
Particle swarm optimization algorithm using exponential
function -way-decreased inertia weight

Rim Ung Jang, Yong Chon Jang *, Se Yong Chon, Hak Mun Kim and Song Hak Hong

Faculty of Information Science, Kim Il Sung University, Taesong District, Pyongyang, DPR Korea

Abstract.

In this article we assumed that during the particle swarm optimization (PSO)process, the
inertia weight value of the velocity vector calculating equation would be changed by non-liner
way. And also this way reflects PSO’s real nature very well. The inertia weight factor’s non-
liner-changed equation that is proposed is the flowing:

t

base
w)1(, ���� ≥ 2 (1)

This equation is an exponential function.

Keywords: Particle swarm optimization (PSO), Convergence, Inertia weight factor

1. Introduction

PSO has been widely applied in many real optimization problems and has shown good
performances, such as manufacturing control in engineering optimization [2,6-9], and multi-
source scheduling in cloud computing [3-5].

Kennedy et al. firstly proposed PSO(Particle swarm optimization) which is a nature-inspired
evolutionary algorithm[1].

It mimics the social behavior of bird flock and fish schools when they search for food [11].

PSO is an optimization method that utilizes swarm intelligences in solving problems.

It is very different from evolutionary algorithms in which various operators are applied to the
population yielding next generation with higher fitness value (better solution).

In other words, the population evolves itself until it converges to the optimal solution in
evolutionary algorithm.

In PSO, each particle is searching for the optimal solution therefore they are moving with a
certain velocity.

Each particle also remembers the best result achieved so far (personal best) and exchanges
information with other particles to determine the best particle (global best) among the swarm.

At each step, a particle has to move to a new position after adjusting its velocity.

* Corresponding author
Email addresses:YC.JANG1122@star-co.net.kp (YONG CHOL JANG)

The particle would tend to move towards its historical best position and the best position
recorded by the swarm.

Hence, the velocity is actually comprised of the following three components:

(i) the current velocity,
(ii) weighted random portion in the direction of its personal best and
(iii) weighted random portion in the direction of global best.

The new position is merely the sum of current position with the new velocity.

In short, let the solution space be D-dimensional, then the i th particle in the swarm is

�� = (��1, ��2, …, ���)� (2)

The velocity vector is

�� = (��1, ��2, …, ���)� (3)

The historical best position of the i th particle is

�� = (��1, ��2, …, ���)� (4)

The best particle is recognized by fixing g as the index of the above expressions.

Standard PSO is only governed by the following two equations:

����+1 = ���� + �1�1� ���� − ���� + �2�2� ���� − ���� (5)

����+1 = ���� + ����+1 (6)

In which (5) being velocity update equation and (6) being position update equation.

d=1,2, … , D; i=1,2, … , S (7)

In the Eqs.(7), D is the dimension number and S is the swarm size. In the Eqs.(5), c1 and c2
are weight of personal best and weight of global best, respectively; r1 and r2 are random numbers
distributed uniformly in [0,1].

The basic PSO has some drawbacks which make it trapped in the local optimum and suffer
from the premature convergence.

How to improve the convergence speed as well as to avert the premature convergence has
become the most important research problem in PSO.

So, Shi and Eberhart [12] proposed the inertia weight method based on the standard PSO
algorithm in 1998.

The particle’s velocity calculating equation in which the inertia weight item has been reflected
is as follows.

����+1 = ����� + �1�1� ���� − ���� + �2�2� ���� − ���� (8)

Here, the inertia weight value is given from the following equation.

� = ���� −���� ∗ ����−�
����

+���� (9)

Initially, the higher setting value of w in the PSO algorithm will enhance the exploration of the
particles into a wide scope, and as the value of w gets lower, due to the linear decrement, it will
cause a higher exploitation of the particles to the local area.

According to Eberhart and Shi [10], the optimal strategy is to set w to 0.9 initially and then
reduce it linearly to 0.4, allowing early exploration before exploiting in the proximity of global
optimum later.

But, with the PSO’s real nature, the inertia weight(w) should be decreased like non-linear way.

Fan and Chiu [13] proposed a nonlinearly decreasing weight method in which the equation to
update the inertia weight is w = (2 �)0.3 , and in that equation t is the iteration number; w(t) is
the inertia weight of t th iteration.

But here, the inertia weight is changed between 1.23 to 0.4.

The inertia weight updating way should be more improved to reflect the real nature of PSO
which imitate such as birds flying, fishes moving, or bees foraging.

Based on the results of observations on the swarm behaviors in some ecological system, from
the initial time of swarm moving to the ending time of swarm moving, the possibility of
depending on particle-self-exiting position should decrease like the exponential function.

So In this paper, in order to prove the above assumption, the way of using a non-linear
decreasing inertia weight (w) which use the exponential function-way-decreased inertia weight is
proposed.

The rest of this paper is organized as follows.

The experimental results and analysis which are got when PSO-0(PSO which is an initial
PSO),PSO -1(PSO which uses the linear- decreased inertia weight) and PSO-2, PSO-3(PSO
which uses the non-linear -decreased inertia weight) are applied on several benchmark
multimodal functions are shown in Section 2,

The experimental results and analysis which are got when PSO-2 with several exponential
bases are applied on several benchmark multimodal functions are shown in Section 3.

And the conclusion is provided in Section 4.

2. PSO which uses the exponential function -way-decreased inertia weight(w)

In case that the base of exponential function is a proper fraction, when the superscript is 0 the
exponential function value is equal to 1, or when the superscript is increased than 0, the

exponential function value is nearing to 0. For example, in case that the base is
2
1 , then the

exponential function tw)
2
1(’s graph is as follows;

Fig.1. The graph of tw)
2
1(

This tendency of exponential functions ‘s graph reflects the tendency of a particle’s velocity
change through the processes of exploration and exploitation. So, it is true that the inertia weight’s
non-liner change should be made by the exponential function. Then, let’s apply this to several
benchmark functions and compare the result of this with one of PSO-1. In order to verify the
performance of the algorithm, here we use 6 test functions which are shown in Table 1 .

Table 1. Test functions

number Test functions Range Sorts

1

n

i
ixxf

1

2
1)([-100, 100] Unimodal

functions

2

n

i
i

n

i
i xxxf

11
2 ||||)([-10, 10] Unimodal

functions

3 2

11
3)()(

n

j
j

n

i

xxf [-100, 100] Unimodal
functions

4])1()(100[)(222
1

1
4

 iii

n

i

xxxxf [-10, 10] Unimodal
functions

5]10)π2cos(10[)(2

1
5

ii

n

i

xxxf [-5.12, 5.12] Multimodal
functions

6 1)cos(
4000

)(
11

2

6

n

i

i
n

i

i

i
xxxf [-600, 600] Multimodal

functions

The first four functions (f1–f4) are unimodal functions and the next two functions are
multimodal functions.

By doing experiments on these functions, we can verify that the proposed PSO-3 can maintain
the fast convergence feature and have the ability of dealing with multimodal functions.

The conditions of experiments on these functions are shown in Table 2.

Table 2. Conditions of experiments on these functions

No PSOs Parameters

1 PSO-0
1c =0.5 +ln2, 2c =0.5 + ln2
w =1 / (2 * ln2)

1r , 2r : random numbers uniformly distributed within [0,1]

2 PSO-1

1c =0.5 +ln2, 2c =0.5 + ln2

1r , 2r : random numbers uniformly distributed within [0,1]

Inertia weight decreasing way: linearly decrease from maxw =0.9 to minw =0.4

3 PSO-2

1c =0.5 +ln2, 2c =0.5 + ln2

1r , 2r : random numbers uniformly distributed within [0,1]

Inertia weight decreasing way: non-linearly decrease from maxw =1.2 to

minw =0.4 as w = (2 �)0.3

4 PSO-3

1c =0.5 +ln2, 2c =0.5 + ln2, base=2

1r , 2r : random numbers uniformly distributed within [0,1]

Inertia weight decreasing way : non-linearly decrease from maxw =1 to minw =0
as an exponential function

The results of comparison on 6 basic functions are shown in Table 3.

To make comparing experimental results of using different algorithms clear, each algorithm

will run on the corresponding benchmark function independently CN=100 times and the mean

error of results will be displayed in the tables of comparison results below.

The population size n in each algorithm is set as 20 and the repeated number T is 1000.

The comparison results on convergence accuracy including the mean error (MEANo) , the

error’s standard deviation(σo) and the average of swarm repeating number t at which the

optimization value first is searched(FTAo) are listed in Tables 3.

Table 3 Results comparison on 6 basic functions
PSOs PSO-0 PSO-1 PSO-2 PSO-3

단일극값

함수들

f1
MEANo 1.0137E-99 3.0837E-150 0 0
σo 3.5817E-99 7.5275E-150 0 0
FTAo 996 982 620 273

f2
MEANo 9.19871E-48 9.00088E-75 9.035E-286 0
σo 3.11833E-47 2.45964E-74 0 0
FTAo 996 974 1000 562

f3
MEANo 1.01283E-93 8.1113E-147 0 0
σo 3.65099E-93 2.9214E-146 0 0
FTAo 992 982 626 287

f4
MEANo 0 0 0 0
σo 0 0 0 0
FTAo 332 111 104 33

다극값

함수들

f5
MEANo 0 0 0 0
σo 0 0 0 0
FTAo 185 61 67 22

f6
MEANo 0 0 0 0
σo 0 0 0 0
FTAo 211 69 74 22

MEANo, σo , FTAo are obtained by the following Eqs. 10 -12.

CA

i
iO Error

CA
MEAN

1

1
(10)

CA

i
oi MEANError

CA 1

2
o)(1σ (11)

CA

i
iFT

CA
FTA

1
o

1
(12)

�� : the number of running
������ : Error at the ith running
��� : Swarm repeating number t at which the optimization value first is searched at

the ith running

Here, we mark the best results performed by those algorithms on each test functions with bold
font, and mark the second best results of them with underlined. From values with bold font in
Tables 3 , we can obviously see that PSO-3 performs well on all benchmark functions, unimodal
and multimodal functions (f1–f6) which are used in this experiment.

a) Convergence process on f1

b) Convergence process on f2

c) Convergence process on f3

d) Convergence process on f4

e) Convergence process on f5

f) Convergence process on f6

Fig. 2. Convergence process on 6 basic multimodal functions .

Fig. 2 shows the convergence process of the algorithms. From the above figures, we can see
that the proposed PSO-3 can converge with an ideal convergence speed, especially on multimodal
functions and has the fastest convergence speed among these algorithms.

3. Effects of exponential function’s base-change

The experimental results and analysis which are got when PSO-3 with several exponential

bases(2
1
, 5
1
, 10
1
, 13
1
, 15
1
) are applied on several benchmark multimodal functions are shown in

Section 3.

The benchmark multimodal functions that are used in this experiment are equal to Table1.
Conditions of experiment is equal to Table4. The result of this experiment is showed in Table5.

Table 4. Conditions of experiments for choosing the good base value
PSO Parameters

PSO-3

1c =0.5 +ln2, 2c =0.5 + ln2

1r , 2r : random numbers uniformly distributed within [0,1]

Inertia weight decreasing way : non-linearly decrease from maxw =1 to minw =0
as an exponential function

Table 5. Each base value’s optimization ability order analysis result - 1

Base Index
Benchmark functions

f1 f2 f3 f4 f5 f6

1
-
2

MEANo 1.14E-18 9.32E-11 2.25E-84 0 15.75352 0
σo 2.8E-18 2.28E-10 5.52E-84 0 7.71762 0

0.5*(MEANo+σo) 1.97E-18 1.61E-10 3.89E-84 0 11.73557 0
Order 4 3 3 1 4 1

1
-
7

MEANo 0.005819 8.68E-62 2.2E-187 0 12.60282 3.76E-05
σo 0.014255 2.13E-61 0 0 9.762102 9.21E-05

0.5*(MEANo+σo) 0.010037 1.5E-61 1.1E-187 0 11.18246 6.48E-05
Order 5 1 1 1 3 2

1
-
10

MEANo 8.57E-26 4.58E-05 2.12E-32 0 6.30141 0
σo 2.1E-25 0.000112 5.19E-32 0 9.762102 0

0.5*(MEANo+σo) 1.48E-25 7.9E-05 3.66E-32 0 8.031756 0
Order 2 4 4 1 1 1

1
-
13

MEANo 2.23E-42 5.12E-52 1.09E-28 0 9.452115 0
σo 5.46E-42 1.25E-51 2.66E-28 0 10.35427 0

0.5*(MEANo+σo) 3.84E-42 8.83E-52 1.88E-28 0 9.903194 0
Order 1 2 5 1 2 1

1
-
15

MEANo 1.57E-19 0.180952 1.8E-101 0 6.30141 0
σo 3.66E-19 0.443241 4.3E-101 0 9.762102 0

0.5*(MEANo+σo) 2.61E-19 0.312097 3E-101 0 8.031756 0
Order 3 5 2 1 1 1

In Table5, 0.5*(MEANo+σo) is used to reflect MEANo andσo equally
Each base value order of Each Benchmark function’s optimum value searching is estimated

by this index. The result is Table6.

Table6. Each base value’s optimization ability order analysis result - 2

Base
Benchmark functions

Average σA 0.5*(MEANo+σo) Order
f1 f2 f3 f4 f5 f6

1/2 4 3 3 1 4 1 2.666667 1.36626 2.016463 5

1/7 5 1 1 1 3 2 2.166667 1.602082 1.884374 4

1/10 2 4 4 1 1 1 2.166667 1.47196 1.819313 2

1/13 1 2 5 1 2 1 2 1.549193 1.774597 1

1/15 3 5 2 1 1 1 2.166667 1.602082 1.884374 3

From the above Table6, we can see that in the case of base
31
1 , the proposed PSO-3 can

converge with an convergence speed .

So, The inertia weight factor’s non-liner-changed equation that is proposed is the flowing:

tw)
31
1((13)

4. Conclusion and future work

In this paper, we present a Parameter modification based PSO algorithm, which focus on the
modification or adjustment methods of the inertia weights to reflect more about the nature of PSO.

We mainly focus on inertia weight factor’s non-liner-changed equation and particles’ local
search strategy learning. The inertia weight factor’s non-liner-changed equation is an exponential
function. In order to verify the performance of the algorithm which is using the inertia weight
factor’s non-liner-changed equation, here we use 6 benchmark functions.

The results of this algorithm comparing with 3 algorithms show that it can get better
convergence accuracy as well as faster convergence speed in most cases.

The experimental results show the competitive performance of this algorithm and the ability to
solve complex problems such as multimodal test problems and composition test problems is
verified.

As the problems in reality are getting more and more complicated, in the future, we will
further try to investigate the applications of this algorithm into solving various challenging
optimization problems in reality.

ACKNOWLEDGMENTS

The author would like to thank all the anonymous reviewers for their valuable comments and
criticism that significantly improved the quality of the article.

References

[1] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE
International, Conference on Neural Networks, 4(2002) 1942–1948.

[2] N. Kalaiarasi, S. Paramasivam, S.S. Dash, P. Sanjeevikumar, L. Mihet-Popa, PSO based
MPPT implementation in d space controller integrated through z-source inverter for
photovoltaic applications, Energies , 9(2017) 1–10.

[3] J. Li, Y. Zhang, X. Chen, Y. Xiang, Secure attribute-based data sharing for resource-limited
users in cloud computing, Comput. Secur. 72 (2018) 1–12.

[4] P. Li, J. Li, Z. Huang, T. Li, C.-z. Gao, W.-B. Chen, K. Chen, Privacy-preserving outsourced
classification in cloud computing, Cluster Comput. (2017) 1–10.

[5] P. Li, J. Li, Z. Huang, T. Li, C.-z. Gao, S.-M. Yiu, K. Chen, Multi-key privacy-preserving
deep learning in cloud computing, Future Gener. Comput. Syst. 74(2017) 76–85.

[6] T.K. Maji, P. Acharjee, Multiple solutions of optimal PMU placement using exponential
binary PSO algorithm for smart grid applications, IEEE Trans. Ind. Appl. 53 (3) (2017)
2550–2559.

[7] V.K. Pathak, A.K. Singh, A particle swarm optimization approach for minimizing GDT error
in additive manufactured parts: PSO based GDT minimization, Int. J. Manuf. 7 (3) (2017)
69–80.

[8] F. Wang, Y. Zhang, Q. Rao, K. Li, H. Zhang, Exploring mutual information-based sentimental
analysis with kernel-based extreme learning machine for stock prediction, Soft Comput. 21
(12) (2017) 3193–3205

[9] H. Wu, L. Kuang, F. Wang, R. Qi, G. Maoguo, L. Yuanxiang, A multiobjective box-covering
algorithm for fractal modularity on complex networks, Appl. Soft. Comput. 61 (2017) 294–
313.

[10] Eberhart RC, Shi y. Comparing inertia weights and constriction factors in particle swarm
optimization. Congress on Evolutionary Computing 1(2000) 84–88.

[11] Eberhart RC, Kennedy J. A new optimizer using particle swarm theory. In:
Proceedings of the sixth international symposium on micromachine and
human science. Nagoya, Japan, (1995) 39–43.

[12] Shi Y, Eberhart RC. A modified particle swarm optimizer. In: Proceedings of IEEE world
congress on computational intelligence (1998) 69–73.

[13] S.K.S. Fan, Y.Y. Chiu, A decreasing inertia weight particle swarm optimizer, Eng. Optim. 39
(2007) 203–228.

