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Abstract

After reviewing Maclaurin series and the Alternating Series Estimation

Theorem, we show how these can be combined with some algebraic obser-

vations to prove that π is irrational.

Introduction

There are many proofs of the irrationality of π [2, 4], but beginning calculus books

tend not to use them [5, 8]. Niven’s proof [2] is short, but difficult: mysterious. It’s

too hard. Even analysis books tend not to mention π’s irrationality [7] and, if they

do, they don’t prove it in the text proper. In Apostol’s Mathematical Analysis [1]

it’s relegated to an exercise: Niven’s proof is presented with hints and helps. Here

is a new proof that is a relatively easy way to prove this result. It is at the level of

e’s irrationality proofs that are generally in beginning calculus and analysis books

[1, 5, 7, 8].

Review

We use the Maclaurin series

sin(x) =
∞∑

k=1

(−1)k−1x2k−1

(2k − 1)!
. (1)
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This is easily derived using the formula for a Taylor series

∞∑

n=0

f (n)(c)

n!
(x − c)n.

The Maclaurin series is just a Taylor series with c = 0. The derivatives of f(x) =
sin(x) at 0 are sin(0) = 0, cos(0) = 1, − sin(0) = 0 and − cos(0) = −1. With a

little reflection this becomes (1).

To calculate the value of sin(x) at a particular point, approximations must be

used and these give rise to Taylor and Maclaurin polynomials. When a value of

x is substituted into (1) it becomes an alternating series and these polynomials

become partial sums of this series. Alternating series have a key property we will

use: the Alternating Series Estimation Theorem (ASET).

ASET has three parts. They are all implied by oscillations in partial sums; first

too much, then too little, but the distance between the two goes to zero. Thus part

1 is sn < L < sn+1 where L is the limit of the series and sk’s are partial sums; part

2 is the absolute value of the error is less than the absolute value of an+1, the first

omitted term of the series approximating partial; and part 3 is the sign of the tail,

L − sn is the same as this first omitted term. There are many youtube animations

that show all three parts.

We’ll give a quick proof of part 3; we’ll need it later. Consider

∞∑

n=1

an =
n∑

n=1

an + (an+1 + an+2) + (an+3 + an+4) + . . . .

If the first omitted term, an+1 is negative then, as |an| is a descending sequence,

(an+1 + an+2) < 0, note an+2 has to be positive; they’re alternating. This pattern

is maintained for all such pairings, so the tail is negative, thus the same sign as

an+1. Likewise, if an+1 is positive then an+2 is negative and (an+1 + an+2) > 0
and this pattern holds for subsequent pairs; the tail is positive, the same sign as

an+1.

It follows that if r is a root of sin(x), then all Maclaurin polynomials can’t be

0 at r: head(r) + tail(r) = 0; by way of ASET, tail(r) 6= 0; implies head(r) 6= 0 and

head(r) is the partial. We’ll need this implication as our particular interest is in the

roots of Maclaurin polynomials.

First, let’s get a picture. A TI84-CE calculator can be used to graph Maclau-

rin polynomials. The first few for our sin(x) series are given in Figure 1 and

graphed in Figure 2. The sin(x) curve is slowly being formed. As the degree of
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Figure 1: The first few Maclaurin polynomials for sin(x).

the polynomial grows the number of turning points [3] in the curve increases and

the accuracy of the zero estimates of sin(x) get better; the non-zero root estimates

are never perfect, per ASET as previously stated. In Figure 3 we can see that

Y4(π) = 0.006, almost zero.

Per the periodicity of sin(x), the roots of sin(x) are of the form nπ for integer

n. The series (1) converges to sin(x) for all of the reals; an infinite circle of

convergence. Thus each additional Maclaurin polynomial crosses the x-axis and

gives an additional approximation to the roots (or zeros) of sin(x). The limit of

these polynomial roots are ±nπ.

Figure 2: A few Maclaurin polynomials.

Algebraic Observations

Consider the zeros for the first few Maclaurin polynomials for sin(x) [5, 8]:

T3(x) = x −
x3

3!
,
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Figure 3: The calc feature of this TI84 calculator gives the value of T4(π).

T5(x) = x−
x3

3!
+

x5

5!
,

and

T7(x) = x −
x3

3!
+

x5

5!
−

x7

7!
.

As stated above, Maclaurin polynomials when evaluated at a point define partial

sums of the alternating series (1). ASET [9] indicates that the sign of the remain-

der terms, the tail is the same as the first omitted term. As the terms are never zero

at non-zero points, if the infinite series sums to 0, the partial can’t be zero. They

must be equal to the negative of the non-zero tail. This translates, as we showed,

into the Maclaurin polynomials don’t share roots with sin(x), except for x = 0.

We can also observe that the roots of these Tj(x) will have to be the same as

3!T3(x) = −x(x2 − 3!),

5!T5(x) = x(x4 − 5 · 4x2 + 5!),

and

7!T7(x) = −x(x6 − 7 · 6x4 + 7 · 6 · 5 · 4x2 − 7!).

Zero times even a large factorial number is still 0.

The non-zero roots of these will have to be the same as those of

T̂3(x) = x2 − 3!, (2)

T̂5(x) = x4 − 5 · 4x2 + 5!, (3)

and

T̂7(x) = x6 − 7 · 6x4 + 7 · 6 · 5 · 4x2 − 7!. (4)

We are now ready to prove π is irrational.
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Proof

Theorem 1. π is irrational.

Proof. Define the partial series of the Maclaurin expansion of sin(x) as

Tj(x) =

j∑

k=1

(−1)k−1x2k−1

(2k − 1)!

and consider

T̂j(x) =
j!Tj(x)

x
where x 6= 0 .

Then T̂j(x) is an integer polynomial that shares non-zero roots with Tj(x). The

sequence of these roots converges to the roots of sin(x) as

lim
j→∞

Tj(x) =
∞∑

k=1

(−1)k−1x2k−1

(2k − 1)!
= sin(x).

Next, assume for a contradiction that π = p/q then qπ = p and sin(p) = 0.

This is the qth positive root of sin(x), qπ. But we notice that

T̂ +
j (p) − |T̂−

j (p)| = T̂j(p) (5)

is a non-zero integer for all p, where the superscripts indicate the positive and

negative terms of T̂j(p). It can’t be that

lim
j→∞

T̂j(p) = 0,

as all T̂j(p) are non-zero integers: a contradiction.

Remarks

One can come to an understanding of the nature of this proof and of irrational

numbers by considering what

lim
j→∞

T̂j(x) (6)

must be. This is a power series with coefficients consisting of sequences that go to

infinity. Hard to write down! With an integer x value and a finite j value it must

evaluate to an integer. But if x is irrational, say π then

lim
k→∞

Akπ − Bkπ = 0
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is a possibility, where Ak and Bk are integer sequences going to infinity. The

terms Akπ and Bkπ always have infinite decimals and the difference can shrink to

0.

It is likely that (6) can define a function, but it must have a complicated nature.

We just need the roots of Tj(x) and T̂j(x) are the same and as the former converges

to roots of sin(x), so too will the latter.

Conclusion

This proof seems to be easier than the proof by Niven [6]. It does require knowl-

edge of infinite series, a topic later than integration (what Niven’s proof uses) in

calculus textbooks. But the steps are simpler and not too removed from the level of

beginning calculus. It almost seems to be simple algebra in nature. It might make

a good application within a section on alternating series in calculus textbooks.
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