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Abstract 

The Collatz conjecture has long been unresolved. This paper will provide a proof of the 

Collatz conjecture. The proof will begin by noting that if the conjecture is false, there must be 

infinitely many examples that violate the conjecture, and will emphasize the impossibility of 

this scenario. Using probability within the Collatz problem, we can demonstrate that a certain 

portion of numbers will reach one according to the Collatz algorithm. The total probability 

must sum to one for the conjecture to be true. If the total probability does not sum to one, it 

will be a number very close to one. However, if the probability total is even one in a million 

less than one, there must be an infinite number of numbers that do not satisfy the Collatz 

algorithm, because a finite number cannot make up for the probability shortfall. This means 

that there must either be sequences that increase exponentially to infinity or cycles that repeat 

themselves. However, the probability of selecting the elements of a single sequence that 

increases to infinity from an infinite set is zero, so there must be infinitely many sequences 

that increase to infinity and violate the algorithm. The self-repeating cycles must also be 

infinite in number, but the number of elements in the cycles cannot go to infinity, so there 

must be infinitely many cycles with the same number of elements. This is impossible, because 

cycles with the same number of elements are finitely arranged within themselves, and a single 

element that violates the algorithm will emerge from any of these arrangements. An infinite 

number of sequences increasing to infinity is also impossible because they would intersect 

each other. As a result, the Collatz conjecture is true. 

 

Introduction 

The Collatz conjecture simply states: choose a positive integer. If the number is even, divide it 

by two; if it is odd, multiply it by three and add one. Repeat this process with the new number 

you obtained. Continue in this way. Eventually, you will reach the number one. The problem 

here is to prove that every positive integer will reach one. This paper will show this proof. 

Now let's make an assumption. Let’s choose any positive integer n . Let’s look at the 

probability of whether this number will reach one according to the Collatz algorithm after 

certain operations. First, we know that some numbers will reach one with this algorithm. 

Therefore, this probability cannot be zero.However , even if this possibility is assumed to be 

zero,the proof does not change. If this probability is one, we accept that every number will 

definitely reach one according to the Collatz algorithm, and the proof is complete. If this 

probability is a number between zero and one, it means there are infinitely many numbers that 

do not reach one, i.e., that do not comply with the Collatz algorithm. If this probability is 1 - c 

, it means that with a probability of c , the numbers do not reach one. We can express it this 

way: there can be two situations that violate the conjecture. Either the numbers are increasing 

to infinity, or there are some closed loops. Let's explain an important point here. Normally, if 

the probability is one, it does not necessarily mean there is no counterexample when an 

infinite set is involved. For example, the probability of selecting the number 10 among natural 

numbers is zero, but if we randomly choose a number among natural numbers, this number 

can be 10, which means that a probability of zero does not imply that the event will never 

occur in every case. However, how we define probability in the Collatz algorithm is 

important, and we can define the probability without such situations arising. That is, we 

define a probability for the Collatz conjecture such that when this probability is one, all 

numbers indeed reach one. We can do this as follows: Initially, let's have a random single 

number. Let's call this number n. In the first step, we multiply this number by three and add 



one. The number we have is 3n+1. In the second step, this number can be divided by two or a 

power of two. What is important here is that the number falls below its initial value. This is 

because closed loops or sequences that increase indefinitely do not fall below their initial 

value. In this step, if the number is divided by four, it falls below its initial value. This is 

because (3n+1)/4 < n. The number 3n+1 is even. The probability of a random even number 

being divisible by four is 1/2. That is, half of the numbers fall below their initial value in the 

second step. Let's say the number is only divided by two in the second step. In this case, the 

number we have is (3n+1)/2. This is a single number. In the third step, we multiply this 

number by three and add one. The new number is (9n+5)/2. This number is even, and in the 

fourth step, dividing this number by four does not bring it below its initial value. This time, 

the number must be divided by eight. In the fourth step, if the number is divided by eight, the 

new number (9n+5)/16 < n. Therefore, the probability of a randomly selected number falling 

below its initial value in the fourth step is equal to the probability of not being divisible by 

four in the second step * the probability of being divisible by eight in the fourth step. The 

probability of a random even number being divisible by eight is 1/4. Consequently, the 

probability of a randomly selected number falling below its initial value in the fourth step is 

(1/2) * (1/4) = 1/8. That is, 1/8 of the numbers fall below their initial value in the fourth step. 

The probability of all numbers falling below their initial value = The probability of falling 

below their initial value in the second step + the probability of falling below their initial value 

in the fourth step + … = 1/2 + 1/8 + … Now, if the value of this defined probability is one, all 

numbers without exception fall below their initial value, and the conjecture is true; if this 

probability value is not one, there must be infinitely many numbers that do not fall below their 

initial value. Now let’s assume that with a probability of c , the numbers do not reach one. 

 

Theorem 1 

If there is a finite number of sequences increasing to infinity, the closed loops must be 

infinite. 

 

Proof 

First, let’s assume that there is no sequence increasing to infinity. 

For a finite number of closed loops, the elements of these loops violate the conjecture, and if 

the total number of these elements is x , the probability  of any number violating the 

conjecture= x/∞=0≠c. Now let there be one sequence increasing to infinity. This sequence has 

an infinite number of elements. First, the following question needs to be answered: what is the 

probability of selecting powers of two? For the first 100 numbers, the probability of selecting 

powers of two is calculated as follows: the powers of two are 2, 4, 8, 16, 32, 64, a total of 6 

numbers, so the probability is 6/100. For the first 1000 numbers, the powers of two are 2, 4, 8, 

16, 32, 64, 128, 256, 512, a total of 9 numbers, so the probability is 9/1000. The probability 

decreases gradually. Ultimately, as it goes to infinity, this probability will be zero, but this 

needs to be proven. To simplify the calculation, let’s take the number 2^y . The number of 

powers of two in these numbers will be y . The probability is y/2^y. limy→∞ 

,(y/2^y)=(1/(log2*2^y)=0. This probability is not unique to powers of two. This probability 

will be zero for any exponential increase. If we take an initial number m for the Collatz 

sequence, the number we will reach after a while will be((3^k)*m+r)/2^f. As the Collatz 

sequence increases to infinity, we can think of its elements as an exponentially increasing 

series in the form of powers of three. The constant r  only enlarges the result. Moreover, f≥2k  

cannot occur because, in the case of  f = 2k, the element of this defined sequence would fall 

below the initial m value. This means that the elements of the Collatz sequence increasing to 

infinity can be at most two exponentially increasing sequences in the form of powers of three 

that match one-to-one. However, this does not change the result because the probability is still 



zero for h exponentially increasing sequences heading towards infinity.For h  being a constant 

number, h*y/(2^y)goes to zero as y goes to infinity. The result is that any finite number of 

Collatz sequences increasing to infinity can match one-to-one with the powers of three, and  

limy→∞ , h*y/(3^y)=0≠c. Therefore, to maintain the probability c, if there is a finite number 

of sequences increasing to infinity, there must be an infinite number of closed loops. 

 

Theorem 2 

If the closed loops are not infinite, there must be an infinite number of sequences increasing to 

infinity. 

 

Proof 

We had shown above that a finite number of closed loops cannot reach the number c. A finite 

number of closed loops and a finite number of increasing sequences also cannot maintain the 

number c. Limn →∞, (x+h*n)/2^n=0≠c. Therefore, if the closed loops are not infinite, there 

must be an infinite number of sequences increasing to infinity. 

 

Theorem 3 

The closed loops cannot be infinite. 

 

Proof 

The number of elements in closed loops cannot be infinite because an infinite number of 

elements means that the sequence goes to infinity. Therefore, the number of elements is finite. 

If there are to be infinite closed loops, there must be infinite closed loops of every number of 

elements. If there are infinite closed loops of any number of elements, there must also be 

infinite progressions of the same kind, but this is impossible because the equation 

((3^k)*m+r)/2^f=m can have only one root, so there cannot be infinite closed loops. 

 

Assumption: Let there be infinitely many sequences increasing to infinity that do not 

intersect and let the probability of selecting the elements of these sequences be ∞/∞=c. 

 

Theorem 4 

If there are infinitely many mutually disjoint  infinite sequences , and the probability of 

selecting an element is a non-zero constant like c, such sequences cannot exist and must 

intersect with each other. 

 

Proof 

Let any element of a sequence start moving towards infinity. While this element progresses, 

the probability of colliding with another sequence increasing to infinity is c . At each step, 

there is a  c  probability of intersecting with another sequence increasing to infinity.The 

probability of not intersecting is (1-c) at each step.The probability of one element of the 

sequence not intersecting with other sequences as it approaches infinity becomes (1-c)*(1-

c)*(1-c)…=0. Therefore, such an infinite number of sequences going to infinity that do not 

intersect cannot be defined. 

 

Conclusion 

To maintain the probability c, either there must be a finite number of sequences increasing to 

infinity and an infinite number of closed loops, or a finite number of closed loops and an 

infinite number of independent sequences going to infinity that do not intersect. However, 

there cannot be an infinite number of closed loops, and an infinite number of sequences 

increasing to infinity must intersect at some point. Therefore, it is not possible for the 



conjecture to be violated with a probability  c . As a result, the probability of any element 

reaching one is one, and the Collatz conjecture is true. 

 


