RIEMANN HYPOTHESIS VIA NICOLAS CRITERION

DMITRI MARTILA INDEPENDENT RESEARCHER J. V. JANNSENI 6–7, PÄRNU 80032, ESTONIA

ABSTRACT. The Robin's Theorem with Nicolas criterion were used to prove the Riemann Hypothesis in a straightforward way.

MSC Class: 11M26, 11M06.

1. Introduction

There is a vivid interest in the Riemann Hypothesis proposed by Bernhard Riemann in 1859. While there are no reasons to doubt the validity of the Riemann Hypothesis [1], many colleagues consider it the most important unsolved problem in pure mathematics [2]. The Riemann Hypothesis is of great interest in number theory because it implies results about the distribution of prime numbers. In this short note, I offer a proof of the Riemann hypothesis via the Robin theorem.

Let us define $d(n) = e^{\gamma} \log \log n - \sigma(n)/n$, where $\sigma(n)$ is the sum of divisors function. Robin's theorem [3] tells us that if $d(n) \geq 0$ for all n > 5040, the Riemann Hypothesis is true.

Is known [4] that the hypothetical counter-example (one with d(n) < 0) is of form

$$(1) n = \prod_{i=1}^k p_i^{x_i},$$

where $x_1 \ge x_2 \ge ... \ge x_k$, $x_k = 1$, are integers and $p_i = 2, 3, 5, 7, ..., p_k$ are the first k successive primes.

Nicolas has shown [5] that if

(2)
$$\frac{N_k}{\varphi(N_k)} > e^{\gamma} \log \log N_k,$$

where the primorial of order k is given by

$$(3) N_k = \prod_{i=1}^k p_i,$$

eestidima@gmail.com.

the Riemann Hypothesis is true. Here, $\varphi(N)$ is Euler's totient function, i.e., the number of integers less than N that are not coprime to N.

Note that Nicolas' criterion ignores all powers $x_i > 1$. Therefore, it can be concluded, that if $d(N_k) > 0$ for all k, the Riemann hypothesis is true. But because of Ref. [4], we know that $x_1 \neq 1$ has to be in order to violate d(n) > 0. Hence, $d(N_k) > 0$ with the case $x_1 = 1$ being true.

2. Proof in Detail

Is known that

(4)
$$\varphi(m) = m \prod_{p|m} \left(1 - \frac{1}{p}\right),$$

which, in my case,

(5)
$$\varphi(N_k) = N_k \prod_{i=1}^k \left(1 - \frac{1}{p_i}\right).$$

Then, using the Taylor series,

(6)
$$\frac{N_k}{\varphi(N_k)} = \prod_{i=1}^k \left(1 + \frac{1}{p_i} + \frac{1}{p_i^2} + O(1/p_i^3) \right) > \prod_{i=1}^k \left(1 + \frac{1}{p_i} \right).$$

Since this Taylor series is convergent (function is f(x) = 1/(1-1/x)), this Taylor series development is valid for any p_i .

On the other hand, the element in the Robin's theorem is

(7)
$$\frac{\sigma(N_k)}{N_k} = \prod_{i=1}^k \left(1 + \frac{1}{p_i}\right).$$

Hence,

(8)
$$\frac{N_k}{\varphi(N_k)} > \frac{\sigma(N_k)}{N_k}.$$

Please, consider inequality

(9)
$$\frac{N_k}{\varphi(N_k)} > e^{\gamma} \log \log N_k.$$

Comparing the latter two expressions (8), (9), I conclude that Eq. (8) is necessary for $e^{\gamma} \log \log N_k > \frac{\sigma(N_k)}{N_k}$ to take place. If the strength of Eq. (8) is not sufficient, then

(10)
$$\frac{N_k}{\varphi(N_k)} > \frac{\sigma(N_k)}{N_k} > e^{\gamma} \log \log N_k$$

happens. But the latter is impossible if $d(N_k) > 0$.

Variant

(11)
$$\frac{\sigma(N_k)}{N_k} > \frac{N_k}{\varphi(N_k)} > e^{\gamma} \log \log N_k,$$

is not possible, because Eq. (8) is a fact.

Now, please, consider inequality

(12)
$$e^{\gamma} \log \log N_k > \frac{N_k}{\varphi(N_k)}.$$

Then, from Eq. (8),

(13)
$$e^{\gamma} \log \log N_k > \frac{N_k}{\varphi(N_k)} > \frac{\sigma(N_k)}{N_k}.$$

This means, $d(N_k) > 0$, and, essentially, $\frac{N_k}{\varphi(N_k)}$ takes up the role of $\frac{\sigma(N_k)}{N_k}$ in the Robin's theorem. However, there are no such N_k , because high exponents in $\frac{N_k}{\varphi(N_k)}$, which are seen in Eq. (6), are pushing the exponents of N_k in $e^{\gamma} \log \log N_k$ of Eq. (13) higher than 1, which is not possible because of N_k definition.

REFERENCES

- [1] David W. Farmer, "Currently there are no reasons to doubt the Riemann Hypothesis," arXiv:2211.11671 [math.NT], 2022AD.
- [2] Enrico Bombieri, (2000), The Riemann Hypothesis official problem description, Clay Mathematics Institute.
- [3] Guy Robin, "Grandes valeurs de la fonction somme des diviseurs et hypothése de Riemann." J. Math. pures appl, 63(2): 187–213 (1984).
- [4] F. Vega, Robin's criterion on divisibility. Ramanujan J 59, 745–755 (2022). https://doi.org/10.1007/s11139-022-00574-4
- [5] Jean-Louis Nicolas, Petites valeurs de la fonction d'Euler. J. Number Theory 17 (1983), no. 3, 375–388.