additional Newtonian inertial force when trans-

formed into a new frame, accelerating relative to the old one. From (4.1), it can

also clearly be seen that the inertial force is, like the inertial mass, of gravitational

origin. It is just the gravitoelectric induction force. The inertial frames are those

in which this force vanishes, which is equivalent to the condition

∂Ak

∂t
= 0. (4.3)

The left side is dependent on the acceleration of all other particles in the universe.

Therefore, the inertial frames are determined by the motion of all other particles in

the universe, as demanded by Mach’s principle. Especially, any frame accelerated

relative to the one defined by (4.3) will experience an inertial force

Finert
k = mk

∂V

∂t
, (4.4)

which means that the well-known Newtonian inertial force arises in any frame ac-

celerated relative to the rest frame defined by the universe via (4.3).

The inertial force (4.1) also gives rise to a “dragging” effect: If some particle

j accelerates, this induces a drag force on particle k equal to

Finert
kj =

2mkmjGk

c2rkj

∂vj

∂t
.

If now the whole universe would accelerate uniformly with ∂V/∂t, then the whole

inertial force on the particle k would be again equal to (4.4). The universe drags the

particle with it. Even though the particle is resting in the rest frame of absolute

space, it experiences the same inertial force as if it were in a non-inertial frame

accelerating with −∂V/∂t. In Newtonian mechanics, the particle’s acceleration, in

this case, would be zero: It would not recognize the motion of the universe. The

inertial frame of reference is again defined by (4.2), which means that we have to

transform into a frame accelerating with ∂V/∂t to satisfy the condition. The inertial

frame is the one co-accelerating with the universe. It can thus be seen, that the role

of absolute space as the universal inertial frame has been removed. As demanded
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by Mach’s critique, it no longer plays any role in when inertial forces arise, but only

the accelerations relative to the other particles in the universe matter.

The above-mentioned is a consequence of the relativity of linear accelera-

tion, which is realized in the theory. It is dynamically equivalent if a particle is

accelerating, or the rest of the universe is accelerating in the opposite direction.

The reason for this is that only accelerations relative to all other particles in the

universe enter the equation of motion (3.7). This was already shown by Treder for

a simplified model. If we bring the inertial force (4.1) to the other side in (3.7), we

can write the left side as

m∗
k

∂vk

∂t
− 2mk

c

∂Ak

∂t
=

∑
j ̸=k

2mkmj

c2rkj

∂vkj

∂t
. (4.5)

Indeed, this expression contains only accelerations relative to the other particles.

We can also show how the whole inertia term of a particle m∗
k∂vk/∂t can

be derived from what appears as purely a vector potential in its rest frame. The

mechanism is the same that had been proposed by Sciama [16]. Indeed, the whole

momentum (3.6) is just the vector potential A
′

k as seen in the particle’s rest frame

P
′

k = −2mkA
′

k. (4.6)

Further, the right side of (4.5) just is the time derivative of the vector potential

seen in this frame ∑
j ̸=k

2mkmj

c2rkj

∂vkj

∂t
= −2mk

c

∂A
′

k

∂t
. (4.7)

Thus, in this frame, the equation of motion reads

E
′

k − 2mk

∑
j ̸=k

β
′

kj ×B
′

kj = 0. (4.8)

This equation expresses that the total gravitational field in the particle’s rest frame

is zero; this is what had been postulated by Sciama. If we now transform into

an arbitrary moving frame, the particle’s velocity in this system is vk . We get

according to the transformation law (3.15)

Pk =
2mkφk

c2
vk −

2mk

c
Ak = m∗

kvk −
2mk

c
Ak (4.9)

and for the equation of motion (4.8) again with (3.17 - 3.18)

m∗
k

∂vk

∂t
= Ek − 2mk

∑
j ̸=k

βkj ×Bkj. (4.10)

One can see how the inertia term arises from what appears as purely the vector

potential in the particle’s rest frame.
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5. The relativity of rotation

As was stated in the beginning, the Lagrangian (3.2) is only invariant under

translations r → r + g(t), but not under rotations, and therefore not under the

full transformation (1.5). In this section, we want to show how the theory can

be extended to be invariant under arbitrary transformations (1.5) and thus fully

incorporate Mach’s principle. We will then be able to obtain the same results

that we obtained for linear acceleration in the previous section, also for rotational

acceleration.

To extend the Lagrangian, we adopt an idea used by Lynden-Bell & Katz in

their approach to a theory incorporating Mach’s principle [11]. We write

T ′ =
∑
i>j

mimj

c2rij
(vij −Ω× rij)

2 (5.1)

and minimize for Ω

M :=
dL

dΩ
= 0. (5.2)

This yields

J = IΩ, (5.3)

J :=
∑
i>j

mimj

c2rij
rij × vij, (5.4)

I :=
∑
i>j

mimj

c2rij
(r2ijδ − rij ⊗ rij). (5.5)

As in the paper of Lynden-Bell & Katz, J is the angular momentum of the universe

around its centre of mass, I its moment of inertia around the centre of mass8).

Equation (5.2) expresses that the total angular momentum M of the universe is

zero, just like the regular momentum P according to (2.9). The presence of the

additional rij terms doesn’t change the behaviour of (5.1) under rotations compared

to the expression obtained by Lynden-Bell & Katz

T ′ =
∑
i>j

mimj

2M
(vij −Ω× rij)

2, (5.6)

since distances remain invariant. Therefore, the kinetic energy (5.1) is also invariant

under arbitrary rotations. Again adding the Newtonian potential V, we obtain the

Lagrangian

L′ = T ′ − V =
∑
i>j

mimj

c2rij
[1 + (vij −Ω× rij)

2]. (5.7)

8Since the gravitational constant had been dropped in the Lagrangian (3.2) and consequently also
in the kinetic energy (5.1), the units are again different from the usual units of J and I.
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Using the relation Ω · J = Ω · IΩ, which follows from (5.3), we can write this

Lagrangian in a compact form as

L′ = L−Ω · J, (5.8)

where L is the Lagrangian (3.2). This is our final Lagrangian, fully incorporating

Mach’s principle and the idea of inertia being of gravitational origin. With the

definitions

v′ := v−Ω× r, (5.9)

A′
k :=

∑
j ̸=k

mj

rkj
β′
j, (5.10)

the generalized momentum derived from this is now (see appendix)

P′
k = m∗

kv
′
k −

2mk

c
A′

k. (5.11)

From this, one can see that the total linear momentum of the universe is again zero,

since (5.11) is still an antisymmetric quantity in the particle labels so we have

P′ =
∑
k

P′
k = 0. (5.12)

An important thing to notice here is that the equation for vanishing angular mo-

mentum (5.2) as well as the one for linear momentum (5.12) are invariant under the

general set of transformations (1.5). Thus, they have an absolute meaning in the

sense that momentum and angular momentum of the universe are exactly equal to

zero in any frame of reference.

For the equation of motion for some particle k one obtains from this (see

appendix)

m∗
k

∂vk

∂t
= m∗

k(Ω̇×rk+2Ω×vk+(Ω×rk)×rk)+mkE
′
k−2mk

∑
j ̸=k

β′
kj ×B′

kj. (5.13)

The gravitoelectric and magnetic fields are the ones introduced in (3.8 & 3.9), now

as seen in a frame rotating with an angular frequency Ω

E′
k := −

∑
j ̸=k

mj

r3kj
rkj(1− β′2

kj) +
2

c
(
∂A′

k

∂t
−Ω×A′

k), (5.14)

B′
kj := ∇k ×A′

k + β′
k ×∇kφk. (5.15)

The inertial ”mass” is again given by (3.4)

m∗
k =

2φk

c2
mk.
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If one divides by 2φk/c
2, one can write eq. (5.13) in the form

mk
∂vk

∂t
= Finert,rot

k + FGEM
k , (5.16)

Finert,rot
k = mk(Ω̇× rk + 2Ω× vk + (Ω× rk)× rk), (5.17)

FGEM
k = mkGk(E

′
k − 2

∑
j ̸=k

β′
kj ×B′

kj). (5.18)

Here, FGEM
k is the gravitoelectromagnetic force introduced in (3.14), as seen in

a frame rotating with an angular frequency Ω. Finert,rot
k is an additional inertial

force, caused by the rotation of the universe. It exactly agrees with the Newtonian

expression. Gk is again the gravitational constant, given by (3.12). We can see,

again, that the inertial frames of reference are determined by all other particles in

the universe, as demanded by Mach’s principle: The inertial force (5.17) vanishes in

exactly that frame of reference where Ω = 0. This is according to (5.3) equivalent

to the condition

I−1J = 0, (5.19)

The left side of this equation is purely dependent on relative quantities between all

particles in the universe, cf. equations (5.4 & 5.5).

Since the Lagrangian (5.7) is independent of the rotation of the frame chosen

to write it in, so is the equation of motion (5.16). Ω is the angular frequency of the

universe perceived in this frame. Consequently, the exact Newtonian inertial forces

arise automatically in any frame rotating relative to the one defined by (5.19). On

the other hand, the force on the right side of (5.16) still transforms according to

(4.2)

Finert,rot
k + FGEM

k → Finert,rot
k + FGEM

k +mk
∂V

∂t
(5.20)

under a linear transformation v → v+V(t), as can easily be checked. Therefore, also

the inertial force for linear acceleration still arises, as was discussed in the previous

section. We have thus shown that all Newtonian inertial forces arise automatically

from the theory in arbitrary accelerated frames.

The above also again implies, like was discussed for linear acceleration, that

a particle at rest in the rest-frame of absolute space would experience the same

centrifugal forces if the rest of the universe were rotating, then it would experience if

itself would be rotating with the same angular frequency. In Newtonian mechanics,

this is not the case: The particle would experience no force if just the universe were

rotating. This is a manifestation of the relativity of rotation. It is dynamically
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equivalent if the particle is rotating or the universe is rotating in the other direction.

This is mathematically expressed by the fact that only rotations relative to the

universe enter the Lagrange function (5.7).

This also answers Mach’s criticism of Newton’s bucket: The Newtonian

inertial forces arise in any frame rotating relative to the one defined by all other

masses in the universe via (5.19). The water in the bucket is pushed upwards

because it is rotating relative to the universe, not absolute space like in Newtonian

theory. If now the walls of the bucket would hypothetically become thicker

and thicker, ultimately consisting of the matter of the entire universe, then

the water wouldn’t be pushed up against the walls at all anymore, because the

inertial frame would be that co-rotating with the universe, which would in this

case be the walls of the bucket. But this is exactly the one, in which the water rests.

Relation to the theory of Barbour & Bertotti, respectively Lynden-Bell &

Katz:

Finally, we want to point out the difference between our theory and the

ones developed by Barbour & Bertotti [10] and Lynden-Bell & Katz [11]. Since

both theories are mathematically equivalent, we only deal with Lynden-Bell &

Katz’ theory here, since their structure is very similar to the theory developed here.

But everything applies to the theory of Barbour & Bertotti, too. Lynden-Bell &

Katz used as kinetic energy for their Lagrangian

T ′ =
∑
i>j

mimj

2M
(vij −Ω× rij)

2, (5.21)

where M denotes the mass of the universe. The potential V then is just the Newto-

nian potential (2.2) (including! the gravitational constant). Thus, the Lagrangian

of their theory is

L′ = T ′ − V. (5.22)

Ω is now obtained in the same way as in our theory, by demanding (5.2). It results

in equations similar to (5.3-5.5)

J = IΩ, (5.23)

J =
∑
i>j

mimj

2M
rij × vij, (5.24)

I =
∑
i>j

mimj

2M
(r2ijδ − rij ⊗ rij). (5.25)
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From the Lagrangian (5.21), one can derive the equations of motion analogous to

the derivation of (5.13) (see appendix) to obtain

mk
∂vk

∂t
= mk(S̈+ Ω̇× r′k + 2Ω× v′

k + (Ω× r′k)× r′k)−
∂V

∂rk
, (5.26)

r′k := rk − S,

S =
1

M

∑
i

miri.

S is the position vector of the center of mass. Now, Lynden-Bell and Katz demanded,

in addition to (5.2), that also the conditions

J = 0, (5.27)

S̈ = 0, (5.28)

hold, which corresponds to a non-rotating universe Ω = 0, and that S is moving

uniformly. In this case, their mechanics reduce to Newtonian mechanics, as can

easily be seen by the equation of motion (5.26). However, neither of these demands

is independent of the used frame. They are only invariant under Galilean transfor-

mations and thus only hold in unaccelerated frames. Therefore, they were not able

to correctly obtain the inertial forces. However, their theory is capable of doing

so, since it is, without the conditions (5.27 & 5.28), valid in arbitrary accelerated

frames (it is invariant under the transformations (1.5) ). Those conditions are then

just the definitions of the inertial frames of reference in the sense of Mach, like the

equations (4.3) and (5.19) are for the theory presented here. In any frame acceler-

ated relative to these, the inertial forces arise automatically as can be seen by the

full equation of motion (5.26): The last three terms in the brackets on the right side

are the centrifugal, Coriolis and Euler forces in any frame in which the perceived Ω

is non-zero (cf. eq. 5.16 & 5.17 for the theory presented here); the first term and

therefore the whole right-hand side of (5.26) transforms as

mkS̈ → mkS̈+mk
∂V

∂t

under a transformation v → v + V(t) and thus yields the inertial force for linear

acceleration (cf. eq. 5.20 for the theory presented here).

Further, it must be emphasized that demanding the conditions (5.27 - 5.28)

is unnecessary for the universe to have zero angular and linear momentum. As is the

case in our theory, the momentum and angular momentum of the universe vanishes,

as expressed by (5.2) and (5.12). They are invariant under arbitrary transformations
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(1.5) and thus hold in any accelerated frame of reference. The same is also true for

Lynden-Bell’s theory: The condition (5.2) for vanishing angular momentum holds

for his theory, too (since it was, like in our theory, demanded for the derivation of

(5.23-5.25)) and one can easily check that the momentum in his theory reads

P′
k =

∂L′

∂vk

=
∑
j ̸=k

mkmj

M
(vkj −Ω× rkj). (5.28)

Thus, it also fulfills (5.12), the total momentum of the universe is zero.

However, despite fulfilling Mach’s principle and being able to explain the

inertial forces, the theory does not explain inertia as of gravitational origin. The

kinetic energy (5.21) is not proportional to the gravitational potential and thus

the gravitational constant. It is therefore not possible to eliminate G from the

Lagrangian. It still has to be put in by hand via the Newtonian potential appearing

in the Lagrangian (5.22) and thus, the same G appears in the equation of motion

(5.26). The same also applies to the inertial mass. Since there is no connection

between the expression for the kinetic energy and the gravitational potential, there

is no theoretical justification to assume that the masses in the kinetic energy are

gravitational masses. There still is an a priori concept of inertial mass in Lynden-

Bell’s theory and the weak equivalence principle has to be postulated, so that m∗
k ∝

mk holds.

6. Frame-dragging as a consequence of Mach’s principle

Like in the linear case, the relativity of rotation gives rise to a dragging

effect, which agrees qualitatively with the frame-dragging effect predicted by Gen-

eral relativity. Assume therefore some mass distribution around the origin, rotating

with a velocity v = ω × r. According to (5.10), this gives rise to a vector potential

A′
k =

∑
j∈V

mj

rkj
ω′ × rj =

∫
V

ρ(rj)
ω′ × rj
rkj

d3rj, (6.1)

where ω′ = ω − Ω is the angular frequency of the mass distribution relative to

the universe and V is its volume. We assume the distribution to be continuous and

therefore replaced the sum by an integral in the second step. This expression agrees

with the one obtained in linearized gravity for the same situation, except for the de-

pendence on the relative angular frequency, instead of the absolute one. Therefore,

from (6.1) all the well-known results can be derived for any mass distribution.

For the equation of motion, we neglect anything beyond the first order in

the particle velocity vk and the source velocities vj , as well as the inertial forces

caused by the rotation of the universe (which we assume to be small). Then we
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obtain
∂vk

∂t
= Gk(E

′
k − 4β′

k ×B′
k + δE′

k), (6.2)

E′
k = ∇kφk +

2

c
(
∂A′

k

∂t
−Ω×A′

k), (6.3)

B′
k = ∇k ×A′

k, (6.4)

δE′
k = 2∇k

∫
V

ρ(rj)
β′
k · (ω′ × rj)

rkj
d3rj

−2∇k ×
∫
V

ρ(rj)
β′
k × (ω′ × rj)

rkj
d3rj. (6.5)

The equation of motion is again independent of the rotation of the frame

chosen to write it in, as was already pointed out in the previous section. It agrees

with the one obtained from linearized GR in the same order considered, apart from

the last term in (6.2) (an additional acceleration that comes out of this theory). The

potentials also agree with the ones obtained in linearized GR. There is, however, one

crucial difference: The vector potential and the equation of motion, and therefore

also the whole dragging effect, depend on the relative angular velocity ω′ = ω −Ω

of the mass distribution to the universe, as well as the velocity v′
k = vk −Ω × rk.

In GR, it depends on the absolute angular velocity ω. This is again a manifestation

of Mach’s principle and the relativity of rotation.

Thus, we have shown that already a classical theory implementing Mach’s

principle and the idea of inertia being a gravitational effect gives rise to the frame-

dragging effect. No curved spacetime or relativistic physics is necessary for it. As

we have seen, it is just a consequence of the inertial frames of reference being defined

by all other masses in the universe, as demanded by Mach’s principle. If a mass

distribution is rotating, the inertial frame for a particle close to it is one slightly

co-rotating, depending on the distance and the mass of the distribution. Thus, the

particle will also slightly corotate.

7. The gravitational constant

We have shown in section 3 that the kinetic and potential energy is propor-

tional to the gravitational potential, and therefore the gravitational constant, which

allows for its elimination from the Lagrangian (3.1). This is not possible with the

Newtonian kinetic energy (3.5) or, as we saw, even the Machian one obtained by

Lynden-Bell & Katz (5.21). Those kinetic energies are both not proportional to
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the gravitational potential and therefore don’t depend on G. We can conclude that

what finally allowed us to obtain an expression for the gravitational constant was

the ability of the theory to correctly explain inertia as of gravitational origin.

Equation (3.12)

Gk =
c2

2φk

(7.1)

also allows us to shed light on the physical reason for the existence of the constant

G. It is not the gravitational field itself, which has G built into it, but the inertial

masses (3.4)

m∗
k =

2φk

c2
mk (7.2)

have built in the factor 1/G, which is a direct result of their gravitational origin.

Indeed, 1/G is the factor relating the inertial mass and the gravitational mass. Its

value represents how large the inertial mass caused by the entire universe is. The

gravitational constant is the inverse of this value (cf. the derivation of eq. (3.10 &

3.11) from (3.7)).

This also explains why the gravity appears to be such a weak force. One

can approximately calculate the value of (7.1). For an approximately homogeneous

universe, we have

φk ≈
∫
V

ρ(rj)

rkj
d3rj ≈ 4πρ0

∫ Ru

0

r dr =
3Mu

2Ru

, (7.3)

where Mu, Ru are the mass and radius of the observable universe. For the gravita-

tional constant, this yields

G =
Ruc

2

3Mu

. (7.4)

Since there is such a huge amount of matter in the universe, particles have a very

large inertial mass, and consequently, only experience very small gravitational ac-

celerations. If there was considerably less matter in the universe, gravitational

accelerations would be predicted to be much stronger. E.g. if the universe con-

sisted only of the Milky Way, then they would be roughly 107 times stronger than

they are in our universe9), at least if c would keep its known value in such a situa-

tion. This conclusion was also reached by Sciama & Treder for similar expressions

for G as (7.4) [16, 18].

It is well known that expression (7.4) is confirmed by observation. Plugging

in the observed values Mu ≈ 1053kg , Ru ≈ 4 · 1026m and c ≈ 3 · 108ms−1, one gets

G ≈ 8 · 10−11m3kg−1s−2. (7.5)

9If the universe indeed consisted only of the Milky Way we had Mu ≈ 1041kg and Ru ≈ 1021m ,
and therefore roughly G ≈ 6 · 10−4 , 107 times the known value.
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Indeed, GMu/Ruc
2 ∼ 1 is one of the unexplained “cosmological coincidences”. In

common theories, it is a coincidence; in the theory presented here, it is a confirmed

prediction. If the matter content of the universe or its density were considerably

different from what is observed, common theories would remain valid, where against

the theory presented here would be disproved.

Equation (7.5) is an agreement to a very good accuracy since the mass

and the radius of the universe are only known by orders of magnitude, and a ho-

mogeneous universe is only a rough approximation. Also, this is the result of a

non-relativistic theory. The main contribution to the integral (7.3) comes from the

most distant masses in the universe, for which retardation effects are expected to be

non-negligible. Those can only be treated properly in a relativistic theory of what

was presented here. It is therefore very unlikely that this relation is just a coinci-

dence, rather than being anchored in an underlying theory like the one presented

here.

8. Conclusion

We have shown how the phenomenon of inertia in non-relativistic mechanics

can be explained in a unified theory of gravity and inertia, fully implementing

Mach’s principle, with inertia arising from a velocity dependence of the gravitational

potential. Other than Newton’s theory, the one presented here is not only valid in a

preferred set of inertial frames of reference but also in arbitrary accelerated frames.

The gravitational force automatically produces the correct Newtonian inertial forces

for translational and rotational motion in any non-inertial frame, without having

to postulate them. As a consequence of the theory’s ability to explain inertia as of

gravitational origin, it does not require to introducing the concept of inertial mass,

the weak equivalence principle, or the gravitational constant a priori. Instead, we

were able to derive all three from the theory itself, ultimately allowing us to explain

the weakness of gravity. This also shows that the appearance of the unexplained

constant G in common theories is tied to their inability to explain inertia as of

gravitational origin correctly. The above leads us to the conviction that what was

presented here is the correct formulation of classical non-relativistic mechanics.

Therefore, any full theory including relativistic and quantum phenomena

should have the theory presented here as its classical limit and not rely on any notion

of inertial mass a priori. Interestingly, this fact alone already, that inertial mass is no

longer an intrinsic property of the particles, but a result of their gravitational mass

and the gravitational field, has far-reaching consequences for the nature of mass and
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the elementary particles. This directly shows a way towards a quantum-relativistic

version of the theory presented here. It implies, however, a very different origin

of relativistic and quantum effects and thus suggests a new and different approach

to a unified theory of gravity, relativistic and quantum phenomena, as well as the

structure of the elementary particles. This, we will discuss in a subsequent paper.
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Appendix A (Derivation of the equations of motion)

We want to derive the expression for the equations of motion for the La-

grangian (5.8)

L′ = L−Ω · J (A.1)

with

J = IΩ (A.2)

and I, J given by (5.4 - 5.5). We first calculate

∂

∂vk

Ω · J = 2Ω · ∂J

∂vk

, (A.3)

∂

∂rk
Ω · J = 2Ω · ∂J

∂rk
−Ω · ∂I

∂rk
Ω. (A.4)

To obtain them, it was used that IT = I and thus also (I−1)T = I−1 hold. Further,

it was made use of the identity

∂

∂rk
Ω = I−1(

∂J

∂rk
− ∂I

∂rk
Ω), (A.5)

which is obtained by differentiating both sides of (A.2) with respect to rk . Plugging

in the definitions (5.4 - 5.5) of J and I and executing the derivatives, one obtains

Ω · ∂J

∂vk

=
∑
j ̸=k

mkmj

c2rkj
Ω× rkj, (A.6)

Ω · ∂J

∂rk
=

∑
j ̸=k

mkmj

c2rkj
vkj ×Ω−

∑
j ̸=k

mkmj

c2r3kj
rkjΩ · (rkj × vkj), (A.7)

Ω · ∂I

∂rk
Ω = −

∑
j ̸=k

2mkmj

c2rkj
Ω× (Ω× rkj)−

∑
j ̸=k

mimj

c2r3ij
rkj(Ω×rkj)

2. (A.8)
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Equation (A.6) together with (A.3) yield for the generalized momentum

P′
k =

∂L

∂vk

− ∂

∂vk

Ω · J =
∑
j ̸=k

2mkmj

c2rkj
(vkj −Ω× rkj). (A.9)

Using the definitions (5.9 & 5.10) as well as the expression (3.4) for the inertial

mass, one obtains the claimed expression (5.11).

From this, one easily obtains

d

dt
P′

k = −
∑
j ̸=k

2mkmj

c2r3kj
v′
kj · (v′

kj · rkj)

+
∑
j ̸=k

2mkmj

c2rkj
(v̇kj − Ω̇× rkj −Ω× vkj), (A.10)

where we made use of the fact that v′
kj · rkj = vkj · rkj since rkj · (Ω × rkj) = 0 .

Using (A.4), as well as (A.7 & A.8), one obtains for the generalized force

∂L′

∂rk
= −

∑
j ̸=k

2mkmj

c2rkj
(Ω× (Ω× rkj) + vkj ×Ω)−

∑
j ̸=k

mimj

c2r3ij
rkj(1 + β′2

kj). (A.11)

Equating (A.10) and (A.11) and collecting terms yields∑
j ̸=k

2mkmj

c2rkj

∂vkj

∂t
=

∑
j ̸=k

2mkmj

c2rkj
(Ω̇× rkj + 2Ω× vkj + (Ω× rkj)×Ω)

+
∑
j ̸=k

2mkmj

c2r3kj
v′
kj × (v′

kj × rkj) +
∑
j ̸=k

mimj

c2r3ij
rkj(1− β′2

kj). (A.12)

Now, the second term on the right side can be written as∑
j ̸=k

2mkmj

c2r3kj
v′
kj × (v′

kj × rkj) = −2mk

∑
j ̸=k

β′
kj ×B′

kj, (A.13)

with the definition of B introduced in (5.15). Further, all remaining terms propor-

tional to rj and vj and the 3rd term on the right can be collected to yield∑
j ̸=k

2mkmj

c2rkj
(v̇j + Ω̇× rj + 2Ω× vj + (Ω× rj)×Ω)−

∑
j ̸=k

mimj

c2r3ij
rkj(1− β′2

kj)

= −
∑
j ̸=k

mj

r3kj
rkj(1− β′2

kj) +
2

c
(
∂A′

k

∂t
−Ω×A′

k) = mkE
′
k, (A.14)

with the definition of E introduced in (5.14). In the remaining terms, proportional

to rk and vk , the summations can be carried out using∑
j ̸=k

2mkmj

c2rkj
=

2mkφk

c2
= m∗

k. (A.15)

Putting all three together into (A.12) yields the claimed equation of motion (5.13).
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[2] C. Huygens, Pièces concernant la question du ”Movement Absolu” in Oeuvres
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[13] E. Schrödinger, Die Erf üllbarkeit der Relativit ätsforderung in der klassischen

Mechanik, Annalen der Physik, 382 (11), 325 (1925).
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