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Hybrid approach of Hypothesis Testing to test the mean difference 

between two groups utilising Gaussian Distribution and Confidence 

Interval  

This paper presents an easier and new robust method for hypothesis testing to 

conclude significant mean differences between two independent or paired 

samples using the concepts of location, variability, confidence intervals and 

Gaussian distribution. For hypothesis testing of two samples, t-test is widely 

used. Beside this, Wilcoxon signed-rank test and often permutation test is also 

conducted. Each of these methods have their own rigorousness and drawbacks for 

which general people and non-statistics students often find it hard to conduct 

experiments using these. To fix these issues, a new method of hypothesis testing 

is proposed in this paper that basically utilises the properties of normally 

distributed data and resampling, and is relatively easier to calculate using only 

pen and paper. The time complexity analysis of each program is also conducted 

to give a concise overview about which hypothesis testing algorithm is more 

efficient and faster to execute, since statisticians use a lot of software nowadays 

for their analytical tasks.  

 

Keywords: Algorithms; Analysis of Designed Experiments; 

Bootstrapping/resampling; Nonparametric Methods; Robust Procedures 

1. Introduction 

The comparison of mean differences between two groups is a fundamental concept in 

statistical analysis and is useful in research of multiple disciplines including medicine, 

social science, and engineering. Core concept of these tests is to find the mean 

differences among two or more groups (sample data) drawn from a population that can 

provide valuable insights about specific effects that create variations among the groups 

and infer the overall status of the population they belong to. It can often happen that the 

mean of one group is greater than the other but there actually exists no effect between 

them, rather the differences in mean are observed completely by chance. This 
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phenomenon is referred to as statistically not significant. So, coming to a conclusion 

just by comparing the arithmetic mean of the groups is not sufficient, as this may lead to 

errors in the result. To prove whether the means are statistically significant or not, 

hypothesis testing is usually conducted where the null hypothesis (H0) usually states or 

denotes that there is not any significant difference in the means of the groups. On the 

other hand, alternative hypothesis (H1) tries to reject the statement of null hypothesis, 

that explicitly explains that there is significant mean difference between the groups and 

the phenomenon is known as statistically significant.  This particular statistical analysis 

falls under the umbrella of “hypothesis testing for two sample mean” which has been 

developed by mathematicians and researchers especially since the twentieth century 

after William Sealy Gosset formulated t-test and t-distribution under his pen name 

“Student” with a purpose to find a reliable method to ensure quality control of relatively 

smaller sample sizes. The problem he was facing was that the sample size of lopes and 

berley was small and hence replacing mean and standard deviation of the sample with 

the population and fitting them as normal distribution was not constructing an accurate 

confidence interval [2]. The concept of normal distribution came from the analysis of 

errors of measurement made in astronomical observations due to defective instruments 

and less-skilled experimenters. In the 17th century, while Galileo plotted these errors 

and drew the curve, he noticed that the curve was bell-shaped (symmetrical) and the 

very small errors and large errors were accumulated in the left and right side of the 

curve respectively, positioning the most frequent errors in the middle region of the 

curve. Similar phenomenon was later noticed by Laplace in 1778 when he was 

formulating the central limit theorem, a theorem that says that even if the univariate data 

is not normally distributed, the means of repeated samples from that data will still be 

approximately normally distributed. It indirectly means that the more randomly 
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generated numbers are plotted, the more the curve tends to be bell-shaped. This property 

in this research to create synthetic normal distributed data. However, a few decades 

after Laplace’s observation, Adrian in 1808 and Gauss in 1809 developed the formula 

of normal distribution by creating the probability distribution function (PDF) of the 

errors and the errors of Galileo were well-fitted in that formula. In the modern era of 

statistics, the normal distribution is referred to as Gaussian distribution too [5]. It Is also 

to be mentioned that Laplace's role in developing similar functions was also significant. 

For this reason, the normal distribution curve is historically known as the Laplace-

Gauss distribution [8]. Thus, it was slowly realised by researchers that the distributions 

of natural phenomena are usually normally distributed. This normally distributed dataset 

shows a unique property that was found out by french mathematician Abraham De 

Moivre. His work laid the foundation of the symmetrical distribution and the concept of 

standard deviation that formulated the empirical rule [3]. The confidence interval 

problem that Gosset was dealing with has a very close connection with this empirical 

rule, since the concept of confidence interval is based on this. As mentioned before, the 

existing or being created data of nature are usually normally distributed according to the 

central limit theorem. It happens because of the “sufficiently large” sizes of the data. 

The more data points are randomly added to the dataset, the more the dataset tends to be 

normally distributed. Therefore, sample size is a crucial attribute for a dataset to be 

symmetrically distributed.  Now, once the properties of normal distribution; the 

empirical rule was formulated, statisticians began to construct confidence intervals 

usually with 95% level to figure out the significant threshold onto which the sample 

mean is very much likely to fall in. To do so, the population standard deviation needed 

to be known. If it was unknown for specific experiments, the sample standard deviation 

was used instead as a close replacement of population standard deviation if the sample 
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was large enough and followed the normal distribution. This is where the problem 

began for William Gosset. Since his samples were relatively smaller in size, the 

confidence interval he constructed using that became very unrealistic and hence he had 

to find an alternative method. In his paper titled as “The Probable Error of a Mean” 

(1908), he derived the formula for the t-statistic, which compares the sample mean to 

the population mean when the population standard deviation is unknown. The t-statistic 

is given by: 𝑡 =  
¯ିఓ

௦/√
 , where Xˉ is the sample mean, μ is the population mean, s is the 

standard deviation, and n is the sample size.  Gosset also introduced the t-distribution in 

his paper, which is a family of distributions that vary based on the degrees of freedom 

(sample size). The t-distribution is particularly useful for small sample sizes where the 

normal distribution's assumptions may not hold. A key contribution of his research is 

the concept of the "probable error," which is related to what is now referred to as the 

standard error of the mean. He used this to construct confidence intervals for the 

population mean based on the sample mean and sample size. The major contribution 

was explaining that the t-distribution could be used to make inferences about the 

population mean from relatively smaller samples that are symmetrically distributed. 

This was a significant advancement, as previous methods were unreliable for small 

sample sizes. However, although Gosset's original paper did not frame it explicitly in 

terms of null (H0) and alternative hypotheses (H1), the idea was implicit. For a single 

sample, the test evaluates whether the sample mean differs significantly from the 

population mean, which can be seen as testing the null hypothesis (H0 : μ=μ0) against 

the alternative hypothesis (H1 : μ ≠ μ0) [9]. Even though Student’s t-test was a novel 

approach to test statistical significance between the means of two groups, it has several 

drawbacks too. One of the drawbacks is that it assumes data maintains 

homoscedasticity, which means that each group has equal variances. Hence, if the 
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assumption is not true, then there is a good probability of inflated Type I error rate. 

Moreover, the method is not robust to outliers and non-normality can cause critical bias 

in the results as well. To create a solution for the equal variances (heteroscedasticity) 

problem, Bernard Lewis Welch formulated a new test that can deal with unequal 

variances within the two groups. The test is known as Welch’s t-test. Note that, even 

though it successfully solved the problem for unequal variances, normality has to be 

maintained in Welch’s t-test as well. If the data is not normal, the results may become 

wrong. It is also not robust to outliers. Furthermore, while Welch's t-test can handle 

unequal variances, it still requires reasonably large sample sizes to provide reliable 

results. Small sample sizes can reduce the power of the test, making it difficult to detect 

true differences [4]. Student’s t-test and Welch’s t-test both are the examples of 

parametric tests for hypothesis testing where the underlying data distribution needs to 

be symmetrical [7]. This is also a limitation of these two tests, and statisticians have 

solutions for these too. One better solution is the Wilcoxon signed-rank test, which is a 

non-parametric “rank” test used to compare two related samples, matched samples, or 

repeated measurements on a single sample to assess whether their population mean 

ranks differ. Unlike the paired t-test, the Wilcoxon Signed Rank Test does not assume 

normal distribution of the data. It is on the basis of the ranks of the differences rather 

than the actual differences. The null hypothesis of this test is that the median of the 

differences between pairs is zero (H0 : Me = 0), meaning there is no difference between 

the two related groups. Conversely, alternative hypothesis stands for the median of the 

differences between pairs is not zero (H1 : Me ≠ 0), indicating a significant 

difference between the two related groups. This approach is 

quite useful when the data is non-normal and contains 

outliers. Nevertheless, the method is generally less powerful 
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than parametric tests like the paired t-test when the 

normality assumption is satisfied or the sample size is quite 

large [10]. Another non-parametric test is the permutation test, that could easily 

surpass the efficiency of most of the parametric and non-parametric tests to compare the 

significance difference between two groups. A permutation test is a robust and flexible 

non-parametric method for hypothesis testing that makes minimal assumptions about 

the underlying data distribution. Basically it combines the data from two groups and 

then creates multiple samples by randomly picking data points from the sample without 

replacement. This yields a permutation distribution of the statistic of interest (e.g. mean) 

and later compared to the previous statistic of interest. If the statistic lies well within the 

permutation distribution, then it is concluded that two of the samples belong to the same 

population and hence the group differences are not significant. Here, the null hypothesis 

is that both group samples are drawn from the same population (H0 : F = G) , and the 

alternative hypothesis is that both group samples are drawn from different population 

(H1 : F ≠ G). By relying on the rearrangement of observed data, 

it generates an empirical distribution of the test statistic 

under the null hypothesis, providing an exact p-value for the 

observed test statistic. However, since this method needs a lot 

of shuffling and looping over datasets, it can be 

computationally intensive than any other testing described 

earlier and is almost impossible to conduct using pen and 

paper. The time complexity of the permutation test algorithm 

is O(n), which denotes that the time elapsed to run the test 

linearly increases with the sample size which can often make 
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complex issues for memory and runtime both for larger 

datasets [1]. To optimise all these limitations altogether, this paper tried to come up 

with a new hypothesis testing that is robust to outliers, sample size, data distribution, 

time and computational complexity utilising the properties of Gaussian distribution, 

resampling, and confidence intervals.  
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2. Methodology  

As mentioned before, the goal of this research is to develop a new hybrid method for 

analysing the statistical significance between two independent samples, or two pair 

samples that is robust to outliers, data shape, sample size, and computational 

complexity. Traditionally, while doing these kinds of tasks, the mean differences 

between the samples are measured. However, the approach I was using to conclude 

statistical significance, avoided this step. The approach was similar to bootstrapping and 

permutation tests, but less lengthier than of permutation tests, and is a combination of 

both parametric and non-parametric tests. Shortly, the range of each data group is 

measured and a normal distribution is fitted with random data points within the range. 

The first group was renamed as “control group” and the second group was renamed as 

“treatment” group following the conventions of randomised controlled trials where 

measuring significant mean difference is an important step. However, this test not only 

helps in randomised control trials, but also helps for independent samples as well. After 

the creation of normally distributed data for both control and treatment group, a 

confidence interval with 95% confidence interval was constructed for the control 

group’s new normally distributed sample. Then, the mean of the treatment group was 

measured and compared with the threshold of the interval. If the mean falls outside the 

threshold, the significance of the mean differences were concluded as true.  

Null Hypothesis H0: Tmean ∊ Cmean. Control group and treatment group samples 

are drawn from the same conceptual population.  

Alternative Hypothesis H1: Tmean > Cmean. Control group and treatment group samples 

are drawn from different conceptual population.  

I am labelling my approach as the “Symmetrical Synthetic Test” (SST) method 

to refer to it throughout the whole paper for my ease. The entire algorithm and process 
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of SST is clearly stated below. In the Appendices section, a step-by-step example is 

shown to conduct this hypothesis testing without using any computational softwares.   

First of all, after the data collection process the following rule that was 

developed by John Tukey is applied to detect outliers and they are removed from the 

dataset.  

Low outlier threshold = Q1 - 1.5 * IQR  

High outlier threshold = Q3 + 1.5 * IQR  

IQR =  Q3 - Q1  

Here, Q1 and Q2 is respectively the median of the lower half of the dataset (25th 

percentile) and the upper half of the dataset (75th percentile). Any data point that is less 

than the low outlier threshold or more than the high outlier threshold is considered as an 

outlier or extreme value.  

Secondly, I calculated the range for the control group and created a new dataset 

of sample size of 30 with random integer and float number that exists within this range 

using a programming software named Python. This step could be done using pen and 

paper too, by continuously adding data points that are closer to midpoint of the range. It 

would also create a symmetrically distributed data where the mean would lie very close 

to the midpoint of the range. The process is explicitly described in the Appendices 

section. However, since I did not use pen and paper in this particular step to save my 

time, the data that I created from randomly assigning integer and float numbers within 

the range could be non-normal. Even though the central limit theorem says that sample 

size of 30 tends to be approximately normally distributed, the distribution may not be 

always normally distributed due to randomness [6]. To solve this issue, I again 

calculated the arithmetic mean and standard deviation of the data and used these 

statistics to fit a new normally distributed data for the control group. Python can return a 
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perfectly normally distributed data if we pass the sample mean, standard deviation and 

sample size to the parameters of np.random.normal (loc, scale, size). NumPy, 

conventionally abbreviated as np by programmers, is a library of Python specially made 

for data science, “random” is a module of NumPy library, and normal() is a function 

belonging to the module that returns normally distributed data based on the parameters 

“loc”, “scale”, and “size” that respectively takes arithmetic mean, standard deviation, 

and sample size as arguments given by the programmer. Since, the new control data 

became normally distributed and it was absolutely certain, I constructed a confidence 

interval with 95% level. This level is considered as the significance level of hypothesis 

testing.  

Thirdly, again I calculated the range for the treatment group and created a new 

dataset of sample size equal to 30 with random integer and float numbers that exist 

within the range. Similar to the second step, I calculated the arithmetic mean and 

standard deviation of the newly formed dataset and passed these arguments to NumPy’s  

normal() function. This time, once the new symmetrically distributed data for the 

treatment group is generated, instead of constructing a confidence interval, I calculated 

the arithmetic mean only and compared it with the previously constructed confidence 

for the control group. If the mean falls within the confidence interval, I concluded that 

the mean differences were not statistically significant. Because it proved that the 

samples were actually drawn from the same population, which means that if the control 

group was belonging to specific participants for a drug test who was given placebo and 

the treatment group was belonging to the participants who were given the real drug was 

actually from the same population. Now, if the control group and treatment group 

belongs to the same population, then we cannot say that the drug was indeed useful. If it 

was useful, the conceptual population for control group and treatment group would be 
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different; one specific parameter would fit for placebo group, and that same parameter 

with different value would fit with treatment group to describe the variability in 

attributes of the groups. On the other hand, if the calculated mean for the treatment 

group was outside the confidence interval of the control group, I concluded that there is 

a significant difference. It would denote that both samples are from different 

populations and the population mean for the treatment group is significantly higher than 

the control group. The concept is very easy to understand. According to the properties 

of Gaussian distribution, approximately 95% data points fall within 2 standard 

deviations from the mean. So, creating a confidence interval with 95% level means that 

within that interval, 95% data point of control population would fall. Now, if the 

calculated mean of treatment data does not fall within this range, we can clearly state 

that the treatment group belongs to an entirely different population whose mean is too 

higher than that of the control group and that the mean is an unnatural data point with 

respect to the control group. With 95% confidence, it can be stated that the control 

group and treatment group belong to different conceptual populations. This 

unnaturalness proves that the mean difference between the control group and treatment 

group is significantly different.  

However, a hypothesis is only not tested with 95% significance level. It can be 

rather 99%, 90%, 80%, 50% or anything between 0% to 100%. To conduct hypothesis 

tests on a different level than 95%, the confidence interval should be constructed based 

on that significance level. For example, if it is necessary to conduct a hypothesis test 

with 90% confidence, then the researcher has to go through the table of standard 

deviations and its respective data point coverage, which is 90% in this context. The 

table is given in the supplementary materials. Then, the confidence interval should be 

compared with the treatment group’s mean to infer a conclusion.  
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It was important to find a way to validate the approach of SST. Since traditional 

tests like Student’s t-test, Wilcoxon signed-rank test, and permutation test are already 

known to be accurate, therefore the Symmetrical Synthetic Test approach of conducting 

hypothesis testing to get insights about the significant mean differences between two 

groups was later compared with these existing approaches. The time complexity of the 

three existing tests and SST is also analysed to figure out which test provides the result 

faster and how the runtimes vary according to the sample size. This step was done as 

most of the statisticians now use computational softwares to conduct hypothesis tests. 

The runtime analysis of the tests also shows meaningful insights about the underlying 

algorithms and processes of the tests. Hypothesis testing, or any sort of computer, or 

mathematical programs that require rigorous calculations that cannot be done by 

humans easily usually takes more time. One major goal of this research paper is to find 

an alternative of traditional hypothesis testing that can be easily calculable, 

understandable, predictable and applicable for general people, not for statisticians only. 

Note that this efficiency measurement between SST and other approaches was 

conducted using Cohen’s d as it not only concludes statistically significant decisions, 

but also focuses on effect size for practical applications. [2] 

In order to check the accuracy of SST, a Python program was written that would 

randomly take sample mean, and standard deviation from a list and then create two 

normally distributed data with given sample size using np.random.normal(). It is 

necessary for conducting t-test that the data should be normally distributed and the 

variances between two samples should be equal. Therefore, I decided to test the 

algorithms using symmetrically distributed data only. The program would run 10 times 

using a for loop, and every time it would take random mean and standard deviation to 

create newer samples. The sample size in each loop was programmed to be incremented 
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by 5 and the runtimes were being calculated and recorded in lists whenever the code 

blocks for Student’s t-test, Wilcoxon signed-rank test, Permutation test or Symmetrical 

Synthetic Test were being run. The sample size was being incremented by 5 in each 

iteration of the for loop to analyse how each algorithm runs according to the sample 

size.  

In each iteration of the for loop, the program was randomly creating two 

samples with the respective sample size. For example, in the first iteration the sample 

size was 5, in the second iteration it was 10, and so on and so forth. The two samples 

then were used to conduct hypothesis testing. Firstly, I tested the similarities between t-

test and SST. To do so, I conducted a hypothesis test to find the significant mean 

differences between the two generated samples with 95% significance level for avoiding 

difficult calculations. For t-test, the condition was set in this manner: if p-value is less 

than 0.05, then the program would return “Reject the null hypothesis” as a string. 

Otherwise, it would return ‘Fail to reject the null hypothesis”. Similarly, if the treatment 

(sample 1) sample’s synthetic mean exceeds the 95% confidence interval of control 

(sample 2) sample, then the program would return “Reject the null hypothesis”, 

otherwise it would return ‘Fail to reject the null hypothesis”. Thus, in each iteration, if 

the program returns the same statement for both of the tests, a previously assigned 

variable named “accuracy” increments by 1. The maximum value of this accuracy could 

be 10 as the loop ran 10 times, which includes the total number of testruns. After 

comparing the accuracy of t-test and SST, comparisons of other tests with SST were 

also done. Moreover, the time complexity and runtime of every test were being 

measured and later plotted to gather insights about the efficiency of the test algorithms. 

It should be mentioned that I used Python’s SciPy library’s “stats” module to import the 

“ttest_ind(), and wilcoxon()” functions in order to conduct t-test, and Wilcoxon signed-
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rank test respectively. For the permutation test, I wrote the algorithms using AI, as 

Python does not have any built-in function to conduct this test like it has for t-test and 

Wilcoxon signed-rank test. Therefore, it may happen that these programs' runtime 

complexity in Python will not be matched with other softwares complexity as well.  

3. Results and Discussion 

3.1 Accuracy of SST with other tests 

The accuracy of SST was 90%, 100%, and 90% respectively for Student’s t-test, 

Wilcoxon signed-rank test, and permutation test. In all 10 hypothesis tests, the SST and 

t-test along with the permutation test showed similar conclusions 9 times, and SST and 

Wilcoxon signed-rank test showed similar conclusions every time. It proves that the 

SST might conceptually lie very well with the traditional hypothesis testing algorithms. 

However, it was impossible to get insights about Type I and Type II errors. Moreover, 

the contradiction that t-test and permutation test made with SST one time, it was not 

understood which test was actually providing the truth conclusion. Or, it can also 

happen that the conclusion was due to a small error that occurred due to randomness in 

any of the approaches. 

3.2 Efficiency comparison of SST and other tests 

The following table shows the runtime efficiency of Symmetrical Synthetic Test, 

Student’s T-test, Wilcoxon signed-rank test, and permutation test.  

 

 

SST Algorithm Runtimes (s) T-Test Algorithm Runtimes (s) 

0.001451 0.006062 

0.000243 0.001077 
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0.000211 0.00093 

0.000268 0.000813 

0.000224 0.000811 

0.000238 0.000778 

0.000228 0.00077 

0.000239 0.000759 

0.000238 0.000766 

0.000247 0.000788 

Table 3.1: Runtime comparison of Symmetrical Synthetic Test and Student’s T-Test.  
 
 
Using statistical software, it was found that the value of Cohen’s d is -0.82, which 

includes a large effect size according to the magnitude. It denotes that the difference in 

runtimes between SST and T-test is substantial. In practical terms, this suggests that 

SST is significantly faster than T-test and this difference in performance is not just 

statistically significant, but also practically meaningful.  

 
 

SST Algorithm Runtimes (s) Wilcoxon Signed-Rank Test Algorithm Runtimes (s)  

0.000408 0.001397 

0.000391 0.002372 

0.001841 0.001612 

0.000227 0.001401 

0.000246 0.000851 

0.000241 0.000919 

0.000325 0.000962 

0.000309 0.000987 

0.000249 0.001047 

0.000277 0.001035 

Table 3.2: Runtime comparison of Symmetrical Synthetic Test and Wilcoxon Signed-
Rank Test. 
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From table 3.2, using statistical software, it was measured that the d value is -1.68. 

Similar to the previous explanation, SST is significantly faster than the Wilcoxon 

Signed-Rank test and is practically more applicable.   

 

SST Algorithm Runtimes (s) Permutation Test Algorithm Runtimes (s) 

0.000753 0.220513 

0.000452 0.174862 

0.000464 0.172418 

0.000528 0.177309 

0.000319 0.176601 

0.000332 0.179008 

0.001704 0.196895 

0.000458 0.181461 

0.000391 0.18716 

0.000336 0.192773 

Table 3.3: Runtime comparison of Symmetrical Synthetic Test and Permutation Test. 
 
This time, the value of Cohen’s d was found to be -18.03, proving a very large effect 

size and statistical significance along with practical implications between the two 

algorithms. Practically, the SST algorithm is better than the permutation test algorithm. 

However, the number of permutations was set 10000 in the parameter by the AI while it 

was writing the code. It can be a case why d value is this much larger in this case.  

 

Fig 3.1 depicts the overall runtime status according to the increment of sample sizes.  
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Fig 3.1: Hypothesis testing algorithm runtimes vs sample size (Permutation test 

excluded) 

From Fig 3.1, it is noticed that the runtimes of SST was most of the time lower than the 

other two hypothesis testing algorithms. Surprisingly, Wilcoxon signed-rank test and 

SST showed a very similar plot; they were also concluding the same decision when 

tested for accuracy check. T-test ran slower than Wilcoxon signed-rank test and SST for 

the first sample size (size = 5), and then descended quickly when the sample size 

became 10. Since that time, its runtime continuously began to flow below the Wilcoxon 

signed-rank test, proving that it is a slightly better algorithm than the Wilcoxon signed-

rank test. However, the permutation test plot is excluded in Fig 3.1 due to its relatively 

larger runtimes. Among the four algorithms, it is the most complex one. The mean 

runtimes of SST, T-Test, Wilcoxon signed-rank test, and permutation test are 0.0004s, 

0.0013s, 0.0012s, and 0.1859s respectively.  
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4. Conclusion  

The paper has shown an optimised robust approach to conduct hypothesis testing for 

comparing two means. Traditional approaches of comparing means have their own 

drawbacks regarding outliers, sample size, distribution shape, homoscedasticity etc. 

Hence, this paper hence tried to find a solution for them using the properties of 

Gaussian distribution, confidence intervals and synthetic resampling. Furthermore, these 

traditional approaches, that can be divided into popular parametric and non-parametric 

tests, are quite difficult to understand for general people who do not belong to the 

applied statistics discipline. But hypothesis testing is an important tool in the field of 

statistics and it provides useful insights about the data that exist in our nature. So, it is 

very necessary to understand this concept for most of the students or general people. In 

our society, almost every person knows how to calculate arithmetic mean because they 

can realise the importance of it. Hypothesis testing, on the other hand, is a rigorous 

concept and therefore people do not know anything about it even though it is a very 

necessary tool to understand the surroundings better. For this reason, this paper 

presented a new approach of conducting similar hypothesis tests like t-test, Wilcoxon 

signed-rank test, and parametric test just by using the relatively easier concepts of 

measures of central tendency and variation, confidence intervals, and normal 

distribution. Furthermore, today is the era of computer science and big data. Hence, 

statisticians prefer to use softwares a lot in their analysis project. It is essential to 

understand the time complexity issues of each hypothesis testing algorithm in order to 

cope up with unwilling errors and program crashes. Therefore, a brief overview on the 

runtime efficiency of different algorithms are also discussed in the paper. However, this 

research still has some limitations. The pen and paper method mentioned in the 

Appendices section might not always create normally distributed data, the data can be 
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skewed sometimes. Also, the contradiction in concluding a decision of the SST model 

with t-test and permutation test is not investigated in this paper. The accuracy was 

measured by comparing the algorithms 10 times only. It can happen then if the 

comparison was done more times then the accuracy would increase or decrease 

accordingly. Therefore, professional and experienced researchers in this field can 

conduct further research to solve these mysteries.  

5. Supplementary materials 

The codes that are written for conducting this research using Google Colaboratory, an 

online Python 3 interpreter, are given here: 

https://colab.research.google.com/drive/17_O06Y0eWzIZ510s-

3oJipM8UOgG6Vs8?usp=sharing  

Note that, due to lack of time, not all codes were possible for me to write on. Several 

codes were written by AI (ChatGPT-3.5) at my prompt. This code includes the program 

of Cohen’s d and the function for the permutation test.  

 

The following link is the Google Spreadsheet that contains the data of the four 

hypothesis testing algorithms (t-test, SST, Wilcoxon signed-rank test, and permutation 

test) and their runtimes.  

https://docs.google.com/spreadsheets/d/1dLKnvPWS19VytpH7I46nL18giSoxUVMyV

MTxzduBNVg/edit?usp=sharing  
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6. Appendices 

6.1 Appendix A  

To create the confidence interval of a symmetrically distributed data with a certain 

level, the sample mean and respective coefficient of standard deviation to that level 

should be known. For example, if we are to construct the 95% confidence interval, then 

the interval will be (sample mean - 2 * standard deviation, sample mean + 2 * standard 

deviation). Here, the coefficient of standard deviation is 2 since in a normally 

distributed data, approximately 95% of the data points fall between 2 * standard 

deviation from the mean. The list of other confidence level and data coverage is given 

here: https://docs.google.com/spreadsheets/d/1-

1VOQcc6pK_s78pPQkAysCvOqnB46k7g/edit?usp=sharing&ouid=1105357182832323

20699&rtpof=true&sd=true  

 

6.2 Appendix B  

The creation of normally distributed data using only pen and paper is mentioned in the 

paper. Here is how to do that.  

Assume, a researcher is conducting a hypothesis test to figure out whether a 

medicine has an effect in curing a headache or not. She has the following data, which 

shows the maximum time of headache for 5 patients before taking the medicine and 

after taking the medicine.  

before = [7.5, 2.75, 3, 4.5, 3.5]  

after = [5.5, 1, 2.25, 2, 2.5]  
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Since, the researcher is trying to prove that the pain time (hour) is reduced after 

taking the medicines, she will (according to the research) assign “control” variable to 

after and “treatment” variable to before. Because the alternative hypothesis of SST can 

only prove that a group mean is significantly higher than the other or not, we need to 

convert our necessary data in such a way.  

Null Hypothesis H0 : Tmean ∊ Cmean  

Alternative Hypothesis H1 : Tmean > Cmean   

Control = [5.5, 1, 2.25, 2, 2.5]  

Treatment = [7.5, 2.75, 3, 4.5, 3.5]  

Control range = (1, 5.5)  

Treatment range = (3,7.5)  

New_control = [1,1.25,1.5,3.35,3.25,3.5,3,3.5,3.25,3.75,4,3.75,3.25,3.25,5.5] (divide 

the range by 2. Most of the data points should be around that yielded value to form 

normally distributed data) 

Standard deviation of New_control = 1.10  

Mean of New_control = 3.14  

95% CI = (3.14 - 2 * 1.10 , 3.14 + 2 * 1.10) = (-0.29, 5.34)  

New_treatment = [3,3.25,3.5,7.5,7,5.25,5,5.5,5.25,5.75,6,6.25,5.5,5.75,5] (following 

the same thumb rule during the creation of New_control)  

Mean of New_treatment = 5.3  

Falls within the interval of New_control. Hence, we cannot reject the null hypothesis 

under 95% significance level. The mean differences within the two groups are not 

statistically significant.  
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Using statistical software, we will notice that the p-value for the before and after 

dataset is 0.2, which denotes the rejection of the null hypothesis under 95% significance 

level.  
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