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Abstract

It is shown how a Noncommutative spacetime leads to an area, mass
and entropy quantization condition which allows to derive the Schwarzschild
black hole entropy A

4G
, the logarithmic corrections, and further correc-

tions, from the discrete mass transitions taken place among different mass
states in D = 4. The higher dimensional generalization of the results in
D = 4 follow. The discretization of the entropy-mass relation S = S(M)
leads to an entropy quantization of the form S = S(Mn) = n, and such
that one may always assign n “bits” to the discrete entropy, and in doing
so, make contact with quantum information. The physical applications
of mass quantization, like the counting of states contributing to the black
hole entropy, black hole evaporation, and the direct connection to the
black holes-string correspondence [23] via the asymptotic behavior of the
number of partitions of integers, follows. To conclude, it is shown how the
recent large N Matrix model (fuzzy sphere) of [20] leads to very similar
results for the black hole entropy as the physical model described in this
work and which based on the discrete mass transitions originating from
the noncommutativity of the spacetime coordinates.

Keywords : Noncommutative Geometry; Gravity, Black Hole, Entropy; Strings;
Matrix Models; Partitions.

1 Introduction : Noncommutative Spacetime and
Black Hole Entropy from a Point Mass Source

The idea of a Quantum Spacetime where the spacetime coordinates do not com-
mute was proposed early on by Heisenberg and Ivanenko as a way to eliminate
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infinities from Quantum Field Theory. Snyder published the first concrete exam-
ple [1] of a noncommutative algebra involving the spacetime coordinates, and it
was generalized shortly after by Yang [2], to include noncommuting momentum
variables as well. We learnt from General Relativity that the Poincare algebra
cannot be implemented on a curved spacetime, but only on its flat tangent space
(Minkowski spacetime). The momentum operators don’t commute on a curved
spacetime. And vice versa, by Born’s principle of reciprocity [3], [4] the coordi-
nate operators do not commute on a curved momentum space. This prompted
the formulation of Quantum Mechanics and Quantum Field Theory in Non-
commutative spacetimes (also called Noncommutative QFT), and which might
cast some light in the formulation of Quantum Gravity by encoding both key
aspects of a curved and a noncommuting spacetime (a curved noncommuting
spacetime).

Given a flat 6D spacetime with coordinates Y A = {Y 1, Y 2, Y 3, Y 4, Y 5, Y 6},
and a metric ηAB = diag(−1,+1,+1, . . . ,+1), the Yang algebra [2] can be
derived in terms of the so(5, 1) Lorentz algebra generators described by the
angular momentum/boost operators

JAB = −(Y A ΠB − Y B ΠA) = i Y A ∂

∂YB
− i Y B ∂

∂YA
(1.1)

where ΠA = −i(∂/∂YA) is the canonical conjugate momentum variable to Y A.
Their commutators are

[Y A, Y B ] = 0, [ΠA,ΠB ] = 0, [Y A,ΠB ] = i ηAB , A,B = 1, 2, 3, 4, 5, 6 (1.2)

The coordinates Y A commute. The momenta ΠA also commute, and Y A,ΠB

obey the Weyl-Heisenberg algebra in 6D.
Adopting the units h̄ = c = 1, the correspondence among the noncommuting

4D spacetime coordinatesXµ, the noncommuting momenta Pµ, and the Lorentz
so(5, 1) algebra generators leading to the Yang algebra [2] is given by

Xµ ↔ LP Jµ5 = − LP (Y µ Π5 − Y 5 Πµ)

Pµ ↔ 1

L
Jµ6 = − 1

L
(Y µ Π6 − Y 6 Πµ), µ, ν = 1, 2, 3, 4 (1.3)

and which requires the introduction of an ultra-violet cutoff scale LP given
by the Planck scale, and an infra-red cutoff scale L that can be set equal to
the Hubble scale RH (which determines the cosmological constant). It is very
important to emphasize that despite the introduction of two length scales LP ,L
the Lorentz symmetry is not lost. This is one of the most salient features of the
Snyder [1] and Yang [2] algebras.

The other generators are given by
One must include also the remaining so(5, 1) generators

N ≡ J56 = −(Y 5 Π6 − Y 6 Π5), Jµν = −(Y µ Πν − Y ν Πµ), µ, ν = 1, 2, 3, 4
(1.4)
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One can then verify that the Yang algebra is recovered after imposing the
above correspondence (1.3)

[Xµ, Xν ] = − i L2
P Jµν , [Pµ, P ν ] = − i (

1

L
)2 Jµν , η55 = η66 = 1 (1.5)

[Xµ, Jνρ] = i (ηµρ Xν − ηµν Xρ) (1.6)

[Pµ, Jνρ] = i (ηµρ P ν − ηµν P ρ ) (1.7)

[Xµ, P ν ] = − i ηµν
LP

L
N , [Jµν ,N ] = 0 (1.8)

[Xµ, N ] = i LPL Pµ, [Pµ, N ] = − i
1

LPL
Xµ (1.9)

and where the [Jµν , Jρσ] commutators are the same as in the so(3, 1) Lorentz
algebra in 4D. They are of the form

[ Jµ1µ2 , Jν1ν2 ] = − i ηµ1ν1 Jµ2ν2 + i ηµ1ν2 Jµ2ν1 +

i ηµ2ν1 Jµ1ν2 − i ηµ2ν2 Jµ1ν1 , h̄ = c = 1 (1.10)

The generators are assigned to be Hermitian so there are i factors in the right-
hand side of eq-(2.10) since the commutator of two Hermitian operators is anti-
Hermitian. The 4D spacetime metric is ηµν = diag(−1, 1, 1, 1).

In [6] we discussed two approaches in the evaluation of the areal spectrum
in 3D and associated with noncommutative coordinates that we labeled as op-
erators as xi; i = 1, 2, 3. One approach was to write the operator L−2

P

∑i=3
i=1 xix

i

(in Planck units) as the difference
∑i,j=4

i,j=1 J
2
ij −

∑i,j=3
i,j=1 J

2
ij of the total orbital

angular momentum squared in D = 4 and D = 3. So the eigenvalues can
be obtained from the difference between the quadratic Casimirs of SO(4) and
SO(3) given by C2[SO(4)]−C2[SO(3)] = l3(l3 + 2)− l2(l2 + 1), where l3 is the
orbital angular momentum quantum number of the three-sphere S3, and l2 is
the orbital angular momentum quantum number of the two-sphere S2. In the
very special case when l3 = l2 the difference C2[SO(4)] − C2[SO(3)] is given

by l2 and such that
∑i=3

i=1 xix
i = l2L

2
P turns out to be linear in the angular

momentum quantum number of the two-sphere l2 = l.
However there is a subtlety because the eigenfunctions of the angular momen-

tum operators associated with S2 and S3 are not the same. The eigenfunctions
of the angular momentum operators J2

S2 associated with S2 are the spherical
harmonics Ylm(θ, φ) and which can be rewritten as Yl2l1(θ2, θ1)

Yl2l1(θ2, θ1) ≡ Ylm(θ, φ) = (−1)m
√

2l + 1

4π

√
(l −m)!

(l +m)!
Pm
l (cosθ) eimφ (1.11)

with l1 = m, l2 = l; θ2 = θ, θ1 = φ and where Plm(cosθ) are the associated
Legendre ploynomials.
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The eigenfunctions of the angular momentum operators J2
S3 associated with

S3 are given in terms of three angles θ1 = φ, θ2 = θ, θ3 = ξ and three quantum
numbers l1, l2, l3, obeying l3 ≥ l2 ≥ |l1|, as follows [8]

Yl1l2l3(θ, φ, ξ) = Yl1l2(θ, φ)

√
2l3 + 2

2

(l3 + l2 + 1)!

(l3 − l2)!

√
sinξ P

−(l2+
1
2 )

l3+
1
2

(cosξ)

(1.12)

where P
−(l2+

1
2 )

l3+
1
2

(cosξ) is the associate Legendre function of the first kind that

can be written in terms of the hypergeometric function 2F1 as

P
−(l2+

1
2 )

l3+
1
2

(cosξ) ≡ 1

Γ(1 + l2 +
1
2 )

(
1− cosξ

1 + cosξ
)

1
2 (l2+

1
2 ) ×

2F1

(
−(l3 +

1

2
), (l3 +

1

2
) + 1; 1 + (l2 +

1

2
);

1− cosξ

2

)
(1.13)

Note that because Yl1l2l3(θ, φ, ξ) factorizes Yl1l2(θ, φ)Fl3l2(ξ), it can be seen
also as an eigenfunction of J2

S2 (the angular momentum operator associated with
S2) because J2

S2Yl1l2l3(θ, φ, ξ) = l2(l2 +1)Yl1l2l3(θ, φ, ξ) due to the factorization
property and the trivial fact that J2

S2 does not act on the extra angle ξ.
Therefore one has

(

i=3∑
i=1

xix
i) Yl1l2l3 = L2

P (J2
S3 −J2

S2) Yl1l2l3 = L2
P [l3(l3 +2)− l2(l2 +1)]Yl1l2l3

(1.14)
giving L2

P l2Yl1l2l3 for the right hand side in the special case when l3 = l2.
Since 4πr2 is the area of a sphere, when the coordinates are noncommutative,
we can label r2 as the square of the radial operator, and the area spectrum
of the quantum sphere is 4πL2

P [l3(l3 + 2) − l2(l2 + 1)]. The areal spectrum
becomes linear in the angular momentum when l3 = l2 = l, so the areas are
quantized in multiples of the Planck area, not unlike the Schwarzschild black
hole horizon areas quantized in bits of Planck areas [5], This whole procedure
can be repeated for the momentum, and in [6] we obtained the spectrum of
the deformed quantum oscillator. The areal momentum is quantized in bits of
a minimal areal momentum. Likewise, the areas were quantized in bits of a
minimal Planck areas.

Recently it was explicitly shown [10] how the Schwarzschild Black Hole En-
tropy (in all dimensions) emerges from truly point mass sources at r = 0 due
to a non-vanishing scalar curvature involving the Dirac delta distribution. In
order to achieve this, one requires to extend the domain of r to negative values
−∞ ≤ r ≤ +∞. It is the density and anisotropic pressure components associ-
ated with the point mass delta function source at the origin r = 0 which furnish
the Schwarzschild black hole entropy in all dimensions D ≥ 4 after evaluating
the non-vanishing Euclidean Einstein-Hilbert action. As usual, it was required
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to take the inverse Hawking temperature βH as the length of the circle S1
β ob-

tained from a compactification of the Euclidean time in thermal field theory
which results after a Wick rotation, it = τ , to imaginary time.

In D = 4 the scalar curvature and the Euclidean action I turned out to be
[10]

R =
4GMδ(r)

r2
⇒ I = − i

16πG

∫ βH

0

dτ

∫ ∞

0

R 4πr2 dr (1.15)

the magnitude of the integral (1.15) becomes after inserting the inverse Hawking
temperature β = 8πGM

|I| = 1

2
M βH = 4πGM2 =

4π(2GM)2

4G
=

4πr2h
4G

=
Area

4L2
P

(1.16)

and which is the Schwarzschild black hole entropy in D > 4.
In higher dimensions D > 4, the scalar curvature is [10]

R = 2
16πGM

(D − 2)ΩD−2
(D − 3)

δ(r)

|r|D−2
= 2 rD−3

h (D − 3)
δ(r)

|r|D−2
(1.17)

where ΩD−2 = 2π
D−1

2 /Γ(D−1
2 ) is the solid angle of the D− 2-dim hypersphere.

The horizon radius is given by

rh =

(
16πGM

(D − 2) ΩD−2

) 1
D−3

(1.18)

and the magnitude of the Euclidean integral I

I = − i

16πG

∫ β

0

dτ

∫ ∞

0

R ΩD−2 rD−2 dr (1.19)

after inserting the inverse Hawking temperature β = 4πrh/(D − 3), becomes

|I| =
ΩD−2 rD−2

h

4GD
=

ΩD−2

4GD

(
16πGDM

(D − 2) ΩD−2

)D−2
D−3

(1.20)

which is the Schwarzschild black hole entropy in D > 4 dimensions given by
one-quarter of the horizon area in Planck units. Essential in these findings was
the result that

∫∞
0

δ(r)dr = 1
2

∫∞
−∞ δ(r)dr = 1

2 resulting from the symmetry of
the delta function δ(−r) = δ(r).

The source of the black hole entropy is the point-mass. As the black hole
evaporates completely its temperature blows up and this might be interpreted
as a manifestation, reflection, of the initial spacetime singularity at r = 0 due
to the presence of the point-mass source generating a scalar curvature R =
4GMδ(r)/r2 = ∞ at r = 0, and R = 0 for r > 0. Based on the key role
that the point-mass plays in the derivation of the black hole entropy we shall
combine it with the noncommutativity of the spacetime coordinates and show
how this leads to the quantization of area, mass and entropy.
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The outline of this work goes as follows. In the section 2 we shall recast
the area-quantization condition, resulting from the noncommutative spacetime
coordinates discussed in the introduction, in terms of a mass quantization con-
dition and derive the black hole entropy A

4G , the logarithmic corrections, and
further corrections, from the discrete mass transitions among the different mass
states in D = 4. The higher dimensional generalization of the results in D = 4
follow. To conclude section 2, we show that given an entropy-mass relation
S = S(M), the mass quantization conditions, and their discrete mass transi-
tions, lead to an entropy quantization S = S(Mn) = n, such that one may assign
n “bits” to this discrete entropy, and in doing so, make contact with quantum
information.

Section 3 is devoted to the physical applications of the mass quantization,
like the counting of states contributing to the black hole entropy, black hole
evaporation, and the direct connection to the black holes-string correspondence
[23] via the asymptotic behavior of the number of partitions of integers [29].

We conclude in section 4 by showing how that the large N Matrix model
(fuzzy sphere [19]) approach of [20] leads to very similar results for the black
hole entropy as the physical model described in this work and which is based
on the discrete mass transitions originating from the noncommutativity of the
spacetime coordinates and that resulted in the key quantization of area, mass
and entropy. We shall employ throughout this work the units of h̄ = c = kB = 1.

2 Black Hole Entropy from Discrete Mass
Transitions

In this section we shall explore the physical implications behind the eigenvalues
and eigenfunctions of the area-operators described in terms of the angular mo-
mentum operators of (hyper) spheres S3,S2 of the previous section. The main
starting point is eq-(1.14). Let us begin with :

Case A : If one sets l3 = l2 = n in eq-(1.14) it yields r2

L2
P

Yl1l2l3 = nYl1l2l3 ,

with Yl1l2l3 given by eqs-(1.11,1.12,1.13). Given G = L2
P in D = 4, the area

quantization of the spherical horizon of radius rh = 2GM can be recast also as
a mass quantization condition as follows

r2h = (2GMn)
2 = n L2

P ⇒ 4M2
n

m2
P

= n ⇒ 2Mn

mP
=

√
n, mP = (LP )

−1

(2.1)
with n an integer 0, 1, 2, . . .. If there is a transition between two neighboring
discrete mass states : Mn → Mn−1, a thermal photon of energy ωn,n−1 =
Mn − Mn−1 = ∆Mn is emitted (radiated), so that when ∆n = 1 one learns
from eq-(2.1), to a first order approximation, that
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2ωn,n−1

mP
=

2∆Mn

mP
∼ ∆n

2
√
n

=
mP

4Mn
, (∆n = 1) (2.2)

leading to

ωn,n−1 = ∆Mn ∼ m2
P

8Mn
=

1

8GMn
(2.3)

It is important to emphasize that if the transition occurs between states that
are not neighbors, ∆n ̸= 1, one may inclined to claim erroneously that the
frequencies of the photons emitted appear to be integer multiples of ωn,n−1.
This is an artifact of the first order approximation in eq-(2.2). A more rigorous
result reveals that the frequencies are not integer-multiples of the frequency
ωn,n−1 of eq-(2.2), because the mass states Mn ∼ mP

√
n are not equally spaced,

like it occurs in the energy levels of a harmonic oscillator.
In the black body radiation spectrum, Wien’s displacement law sates that the

wavelength at which the intensity per unit wavelength of the radiation has a local
maximum or peak, is only a function of the temperature and given by λpeak = b

T ,
where the constant b ≃ 2.897× 10−3 m-K is Wien’s displacement constant [29].
Since frequency is inversely proportional to the wavelength, the peak frequency
turns out to be directly proportional to the black body temperature.

Hence, if one postulates that the frequency is the same as the temperature,
ωn,n−1 = Tn , one finds that Tn ∼ 1

8GMn
is inversely proportional to the mass

Mn. The latter expression corresponds to a temperature whose functional form
is T (M) = 1

8GM and agrees with the Hawking temperature TH = 1
8πGM up to

a factor of π. The entropy corresponding to a temperature T = T (M) = 1
8GM

is defined as

S =

∫
dM

T (M)
=

∫
dM (8GM) = 4GM2 =

4M2

m2
P

(2.4)

and this quadratic behavior in the mass matches the entropy of a black hole
4π(2GM)2

4G = Area
4G , up to a factor of π. One may note that a simple rescaling

LP → LP√
π
in the first term of eq-(2.1) suffices to obtain the exact expression for

the Black Hole entropy. In other words, one has An

4G = nπ to be more precise.

Given the Bekenstein-Hawking black hole entropy S = 4πM2

m2
P

, its discretized

form becomes Sn =
4πM2

n

m2
P

= nπ, and such that it is quantized in n-bits, in the

same way that one-quarter of the horizon’s area is quantized in integer multiples
of Planck-area cells (up to a multiple of π). In the remaining of this work we
shall exclude the factors of π for simplicity, keeping in mind that they should
be taken into account.

Logarithmic corrections to the black hole entropy are obtained when one
does not approximate the expression ∆Mn as displayed in eq-(2.2) but instead
one evaluates exactly the mass increment ∆Mn by performing the binomial

expansion in powers of 1
n , with n =

4M2
n

m2
P

, as follows
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∆Mn =
mP

2
(
√
n −

√
n− 1) =

mP

2

√
n

(
1 −

√
1− 1

n

)
∼

mP

2

√
n

(
1

2n
+

1

8n2
+ . . .

)
(2.5)

Upon substituting n =
4M2

n

m2
P

in eq-(2.5), which stems from the area/mass quan-

tization, gives then for the two leading terms in the binomial expansion the
following

∆Mn = ωn,n−1 = Tn =
1

8GMn
+

1

128G2M3
n

(2.6)

and such discrete expression (2.6) corresponds to a temperature-mass relation
of the form

T = T (M) =
1

8GM
+

1

128G2M3
(2.7)

and one then obtains in this manner the first order corrections to the Hawking
temperature (up to π factors). Hence, the logarithmic corrections to the black
hole entropy are obtained from the integral

S =

∫
dM

T (M)
=

∫
dM

(
1

8GM
+

1

128G2M3

)−1

=

A

4G
− 1

4
ln(

A

G
+ 1) (2.8a)

after inserting the expression for the horizon area A = 4π(2GM)2 in terms of
the mass M and inserting the factors of π judiciously. The discrete version of
eq-(2.8a) is

Sn =
An

4G
− 1

4
ln(

An

G
+ 1),

An

4G
= nπ =

4πM2
n

m2
P

(2.8b)

Higher order corrections to the Hawking temperature and black hole entropy
follow by including the higher order terms in the binomial expansion.

A similar procedure to obtain the logarithmic corrections to the black hole
entropy, after relating the frequency of the radiated photon to the tempera-
ture in discrete mass transitions, can be found in [13] and references therein.
The mass spectrum of black holes has a long history, see [14], [16], [17], [18]
among others. More recently, the quantum deformation of the Wheeler–DeWitt
equation of a Schwarzchild black hole was studied by [13]. The quantum de-
formed black hole was based on a quantized model constructed from the quan-
tum Heisenberg–Weyl Uq(h4) group. It was found that the event horizon area
and the mass were quantized, degenerate, and bounded due to the nature of the
quantum group when the deformation parameter was a root of unity.
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There is an important and subtle remark that is in order. The reader may
object to use the spectrum of the angular momentum operators to obtain the
Schwarzschild black hole entropy when the black hole is not rotating. A Kerr
rotating black hole is described in term of its mass M and a non-vanishing
J ̸= 0. The radius of the inner and outer horizons of a Kerr black hole are given
by (c = 1)

r± =
2GM ±

√
(2GM)2 − 4( J

M )2

2
(2.8c)

The extremal Kerr black hole solution occurs when the outer and inner horizon
radius coincide r+ = r− = GM . In other words, when GM2 = J . Consequently

the radius quantization condition reads now (GMn)
2 = nL2

P ⇒ M2
n

m2
P

= Jn =

n, which is similar to eq-(2.1) without the factor of 4, and resembles Regge
trajectories in string theory. Extremal black holes as massive string states have
been analyzed by [22] and others.

However, there is a caveat now if one identifies the frequency ωn,n−1 in
the mass transition Mn → Mn−1 with a black hole temperature because the
temperature of a extremal Kerr black hole is zero. The resolution of this
problem relies on the fact that one must not confuse the angular momentum J of
the Kerr black hole with the angular momentum operators JS3 ,JS2 associated
with the (hyper) spheres S3,S2 in the previous section that were essential in
deriving the eigenvalues and eigenfunctions of the area operators resulting from
the noncommutativity of spacetime.

Case B : Setting l2 = 0, defining n ≡ l3 + 1, with ∆n = 1, eqs-(1.14, 2.1)
lead to the following quantization condition (omitting an irrelevant numerical
factor of 4)

M2
n

m2
P

= n2 − 1 ⇒ Mn

mP
=
√

n2 − 1 ⇒ ∆Mn

mP
∼ n ∆n√

n2 − 1
=

√
1 +

M2
n

m2
P

(Mn/mP )
⇒ ∆Mn ∼ mP

√
1 +

m2
P

M2
n

(2.9)

so the temperature associated to the thermal photon of frequency ωn,n−1 is now
given by

∆Mn = ωn,n−1 = Tn ∼ mP

√
1 +

m2
P

M2
n

(2.10)

whose expression is associated with a temperature-mass relation of the form

T = T (M) = mP

√
1 +

m2
P

M2
(2.11)

and its corresponding entropy is
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S =

∫
dM

T (M)
=

∫
dM

M

mP

√
M2 +m2

P

=
1

mP

√
M2 +m2

P =

M

mP

√
1 +

m2
P

M2
⇒ Sn =

Mn

mP

√
1 +

m2
P

M2
n

=
√
n2 − 1

√
1 +

1

n2 − 1
= n

(2.12)
after discretizing the expression for S in terms of n. One may note that when
M >> mp ⇒ S ∼ M

mP
so that the entropy now has the same functional behavior

as the entropy of a string : linear in mass. Also, it is interesting that in both
cases A, B one ends up with a discrete entropy Sn = n quantized in n-bits.

Let us study case C : When l3 = l2 + p = n+ p, with l2 = n and p > 0 is a
positive integer. Eq-(2.1) becomes in this case (omitting an irrelevant numerical
factor of 4)

M2
n

m2
P

= (2p+1) l2 + p(p+2) = A n + B, A ≡ 2p+1, B ≡ p(p+2) (2.13)

and which has a Regge-like behavior J = α′M2 + a, with

J ↔ n, α′ ↔ 1

A m2
P

, a ↔ − B

A
(2.14)

Hence, given ∆n = 1, it leads to

Mn

mP
=

√
A n+B ⇒ ∆Mn

mp
∼ A

2
√
A n+B

=
A mp

2 Mn
(2.15)

The frequency and temperature corresponding to the emitted thermal photon
in the transition is given by

∆Mn = ωn,n−1 = Tn ∼ A

2

m2
P

Mn
(2.16)

and the expression (2.16) is associated with a temperature whose functional
form in terms of the mass is

T = T (M) =
A

2

m2
P

M
(2.17)

and the corresponding entropy, and its discretized form, are respectively given
by

∫
dS =

∫
dM

T (M)
⇒ S−So =

∫ M

Mo

dM
2M

A m2
P

=
1

A m2
P

(M2 − M2
o ) ⇒
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Sn − So =
1

A m2
P

(M2
n − M2

o ) =
1

A
[A n+B − (A no +B)] =

n − no ⇒ Sn = n (2.17)

with So ≡ S(Mo) = no. Once again we find that Sn = n in eq-(2.17) and the
discretized entropy is again quantized in n-bits.

Degeneracy of States

We have studied above the simple cases when there is a linear relation be-
tween l2 and l3, or when l2 = 0. As mentioned above, in the most general case,
the mass quantization condition

4M2
n

m2
P

= l3(l3 + 2) − l2(l2 + 1) = n; n = 0, 1, 2, 3 . . . (2.18)

is related to the eigenvalues of the area operator (1.14) whose eigenfunctions
Yl1l2l3 are described by eqs-(1.11, 1.12,1.13) in terms of three quantum numbers
l3, l2, l1. These solutions have a degeneracy of 2l2+1 associated to the different
values of l1 = l2, l2 − 1, . . . , 1, 0,−1, . . . ,−l2.

Some solutions of (2.18) are

l2 = l3 = 0, n = 0 ⇒ 2l2 + 1 = 1 (2.19a)

l2 = l3 = 1, n = 1 ⇒ 2l2 + 1 = 3 (2.19b)

l2 = l3 = 2, n = 2 ⇒ 2l2 + 1 = 5 (2.19c)

l2 = 2, l3 = 3, n = 9, ⇒ 2l2 + 1 = 5 (2.19d)

l2 = l3 = 9, n = 9 ⇒ 2l2 + 1 = 19 (2.19e)

From eqs-(2.19d, 2.19e) one finds two solutions (l2 = 2, l3 = 3) and (l2 = l3 = 9)
leading both to n = 9. Their net degeneracy is 5+19 = 24 so that d(n = 9) = 24.

For each value of l3 = N , the values of l2 are {N,N − 1, N − 2, . . . , 1, 0},
and in turn, the values of l1 are, respectively,

{N,N − 1, . . . , 1, 0,−1, . . . ,−N}; {N − 1, N − 2, . . . , 1, 0,−1, . . . ,−(N − 1)};

{N − 2, N − 3, . . . , 1, 0,−1, . . . ,−(N − 2)}; . . . (2.20)

Therefore, given l3 = N , the total number of states Yl1l2l3 , obeying l3 = N ≥
l2 ≥ |l1| is

N∑
l3=0

l3∑
l2=0

(2l2 + 1) =

N∑
l3=0

(l3 + 1)2 =
(N + 1)(N + 2)(2N + 3)

6
(2.21)

One must remark that N ̸= n except in the special cases when l3 = l2 = N ⇒
n = N .
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Entropy in Higher Dimensions and Quantum Information

The higher-dimensional extension of the metric (1) was found by Tangherlini
[11] and can be obtained by simply replacing (dΩ)2 → (dΩD−2)

2 (the D−2-dim
solid angle) and 1− 2GM

r → 1−( rhr )D−3 where rh is the horizon radius expressed
in terms of M and the gravitational coupling GD in D dimensions whose units
are (length)D−2. The higher dimensional metric is given by

ds2 = − f(r) (dt)2 +
(dr)2

f(r)
+ r2 (dΩD−2)

2, f(r) = 1 − 16πGDM

(D − 2)ΩD−2rD−3

(2.22)
where GD is the D-dim Newton’s constant, M the black hole mass. The solid

angle of a D − 2-dim hypersphere is ΩD−2 = 2π
D−1

2 /Γ(D−1
2 ). The horizon

radius is determined from the condition f(rh) = 0 giving

rh =

(
16πGDM

(D − 2) ΩD−2

) 1
D−3

(2.23)

such that the metric (3.1) can be rewritten as

ds2 = − [ 1−(
rh
r
)D−3 ] (dt)2 + [ 1−(

rh
r
)D−3 ]−1 (dr)2 + r2 (dΩD−2)

2 (2.24)

Recurring to the mathematical results on hyper-spherical harmonics [21], [8],
[7] one can generalize the results of section 1 to higher dimensions so that the
quantization of the radius of the horizon (a hypersphere of size Ah = ΩD−2r

D−2
h )

is described by a relation of the form

rD−2
h = (γGMn)

D−2
D−3 = n LD−2

P ⇒ Mn = γ−1 n
D−3
D−2

LD−3
P

G
(2.25)

with γ = 16π
(D−2)ΩD−2

. When ∆n = 1, G = LD−2
P , mP = L−1

P , in D-dimensions,

one has to first approximation

Mn −Mn−1 = ∆Mn ∼ mP γ−1 D − 3

D − 2
n

1
2−D =

mP γ−1 D − 3

D − 2

1

(γMn/mP )
1

D−3

= γ−1 D − 3

D − 2

1

(γGMn)
1

D−3

(2.25)

When a photon of frequency ωn,n−1 is emitted in the ∆n = 1 transition from
Mn → Mn−1, it corresponds to a temperature given by

ωn,n−1 = Tn = ∆Mn ∼ γ−1 D − 3

D − 2

1

(γGMn)
1

D−3

(2.26)

and one arrives at an expression for the temperature which has the very same
functional relation (up to numerical constants) as the Hawking temperature of

12



a Schwarzschild black hole in all dimensions D ≥ 4 given by TH = D−3
4πrh

where

rh is the horizon radius rh = (γGM)
1

D−3 .
Following similar steps as in the D = 4 case one obtains for the entropy

S =
∫
dM/T (M) an expression given by one-quarter of the horizon’s hyper-area

in Planck units, and the quantization of the black hole entropy SBH =
ΩD−2r

D−2
h

4G

turns out to be Sn = n(ΩD−2

4 ), hence up to a numerical constant the higher-dim
entropy is quantized in n-bits as well. When D = 4 one recovers the previous
result Sn = nπ.

To sum up, the (D − 2)-dim horizon is a hyper-sphere whose radius quanti-
zation condition is

rD−2
n = (γGMn)

D−2
D−3 = n LD−2

P , γ =
16π

(D − 2)ΩD−2
(2.27)

and it leads to a mass quantization of the form

Mn

mP
= γ−1 n

D−3
D−2 (2.28)

and which is not equal to a mass quantization of the form

Mn

mP
= n

1
D−2 (2.29)

except in D = 4, up to a numerical constant. Consequently, when D ̸= 4, the
mass quantization condition (2.28) leads to a different temperature than the
temperature stemming from the mass quantization condition in (2.29). Basically

this results because mp(GM)
1

D−3 ̸= ( M
mP

)D−3, except in D = 4. The condition
(2.28) yields a temperature which has the same functional form as the Hawking
black hole temperature as shown above in eq-(2.26).

Furthermore, it is not difficult to show that when one imposes a mass quan-
tization condition of the form A(Mn/mP )

B = n, with A,B constants (B ̸= 0)
it always leads to Sn = n. For example, given a more general mass quantization
condition of the form (Mn

mP
)D−2 = f(n), where f(n) is a general function which

is not necessarily given by a power law, one can define the continuum extension
of the ratio xn = Mn

mP
to be x = M

mP
, and define the continuum extension of

the integer n to be y. As a result, the continuum version of the general mass
quantization condition is

xD−2 = f(y) ⇒ (D − 2) xD−3 dx = f ′(y)dy ⇒

T

mP
=

dx

dy
=

f ′(y)

(D − 2) xD−3
(2.30)

where the continuum version of the temperature associated with the photon
emitted in the discrete mass transitions is chosen to be defined as T = TP (dx/dy) =
mP (dx/dy)

The corresponding entropy is given by the integral
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S =

∫
dM

T (M)
=

∫
(D − 2) xD−3 dx

f ′(y)
=

∫
dy = y ⇒ Sn = n (2.31)

and one finds again that the discrete entropy is quantized in n-bits as a result of
the mass quantization condition. Therefore, to conclude this section we believe
that some sort of “universality” principle is operating in the quantization of
mass which leads to a quantization of entropy. In other words, given an entropy-
mass relation S = S(M), a mass quantization condition leads to S = S(Mn) =
n, and one may then assign n “bits” to this discrete entropy. The implications
of mass and entropy quantization in Quantum Information Theory warrants
to be investigated further. For an extensive literature on the many aspects of
Quantum Gravity we refer the reader to the recent encyclopedic treatise [28].

3 Mass Quantization, Counting of States, Black
Hole Evaporation, Black Holes-String
Correspondence

We discussed earlier how photon of frequencies

ωn,n−1, ωn−1,n−2, ωn−2,n−3, . . . , ω1,0 (3.1)

are emitted in the following discrete mass transitions

Mn → Mn−1, Mn−1 → Mn−2, Mn−2 → Mn−3, . . . , M1 → M0 = 0 (3.2)

respectively. Consequently, there are many possible ways in which the mass
state Mn can cascade down to the ground mass state M0 = 0.

For example, let us take n = 5. There are seven partitions of 5 [29]

5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 (3.3)

The order-dependent partition 1+ 4 is the same as 4+ 1. The order-dependent
partitions 1+3+1, and 1+1+3 are the same as 3+1+1, and so forth. However
because the mass states M5,M4,M3,M2,M1,M0 are not equally spaced, the
transition chain M5 → M1 → M0 is not the same as the transition chain from
M5 → M4 → M0, and so forth. Consequently, one must enlarge the above seven
partitions (4.3) to take into account the orderings of the partitions by including
the suitable permutations.

The M5 → M0 transition involves emitting a photon of frequency ω5,0. The
M5 → M1 → M0 transition chain involves emitting a photon of frequency ω5,1

from M5 → M1, followed by the emission of a photon of frequency ω1,0 from
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M1 → M0. Whereas the M5 → M4 → M0 transition chain involves emitting a
photon of frequency ω5,4 from M5 → M4, followed by the emission of a photon
of frequency ω4,0 from M4 → M0. Because the frequencies {ω5,1;ω1,0} are not
the same as {ω5,4, ω4,0}, the partition 4 + 1 associated with the first transition
chain is not physically the same as the partition 1+4 associated with the second
transition chain.

In this fashion, given the mass state M5, it can “evaporate” by cascading
all the way down to the zero mass state M0 = 0 in more different ways than
seven. If, and only if, the process is adiabatic, the entropy will be conserved and
this “evaporation” cascading process involving photons of different frequencies
encodes information about the entropy content associated with the mass state
M5.

If one does not take into account the ordering of the partitions, the partition
of an integer n in the asymptotic limit n >> 1 admits an analytic expression of
the form [29]

p(n) ∼ 1

4n
√
3
eπ
√

2n
3 (3.4)

and the entropy associated with p(n) is given by its natural logarithm

S = ln(p(n)) ∼ π

√
2n

3
− ln(4n

√
3) (3.5)

Hence, to leading order in the large n limit, and up to a numerical coefficient,
one has S = ln(p(n)) ∼

√
n = 2Mn

mP
, and the entropy is linear in the mass Mn

which has the same behavior as the string entropy.
If one wishes to obtain an entropy quadratic in the mass M , it would require

to study the partition of n2 in the asymptotic limit n2 >> 1

p(n2) ∼ 1

4n2
√
3
eπ
√

2n2

3 (3.6)

such that

S = ln(p(n2)) ∼ π

√
2n2

3
− ln(4n2

√
3) = n π

√
2

3
− ln(4n2

√
3) =

n π

√
2

3
− 2 ln(n)− ln(4

√
3) (3.7)

Hence, to leading order, one has ln(p(n2)) ∼ nπ
√

2
3 =

√
2
3 (

4πM2
n

m2
P

) =
√

2
3
An

4G , as

a result of the one-quarter-area quantization condition An

4G = nπ. One finds that
the entropy is now quadratic in the mass Mn and agrees with the back hole en-

tropy, up to a numerical constant
√

2
3 . In this case, instead of studying the mass

transitions among the states Mn,Mn−1,Mn−2, . . . ,M0 = 0, it requires to study
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the mass transitions among the states Mn2 ,Mn2−1,Mn2−2, . . . ,M0 = 0, which
are not the same as the discrete mass statesMn2 ,M(n−1)2 ,M(n−2)2 , . . . ,M0 = 0.

Let us recall the discrete version of the entropy expression found in eq-(2.8b)
: Sn = nπ = 4π(Mn

mP
)2 (plus logarithmic corrections). This solution originated

from the area/mass quantization condition and after performing the binomial
(Taylor) expansion in powers of (1/n) in eq-(2.5) and which is consistent with
having a large n limit. We may compare the latter expression Sn, in the very
large n limit, with the logarithm ln[p(n2)]. One finds that ln[p(n2)] in eq-(3.7)
leads to an expression close, but not exactly identical, to the black hole entropy
Sn = 4π(Mn

mP
)2 (plus logarithmic corrections) displayed in eq-(2.8b).

If one realizes that the cascading paths from Mn2 to M0 = 0 are actually
order-dependent, because the mass states are not equally spaced, the number of
cascading paths N is much greater than p(n2). Therefore one expects to have

N > eSn ∼ [p(n2)] ⇒ ln(N ) > Sn ∼ ln[p(n2)] (3.8)

in the large n limit.
Inspired by Feynman’s path integral formulation of quantum mechanics (sum

over paths) we may interpret the similarity of the expressions Sn ∼ ln[p(n2)],
in the large n limit, as an indication that the number of all possible climbing
paths from the mass state M0 = 0 to the Mn2 state is a measure of the entropy

content of a black hole whose mass is Mn =
√
n
2 mP , and which is not the same

as Mn2 = n
2mP , except in the case when n = 1 (and n = 0 that corresponds to

the zero mass state). Similarly, the number of cascading paths from the mass
state Mn2 to the mass state M0 = 0 , in the large n limit, is a measure of
the entropy content associated with the large number of photons of different
frequencies that have been radiated in the cascading process, and which are

associated to the black hole evaporation process of a mass Mn =
√
n
2 mP .

We hope that this correspondence picture between Sn ↔ ln[p(n2)] might
provide a new glimpse into Quantum Gravity. One salient feature of this work is
that the photon’s frequency in the transition M1 = mP → M0 = 0 corresponds
to the Planck temperature ω1,0 = TP . The salient feature of this transition
leading to a zero mass, finalizing the complete black hole evaporation, is that the
temperature no longer blows up but it reaches a “maximal” Planck temperature.
A Thermal Relativity Theory based on a maximal Planck temperature was
proposed in [27].

Given Mn =
√
n
2 mP , and Mn2 = n

2mP gives the relation

Mn2

mP
= 2

M2
n

m2
P

(3.9)

that hints towards a black-hole/string entropy correspondence. The left hand
side which is linear in mass has the same behavior as the entropy of a string,
whereas the right hand side which is quadratic in mass has the same behavior
as the entropy of a black hole.
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The behavior of the asymptotic limit of p(n) and p(n2) in eqs-(3.4,3.6) is
also the same as the counting of string states (degeneracy) of a given energy E

d(E) ∼ A E−B eC
√
E , E ∼ ∞ (3.10)

with A,B,C numerical constants. A recent study on the asymptotic density of
states in solvable models of strings can be found in [26].

We finalize this section with a discussion of the black holes-string correspon-
dence. The correspondence principle between strings and black holes is a general
framework for matching black holes and massive states of fundamental strings at
a point where their physical properties such as mass, entropy and temperature
smoothly agree [23]. The black-hole/string correspondence [23] occurs when the
string’s Hagedorn temperature is of the order of the Hawking temperature. In
D = 4, the black hole entropy is proportional to M2, whereas the string entropy
is linear in the mass M [23]. The string coupling gs = e<ϕ> is given in terms
of the vacuum expectation value of the dilaton ϕ. The string mass scale Ms,
the Planck mass mP , and the mass M corresponding to a massive string state
are related in the following way via the string coupling gs [24]

Ms = gs mP , Ms = g2s M ⇒ M2

m2
P

=
M2

M2
s

g2s =
M2

M2
s

Ms

M
=

M

Ms
(3.11)

Consequently, in D = 4 one has SBH ∼ M2

m2
p

= M
Ms

∼ Sstring, and one can

monitor the black-hole/string transition by varying the string coupling. As
explained by [24], a large black hole with a stringy stretched horizon evolves,
under adiabatic change of the string coupling, to a black hole of string size,
and then to a single free string. This black-hole/string correspondence in the
case of rotating black holes and in higher dimensions D > 4 was analyzed more
recently by [25]. Comparing eq-(3.9) with eq-(3.11) one can see a very clear
resemblance. The only difference is that mP appears in both ratios of eq-(3.9);
whereas the ratios in eq-(3.11) involve mP and the mass scale Ms which is the
inverse of the string length scale Ls.

This is not the first time we have seen the integers n and their squared n2

playing an important role. The energy levels of the Hydrogen atom obey the

relation En = − |E0|
n2 where E0 = −13.6 eV is the ground state energy. The

n-th orbital velocity of the classical electron obeys the relation vn = v0

n where
v0 = c

137 is the orbital velocity corresponding to the ground state. For this
reason, many researchers view the Schwarzschild black hole as the “Hydrogen
atom” of Quantum Gravity.

4 Matrix Models

Instead of viewing the noncommutative spacetime coordinates in terms of an-
gular momentum operators and recurring to the eigenvalues and eigenfunctions
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of the area operators provided by eqs-(1.11,1.12,1.13), another approach is to
consider a spacetime where the spatial coordinates become operators that are
represented by SU(N +1) matrices [19]. The su(N +1) algebra is a subalgebra
of so(2N + 2).

The author [20] more recently proposed a largeN quantummechanics of non-
abelian bosonic and fermionic variables belonging to the adjoint representation
of SU(N + 1) as a Matrix model for quantum gravity in D = 3. The theory
admits a fuzzy sphere of radius R = NLP as a static solution. Over the fuzzy
geometry, the quantum mechanics of the fermions is given by a sum of oscillators
with equal frequency. The fuzzy sphere was divided into N2 cells with unit cell
area ∆A = 4πL2

P of Planck size. Each two-dim cell is populated by a pair
of fermionic oscillators which describe the quantum fluctuations over the fuzzy
sphere.

The energy state where exactly half of the Fermi sea is filled contains the
maximal amount of degeneracy which in the large N limit turns out to be given

by 22N
2

√
πN

1, after using the Stirling approximation for the factorials appearing

in (2N2)!/(N2)!(N2)!. The energy of the half-filled Fermi sea turned out to be
[20]

E =
NmP

2
=

N

2LP
=

NLP

2L2
P

=
NLP

2G
=

R

2G
(4.1)

This was the Schwarzschild mass-radius relation if the fuzzy sphere is identified
with the black hole horizon whose radius is R = NLP , and the total energy
of the system is identified with the mass of the black hole E = M . These
microstates of the system at the energy E = M give rise to the entropy

S = log2(
22N

2

N
√
π
) = 2N2−log2(N

√
π) = 2N2 − 1

2
log2(N

2) − log2(
√
π) (4.2)

The leading term of (4.2) yields 2N2 ∼ A
4G , and one finds that the result (4.2)

has the same functional form (up to numerical coefficients) as the expression
for the entropy displayed in eq-(3.7), obtained in the large n limit, simply by
setting n = N2. We should also recall the relation log2(X) = ln(X)/ln(2) when
one performs the logarithm operation in different basis.

The key to the findings by [20] were based in the introduction of fermionic
variables. In particular, due to the fact that each two-dim cell is populated
by a pair of fermionic oscillators which describe the quantum fluctuations over
the fuzzy sphere. An intuitive explanation of the findings by [20] can also be
found in an Ising model involving a collection of 2N2 fermions of spin j = 1

2 .

The number of spin configuration states is 22N
2

, since there are two degrees
of freedom, spin up/down, at each lattice site. One could engineer a model
such that the lowest energy state occurs when all the spins are down; and the
maximum energy state occurs when all the spins are up, and an intermediate
energy state occurs when half of the spins are up, and half are down. The

1The factor 1/
√
πN was not included in [20]
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latter intermediate energy state is the one with maximal degeneracy given by
the binomial coefficient C2N2

N2 = (2N2)!/(N2)!(N2)!, and one recovers the same
result as in [20], which is not surprising since similar results have been found
in the evaluation of black hole entropy in Loop Quantum Gravity via Penrose
spin networks.

Therefore, one concludes that the large N Matrix model (fuzzy sphere) ap-
proach of [20] leads to similar results for the black hole entropy as the model
described in this work which is based on the discrete mass transitions of
Mn2 ,Mn2−1,Mn2−2, . . . ,M0 = 0, in the large n limit, and originating from the
noncommutativity of the spacetime coordinates which resulted in the quanti-
zation of area and mass.
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