
A technical approach to finding primes within a limited boundary

Junho Eom*

Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada

* Corresponding Author

Junho Eom

Dept. of Zoology, University of British Columbia, Vancouver, B.C., Canada V6T 1Z4

Email: zuno3302@gmail.com

ORCID ID:

Junho Eom 0000-0003-0278-0082

Abstract

At least one prime less than n (n ≥ 2) is known to be used as a factor for composites between n

and n2, and this is explained by prime wave analysis. In this paper, the prime wave analysis is modified

with a modular operator and applied to finding new primes within a limited boundary. In results, using the

known primes less than 3, the composites were eliminated, and collected remaining prime candidates

within a limited boundary between 3 and 32. The boundary was sequentially extended from 32 to 92, 812,

and 65612 by finding 2, 18, 825, and 2606318 prime candidates; these candidates were verified as new

primes using the using online databases. In addition, the boundary was extended from 65612 to 430467212

and the serial new primes were also found within a randomly selected boundary between 65612 and

430467212. In general, it was concluded that the prime wave analysis modified with a modular operator

could be a practical technique for finding new primes within a limited boundary.

1. Introduction

The Sieve of Eratosthenes is a well-known algorithm for finding primes up to any given integer

by removing composites with the prime numbers (Stein 2000). For instance, using the first prime 2, it is

mailto:zuno3302@gmail.com

possible to obtain the next prime 3 by eliminating multiples of 2. Similarly, multiples of 3 can also be

eliminated when obtaining the subsequent primes up to any given number.

The Sieve of Eratosthenes is modified by the prime wave analysis, which defines that the series

of prime waves less than integer n are directly connected to composites. The passively remaining

numbers, which are not affected by the continued known prime waves, are all primes within a limited

boundary between n and n2 (Eom 2024a). As new primes result from the relationship between the known

primes and the composites, the known primes less than n and the new primes within a limited boundary

between n and n2 have a cause-and-effect relationship. If the boundary is limited to 2n instead of n2, the

cause-and-effect relationship remains, and the primes less than n and the new primes between n and 2n

are thought a form the partial symmetry (Guiasu 2019) due to the asymmetrical relationship between the

primes and the composites; this is thought to satisfy Goldbach’s conjecture (Eom 2024b). Therefore,

developing a practical technique for finding new primes using the prime wave analysis is helpful in

understanding the structure of primes, which results from the cause-and-effect relationship among the

known primes, the composites, and the new primes; the knowledge background of prime structure can be

applied to explain the prime related conjectures and problems.

The purpose of this paper is to find primes within a limited boundary using the prime wave

analysis. In the prime wave analysis, the value was defined by irrational numbers, making it difficult to

handle. Thus, the prime wave was modified using a modular operator in C++ and tested with positive

integers to find real primes by extending the boundary from 32 to 430467212 (Figure 1); the accuracy was

verified using an online database.

2. Materials and methods

2.1. Minimum requirements for finding primes using a modular operator

The serial known primes less than n saved in input.txt was used to eliminate the composites within a

limited boundary between n and n2. The remaining numbers were exported to ouput.txt. Thus, the

modified prime wave analysis using a modular operator required three minimum elements.

1) A document (input.txt) saved serial known primes less than n.

2) Software that enables the use of the modular operator to find the prime candidates within a

limited number boundary between n and n2.

3) A document (output.txt) to export the prime candidates.

Regarding the software for operating the modular operator, Visual Studio 2022 (Microsoft

Corporation, Washington, US) was used to minimize the impact on processing speed with C++ code. The

exported prime candidates in output.txt were matched with known prime numbers using online databases.

 • Number Empire (numberempire.com) – used for verifying primes over 1015

 • The Prime Pages: prime number research and records (t5k.org) – used for verifying primes up to

1013

 • Prime I.T. (compoasso.free.fr) – used for verifying primes up to 109

 • Free Online Calculators (calculator.net) – used for calculation over 1010.

The computer specifications to run Visual Studio 2022 were listed.

• Processor – AMD Ryzen 7 2700X Eight-Core Processor, 3.70 GHz

 • Installed RAM – 16.0 GB

 • System operator – Windows 10 Pro

 • System type – 64-bit operating system, x64-based processor.

2.2. Modular operator setup with C++ in Visual Studio 2022

Prior to setting up the modular operator, the variable ‘isDivisible’ was defined with ‘number’ and

‘divisor’. The variable ‘number’ represented odd numbers within a specified boundary, while ‘divisor’

represented known serial primes. Using these defined variables, the modular operator ‘number % divisor

== 0’ was prepared.

bool isDivisible(const long long number, const long long divisor)

{

 return (number % divisor == 0);

}

The known serial primes were imported from input.txt using the ‘ifstream’ function and

vectorized to increase the speed of the computation process. Using the ‘ofstream’ function, output.txt was

also prepared to export the prime candidates.

std::ifstream inputFile("input.txt");

std::ofstream oFile;

oFile.open("output.txt");

 // Read the serial primes in input.txt into a vector

 std::vector<long long> inputValues;

 long long inputValue;

 while (inputFile >> inputValue) {

 inputValues.push_back(inputValue);

 }

 inputFile.close();

The minimum and maximum boundaries were designed to be manually entered. Later, the prime

candidates were searched between ‘startRange’ and ‘endRange’.

 long long startRange, endRange;

 // Manually input the minimum and maximum boundaries

 std::cout << "Enter the odd minimum number boundary: ";

 std::cin >> startRange;

 std::cout << "Enter the maximum number boundary: ";

 std::cin >> endRange;

Within a manually entered boundary, the value ‘startRange’ was sequentially increased by adding 2

until it reached the value of ‘endRange’. Therefore, the manually entered minimum number boundary

should always be odd. The odd numbers were defined as ‘currentNum’ and considered as prime

candidates. If ‘currentNum’ could be divided by ‘divisor’ imported from input.txt, then ‘currentNum’ was

eliminated; otherwise, it was exported to output.txt.

 // Generate prime candidates within a limited boundary between startRange and endRange

 for (long long currentNum = startRange; currentNum <= endRange; currentNum += 2) {

 bool isDivisibleByAny = false;

 // Check whether the prime candidates are divided by divisor imported from input.txt

 for (const long long divisor : inputValues) {

 if (isDivisible(currentNum, divisor)) {

 isDivisibleByAny = true;

 break;

 }

 }

 // If the prime candidates are not divided by divisor, then export them to output.txt

 if (!isDivisibleByAny) {

 std::cout << currentNum << std::endl;

 oFile << currentNum << std::endl;

 }

Overall, the completed code for finding new primes within a limited number boundary was listed.

#include <fstream>

#include <iostream>

#include <vector>

bool isDivisible(const long long number, const long long divisor)

{

 return (number % divisor == 0);

}

int main()

{

 std::ifstream inputFile("input.txt");

 std::ofstream oFile;

 oFile.open("output.txt");

 long long startRange, endRange;

 // Read the list of primes in input.txt into a vector

 std::vector<long long> inputValues;

 long long inputValue;

 while (inputFile >> inputValue) {

 inputValues.push_back(inputValue);

 }

 inputFile.close();

 // Manually input the minimum and maximum number boundaries

 std::cout << " Enter the odd minimum number boundary: ";

 std::cin >> startRange;

 std::cout << " Enter the maximum number boundary: ";

 std::cin >> endRange;

 // Generate prime candidates within a limited boundary between startRange and endRange

 for (long long currentNum = startRange; currentNum <= endRange; currentNum += 2) {

 bool isDivisibleByAny = false;

 // Check whether the prime candidates are divided by divisor imported from input.txt

 for (const long long divisor : inputValues) {

 if (isDivisible(currentNum, divisor)) {

 isDivisibleByAny = true;

 break;

 }

 }

 // If the prime candidates are not divided by divisor, then export them to output.txt

 if (!isDivisibleByAny) {

 std::cout << currentNum << std::endl;

 oFile << currentNum << std::endl;

 }

 }

 oFile.close();

 return 0;

}

3. Results

Using the known serial primes less than 3, the number boundary was initially limited to between

3 and 32 and systematically extended to 65612, finding 2606318 prime candidates. The number boundary

was further extended from 65612 to 430467212, and partial serial prime candidates were also found within

any selected boundary between 65612 and 430467212. All prime candidates were matched in the online

databases, and 100% accuracy was verified.

3.1. Finding new primes within a limited number boundary between 32 and 65612

Example 1. The known primes in input.txt were 2 and 3. These primes were used as factors to

eliminate composites within a limited boundary between 3 and 32. As a result, all composites were

eliminated, leaving only the remaining numbers expected to be new primes.

• The primes given in input.txt: 2, 3

• The manually entered number boundary:

- Enter the odd minimum number boundary: 3

- Enter the maximum number boundary: 32 or 9

• Prime candidates exported to output.txt: 5, 7

• Total number of prime candidates in output.txt: 2

• The accuracy between prime candidates and primes in the online database: 100%

Example 2. The newly confirmed primes in output.txt were added to input.txt; as a result, the

boundary was extended but limited between 9 and 92. All composites were eliminated, leaving only the

remaining numbers expected to be primes.

• The primes given in input.txt: 2, 3, 5, 7

• The manually entered number boundary:

- Enter the odd minimum number boundary: 9

- Enter the maximum number boundary: 92 or 81

• Prime candidates exported to output.txt:

11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79

• Total number of prime candidates in output.txt: 18

• The accuracy between prime candidates and primes in the online database: 100%

Example 3. The newly confirmed primes in output.txt were added to input.txt; as a result, the

boundary was extended but limited between 81 and 812. All composites were eliminated, leaving only the

remaining numbers expected to be primes.

• The primes given in input.txt:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79

• The manually entered number boundary:

- Enter the odd minimum number boundary: 81

- Enter the maximum number boundary: 812 or 6561

• Prime candidates exported to output.txt:

83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181,

191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283,

…

6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379,

6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, 6481, 6491, 6521, 6529, 6547, 6551, 6553

• Total number of prime candidates in output.txt: 825

• The accuracy between prime candidates and primes in the online database: 100%

Example 4. The newly confirmed primes in output.txt were added to input.txt; as a result, the

boundary was extended but limited between 6561 and 65612. All composites were eliminated, leaving

only the remaining numbers expected to be primes.

• The primes given in input.txt:

2, 3, 5, 7, 11, 13, 17, 19, 23, 31, 37, …, 6549, 6521, 6529, 6547, 6551, 6553

• The manually entered number boundary:

- Enter the odd minimum number boundary: 6561

- Enter the maximum number boundary: 65612 or 43046721

• Prime candidates exported to output.txt:

6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679,

6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803,

…

43046309, 43046323, 43046371, 43046401, 43046467, 43046477, 43046537, 43046543,

43046579, 43046581, 43046587, 43046599, 43046603, 43046611, 43046617, 43046623

• Total number of prime candidates in output.txt: 2606318

• The accuracy between prime candidates and primes in the online database: 100%

• Running time: 491.098 sec (~ 8.2 min)

3.2. Finding serial new primes within selected any boundary between 43046721 and 430467212

Example 5. The newly confirmed primes in output.txt were added to input.txt; as a result, all

composites were eliminated, leaving only remaining numbers expected to be primes between

1234567891224567 and 1234567891234567.

• The primes given in input.txt:

2, 3, 5, 7, 11, 13, 17, 19, 23, 31, 37, … , 43046611, 43046617 ,43046623

• The manually entered any number boundary between 43046721 and 430467212:

- Enter the odd minimum number boundary: 1234567891224567

- Enter the maximum number boundary: 1234567891234567

• Prime candidates exported to output.txt:

1234567891224581, 1234567891224643 ,1234567891224839, 1234567891224851,

1234567891224883, 1234567891224917, 1234567891224919, 1234567891224949,

1234567891224961, 1234567891225037, 1234567891225063, 1234567891225069,

1234567891225099, 1234567891225133, 1234567891225187, 1234567891225247,

1234567891225283, 1234567891225343, 1234567891225349, 1234567891225367,

1234567891225397, 1234567891225433, 1234567891225463, 1234567891225511,

1234567891225519, 1234567891225567, 1234567891225573, 1234567891225609,

1234567891225667, 1234567891225679, 1234567891225751, 1234567891225909,

1234567891225927, 1234567891225951, 1234567891225957, 1234567891226053,

1234567891226093, 1234567891226099, 1234567891226119, 1234567891226129,

1234567891226167, 1234567891226249, 1234567891226281, 1234567891226291,

1234567891226309, 1234567891226323, 1234567891226333, 1234567891226339,

1234567891226353, 1234567891226393, 1234567891226497, 1234567891226507,

1234567891226561, 1234567891226653, 1234567891226707, 1234567891226773,

1234567891226777, 1234567891226881, 1234567891226963, 1234567891226977,

1234567891226993, 1234567891227023, 1234567891227113, 1234567891227161,

1234567891227173, 1234567891227271, 1234567891227331, 1234567891227389,

1234567891227403, 1234567891227427, 1234567891227439, 1234567891227449,

1234567891227487, 1234567891227521, 1234567891227571, 1234567891227607,

1234567891227623, 1234567891227631, 1234567891227757, 1234567891227791,

1234567891227809, 1234567891227821, 1234567891227857, 1234567891227859,

1234567891227863, 1234567891227877, 1234567891227899, 1234567891227907,

1234567891227919, 1234567891228039, 1234567891228079, 1234567891228127,

1234567891228141, 1234567891228157, 1234567891228223, 1234567891228249,

1234567891228271, 1234567891228319, 1234567891228327, 1234567891228403,

1234567891228423, 1234567891228433, 1234567891228471, 1234567891228513,

1234567891228519, 1234567891228541, 1234567891228543, 1234567891228597,

1234567891228601, 1234567891228657, 1234567891228663, 1234567891228703,

1234567891228751, 1234567891228753, 1234567891228787, 1234567891228799,

1234567891228801, 1234567891228877, 1234567891228933, 1234567891228937,

1234567891228979, 1234567891228981, 1234567891229003, 1234567891229009,

1234567891229083, 1234567891229111, 1234567891229137, 1234567891229143,

1234567891229177, 1234567891229249, 1234567891229269, 1234567891229339,

1234567891229363, 1234567891229371, 1234567891229429, 1234567891229447,

1234567891229593, 1234567891229627, 1234567891229657, 1234567891229713,

1234567891229719, 1234567891229723, 1234567891229731, 1234567891229789,

1234567891229791, 1234567891229797, 1234567891229807, 1234567891229833,

1234567891229837, 1234567891229839, 1234567891229917, 1234567891229921,

1234567891230019, 1234567891230041, 1234567891230053, 1234567891230077,

1234567891230131, 1234567891230187, 1234567891230203, 1234567891230313,

1234567891230407, 1234567891230413, 1234567891230419, 1234567891230469,

1234567891230511, 1234567891230539, 1234567891230551, 1234567891230563,

1234567891230601, 1234567891230649, 1234567891230689, 1234567891230721,

1234567891230749, 1234567891230767, 1234567891230787, 1234567891230803,

1234567891230809, 1234567891230899, 1234567891230907, 1234567891230911,

1234567891230941, 1234567891230991, 1234567891231021, 1234567891231057,

1234567891231061, 1234567891231091, 1234567891231139, 1234567891231163,

1234567891231177, 1234567891231223, 1234567891231231, 1234567891231247,

1234567891231303, 1234567891231319, 1234567891231331, 1234567891231387,

1234567891231531, 1234567891231547, 1234567891231553, 1234567891231601,

1234567891231637, 1234567891231687, 1234567891231699, 1234567891231709,

1234567891231739, 1234567891231811, 1234567891231837, 1234567891231853,

1234567891231903, 1234567891231949, 1234567891231967, 1234567891232057,

1234567891232059, 1234567891232069, 1234567891232107, 1234567891232287,

1234567891232317, 1234567891232387, 1234567891232407, 1234567891232471,

1234567891232537, 1234567891232581, 1234567891232587, 1234567891232671,

1234567891232713, 1234567891232759, 1234567891232779, 1234567891232789,

1234567891232803, 1234567891232933, 1234567891232939, 1234567891232993,

1234567891233007, 1234567891233029, 1234567891233031, 1234567891233043,

1234567891233091, 1234567891233113, 1234567891233119, 1234567891233169,

1234567891233191, 1234567891233217, 1234567891233241, 1234567891233263,

1234567891233269, 1234567891233319, 1234567891233323, 1234567891233401,

1234567891233427, 1234567891233431, 1234567891233473, 1234567891233529,

1234567891233539, 1234567891233577, 1234567891233581, 1234567891233619,

1234567891233623, 1234567891233671, 1234567891233709, 1234567891233731,

1234567891233827, 1234567891233829, 1234567891233841, 1234567891233877,

1234567891233953, 1234567891233959, 1234567891234009, 1234567891234037,

1234567891234081, 1234567891234103, 1234567891234169, 1234567891234193,

1234567891234211, 1234567891234213, 1234567891234319, 1234567891234333,

1234567891234343, 1234567891234369, 1234567891234397, 1234567891234409,

1234567891234451, 1234567891234459, 1234567891234477, 1234567891234499,

1234567891234529, 1234567891234537, 1234567891234541

• Total number of prime candidates in output.txt: 287

• The accuracy between prime candidates and primes in the online database: 100%

• Running time: 25.708 sec

4. Discussions

In general, it was proved that the prime wave analysis modified with a modular operator could be

used as a practical technique for finding the new primes within a limited but extended number boundary.

Using the known primes less than 3, for example, the new primes were determined within a boundary

from 32 to 430467212. In the prime wave analysis (Eom 2024a), it could be explained that the known

prime waves less than 3 were directly connected to composites; as a result, the composites were

eliminated and the passively remaining numbers, which were not affected by the continued known prime

waves, were all new primes within a limited but extended boundary from 32 to 430467212.

Through the process of finding the real primes, the roles of the known primes, the composites,

and the passively remaining new primes were demonstrated, as visualized in Figure 2. Within n2, a total

of n boundaries could be generated from the 1st to the nth. The waves of known primes (filled circle)

𝑠𝑖𝑛 (
180

𝑝1
∙ 𝑥) and 𝑠𝑖𝑛 (

180

𝑝2
∙ 𝑥), where p2 < p1 < n, rhythmically oscillated from the 1st to the nth boundary

by eliminating the composites (filled star). The passively remaining primes could be visualized in an

equation of
𝑠𝑖𝑛 (180∙𝑥)

𝑠𝑖𝑛(
180

𝑝1
∙𝑥) ∙ 𝑠𝑖𝑛(

180

𝑝2
∙𝑥)

 within the limited boundary of n2 (Eom 2024a). From the 2nd boundary,

newly generated composites (unfilled star), such as p1·p2, were produced, and their waves of intervals

were larger than those of p1 and p2. As a result, this caused irregularities in the distribution of primes. For

example, the waves of known primes, 2 and 3 in the 1st boundary eliminated the composites between the

2nd and 5th boundary. The prime number 5 was excluded because it was used as the boundary.

Irregularities occurred due to the newly generated composites, such as 6, 12, 18, and 24, by the

multiplication of 2 and 3. As a result, 7, 11, 13, 17, 19, and 23 remained passive and they were all new

primes.

5. Conclusions

It was concluded that the prime wave analysis modified with a modular operator could be a

practical technique for finding the new primes within a limited but extended boundary. Using the known

primes less than 3, the new primes were found within a boundary from 32 to 65612 and it was extended to

65612 by finding the new primes within any selected boundary between 43046721 and 430467212. The

results demonstrated the operational process of prime wave analysis: waves of known primes in the 1st

boundary were directly connected to composites, while the passively remaining new primes were found

between the 2nd and the nth last boundary. Therefore, the role of the 1st boundary was a key to

understanding the prime wave analysis.

5. References

Eom, J. (2024a) Characteristics of primes within a limited number boundary.

http://vixra.org/abs/2406.0046

Eom, J. (2024b) Approaching Goldbach’s conjecture using the asymmetric relationship between

primes and composites within a limited number boundary. http://vixtra.org/abs/2406.0072

Guiasu, S. (2019) The proof of Goldbach’s conjecture on prime numbers. Natural Science. 11:

273-283. Doi.org/10.4236/ns.2019.119029

Stein W. (2000) Prime numbers. In Elementary number theory: Primes, congruences, and secrets

(ed. S. Axler and K. A. Ribet). Springer, New York, pp 1-20. Doi 10.1007/978-0-387-85525-7

http://vixra.org/abs/2406.0046
http://vixtra.org/abs/2406.0072

Figure 1. Schematic diagram of a modular operator designed based on prime wave analysis. The known

primes listed in input.txt are used as factors for composites within a limited boundary. As a result, the

composites are eliminated through the modular operator and the remaining numbers are all primes. The

new primes are exported to output.txt and used for finding more primes in the extended number boundary.

Figure 2. Analysis of Example 3 using the prime wave analysis. A) The waves of known primes (filled

circle) in the 1st boundary are directly connected to composites (filled and open star); as a result, the

composites are eliminated so the passively remaining numbers (open circle) are all new primes between

the 2nd and nth boundary. Using the known primes less than 5, passively remaining new primes are found

by eliminating the composites within a limited boundary between 5 and 52.

