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Abstract

We find calculational evidence supporting the hypothesis that the time
evolution of a relativistic quantum wave function can be written using an
integral kernel formulation that uses the wave function’s past values on a
relativistic hyperbola.

We assume it to be known [1] that if we define an integral kernel as
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where At > 0 and z,2’ € R, and define a time evolution of a wave function
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In this article we study generalizations of this integral kernel that approxi-
mate the solutions to the relativistic Schrodinger equation [2]
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Since the precise relativistic Schrodinger equation is difficult to study, here
we will focus on the approximations
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only. Here we call these equations the 4th order, the 6th order and the
10th order approximations of the relativistic Schrédinger equation. (The
meaning of the word “order” could also be interpreted differently.) These

approximations are based on the Taylor series
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In this article we will use formulas
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We can assume that the reader has already learned the first formula from
somewhere [3]. The second formula can be proven with an antiderivative or
with an argument using antisymmetricity. The rest of the formulas can be
derived by using the recursion formula
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that is true for k € {2,3,4, ...}, and that can be derived by using integration
by parts. Strictly speaking, apart from the first formula, these formulas
require that Re(a) > 0. Otherwise the integrals do not converge. Despite
this, we will use these formulas even in situations where Re(a) = 0 and
Im(a) # 0, because in the context of quantum path integrals these parameter
values with these formulas seem to produce sensical results. We can wonder
why it is so, but that is not the topic of this article.

In the following calculations we are going to be using a lot of Taylor series
with respect to the quantity C% This hopefully looks reasonable, because the
speed of light ¢ is usually considered to be large, so consequently C% is then
small, and Taylor series with respect to it have a chance of converging nicely.
Although factually the quantity c% is a constant, we can think abstractly
that this quantity would undergo a limit process c% — 0 in some equations.
A closer look at the calculations raises the question that maybe we should
also somehow take into account the smallness of At that is present in the
series. Actually it turns out that the magnitude of At complicates the
analysis a lot, so to keep things simple, we are going to ignore the magnitude
of At in the used logic: In the calculations we are not going to assume that
At would be especially small.

Let’s attempt to generalize the non-relativistic time evolution kernel for
the 4th order approximation of the relativistic Schrodinger equation. How
could we accomplish this? One way to approach this is to first fix some
t € R, and then assume that the wave function has the plane wave form
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for the past time values ' < ¢ and all 2/ € R with some constant p € R.
According to the 4th order approximation of the relativistic Schrodinger
equation the wave function is supposed to maintain this same plane wave
form under the time evolution for the future time values above t. This
means that we want the kernel K (At,z — 2’) to have the property that the
equation
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is true. It is best to allow the presence of some error term, because it
is difficult to avoid it. If we wanted to be rigorous, we should probably
specify how the error term behaves as a function of At, but to keep things
simple, we ignore this issue. We just assume that the error term behaves
as nicely as needed. If this equation and the simplifying assumptions are
true for all p € R, and if the kernel K(At,z — ') itself does not depend
on the parameter p, then because physical wave packets can be written as
linear combinations of these type of plane waves, we can then conclude that
the kernel will produce approximations of the solutions to the 4th order
approximation with arbitrary physical initial conditions. In other words,
the kernel will have the property that if
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An obvious ansatz for the kernel is
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with some coefficients ag, a1,a2 € C. We can anticipate that a; o c% and

ay X C%, and use these relations in the approximations. So the equation
that we want to be true is
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Some things cancel, and this equation is equivalent with the equation
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Here we denoted £ = 2/ — . The left side of (1) can be written in the form
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The right side of (1) can be written in the form
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TheQre is a factor e~ 2 on the left side of (1), and there is a similar factor
64527“1 on the right side of (1), so there is no other option but to adjust the
coefficient a; in a such way that these factors become equal. This means
that we have to set a; = %. This looks good, because we just rederived
the phase factor in the non-relativistic time evolution kernel. There is a

ZAtp4 . . . . a2p4
term gt on the left side of (1), and there is a similar term Tohiat

right side of (1), so there is no other option but to adjust the coefficient ay
in a such way that these terms become equal. This means that we have to

on the

_ i : 3asp? . . .
set ag = gAps.z- There is a term 4h§a% on the right side of (1), but there is

no similar term proportional to p? on the left side of (1) at all. This means
that there is no other option but to set as = 0. So it turned out that the
coefficient as would have to satisfy two different constraints related to the
terms proportional to p? and p*. Since these constraints cannot be satisfied
simultaneously, we have to conclude that our ansatz is not working.

Let’s see what happens if we attempt to do the same with the 6th order
approximation of the relativistic Schrodinger equation. This time an obvious
ansatz is
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where a1 c%, as X C% and a3 c% This time the equation that we want



to be true is
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iAtp?
Again there is a factor e~ 2 on the left side of (2), and a similar factor
2
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%: on the right side of (2), so there is no other option but to adjust the

There is a term —
a3
512af
coefficient ao in a such way that these terms become equal. This means that

) . i Atn0 .
we have to set a9 = i%' There is a term —ﬁ% on the left side of

2
(2), and there is a similar term (— i %) %2 on the right side of (2), so
1 1
there is no other option but to adjust the coefficient a3 in a such way that

these terms become equal. This means that we have to set ag = 32??27?5(:4'

; 4
There is a term 81,;72’02 on the left side of (2), and there is a similar term

(122411 - égg% + g;zg)%ﬁ on the right side of (2), so there is no other option
but to demand that these terms would be equal. However, there are no
degrees of freedom left to be adjusted for these terms to become equal. The
coefficients a1, a9 and ag have already been fixed above, and with the fixed

values we have a relation
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similar term proportional to p? on the left side of (2) at all. There is no other
option but to demand that the term on the right side vanishes. However,
there are no degrees of freedom left to be adjusted for this relation to become
true. The coefficients a1, as and a3 have already been fixed above, and with
the fixed values we have a relation
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So it turned out that the object (a2, as) would have to satisfy four different
constraints related to the terms proportional to p?, p*, p% and p8. Since there
are only two degrees of freedom in the object (a2, as), the four constraints
cannot be satisfied simultaneously. Again we have to conclude that our
ansatz is not working.

Since the ansatz didn’t work, the details of the calculation are probably
not very interesting, but anyway, if somebody is interested in repeating the
calculation, he or she will probably find the equation
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These calculations support the hypothesis that the non-relativistic time
evolution kernel most apparently cannot be generalized into a relativistic
form with an ansatz that would look like

K(At,z —2') e%+a2(w_$')4+“3(x_z/)6+'”.
The issue with the number of constraints being larger than the number of
adjustable parameters was worse with the 6th order approximation than
with the 4th order approximation, so it is a reasonable belief that the issue
will probably only get even worse with higher order approximations. \ZVQe
should contemplate on what this result means. The phase factor e%
in the non-relativistic time evolution kernel can be interpreted to be the
%mv2 is the non-relativistic Lagrangian of a free
point particle, and where we have substituted v = xgt‘”l. If we encounter
the question that how could the time evolution kernel be generalized into

a relativistic form, one obvious idea is that maybe we could replace the

1A
quantity el , where L =

Lagrangian with the relativistic Lagrangian L = —mc?y/1 — Z—; Then there
is a problem that the square root expression makes integrals very hard.
One idea that may surface is that maybe the new relativistic time evolution
kernel with the relativistic Lagrangian does work, but it’s just difficult to
gain information about its functioning, because we just don’t know the
right integration tricks. At this point we have a reason to believe that
that idea is probably not right: It is a reasonable conclusion that if the
relativistic Lagrangian in the time evolution kernel did work, it should imply
that we could write a Taylor series with respect to the quantity C% of the time
evolution kernel, and we should get an approximation of the time evolution
equation that would work as an approximation in the almost non-relativistic
cases. As we just learned above, the ansatz that used a series with the
coefficients a; o C%, as X c%, as X cl‘l ..and so on, did not work. Logically,
with some weight, this fact then supports the hypothesis that even the
precise relativistic Lagrangian with the square root expression genuinely
doesn’t work.

Let’s think more about what options there exist when trying to write a
time evolution of a wave function using an integral kernel. The starting point
is that we would like to write the value of ¢)(t+At, x) as a linear combination
of Y (¥, 2"), where hopefully the region (¢, z’) ~ (¢, ) dominates the integral.
The most obvious choice for the spacetime points (¢/, z") is that we set t' = ¢,
and then let either 2/ € R or x — cAt < 2’ < x + cAt. Let’s consider a new
idea that we let (¢, 2") assume all the values such that ¢ < ¢ and

Alt+At—t)? — (z—2)? = A2

These constraints define a hyperbola that has a special significance in Special
Relativity. This idea is reasonable, because in the almost non-relativistic



cases the use of this hyperbola is roughly equivalent to using a straight line
t' = t. Suppose we want to parametrize this hyperbola. The most obvious
parametrization could be that we define a function R — R, 2’ — ¢/(2’) by a
formula

1
t'(2") = t+ At — \/At2+62(x—a:')2.

Let’s consider more elaborate parametrizations, and make 2’ into a function
& — /(). (The prime symbols in the notations o’ — #/(2’) and & — /(&)
do not mean that the functions would be derivatives of something defined
earlier, but instead the prime symbols are part of the original notations
for these functions. The reason for this notation is that above we have
already fixed the meaning of the parameters t, ¢,  and 2/, and now the
intended use of our new functions is that they produce values for the pa-
rameters ¢’ and z’.) Suppose we want the function & — 2/(§) to have the
property, that the spatial distance between the points (¢'(z/(£)), 2'(§)) and
(' (' (E+AL)), 2/ (E+AL)) is approximately A, when measured in the frame
of reference where these points are simultaneous. In other words

—AE & A (E+AL) —(2(€)" — (2(€+Ax) —2'(6)”.

In the limit A{ — 0 this becomes a differential equation

dt'(2'(€)) \? da’(£)\?
—_ — 2 -~ 777 — - "7

L <C( da’ ) 1><d§>'
By using the derivative formula

x—a

dt'(') 1
de! ?\/Ag 1 N2
t+87($—$)

we see that the differential equation is

da'(§) (z —2'(¢))*
dé _i\/H 2AEZ

By using the properties of the hyperbolic functions we see that the wanted
solution is

() = z + cAtsinh (%)

Then

t'(2'(¢)) = t+ At — Atcosh (%)

Strictly speaking, we do not here have a rigorous justification for choosing
this parametrization. We just hope that people who know Special Relati-
vity will agree that there is an intuitive feeling that this probably is a good
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Figure 1: The big question is that when we write (¢ + At, x) as a linear com-
bination of the past values ¢(t',z"), where the region (¢',z') =~ (¢,x) hopefully
dominates the integral, what spacetime points (¢, z") precisely should we use?
Those (t',2') that are on the straight line ¢ = ¢, or those (¢',2’) that are on the
hyperbola c¢®(t + At —t')? — (x — 2')? = 2 At??

parametrization. One of the properties of this parametrization is that if the
wave function ¢ and the other possible factors in an integrand are scalars,
then an integral of the values of 1 over the hyperbola will be Lorentz in-
variant, when written with respect to the parameter £.

Before attempting to come up with an unnecessarily generic parametrized
ansatz for the integral kernel, we should ask whether it could be possi-

ble to guess what it will look like. As we mentioned above, the non-

im(xfx/)z

C e im(z—a')? . iAt
relativistic phase factor e 2zrac ~ can be interpreted to be e & *, where
L = %va is the non-relativistic Lagrangian, and where we have substi-

tuted v = xgt’”l. An obvious guess is that maybe we can turn this into a

relativistic phase factor by replacing the Lagrangian with the relativistic
Lagrangian L = —mc?y/1 — Z—;, and by replacing At with ¢t + At —¢'(2/(£)).
According to our parametrization we have the relations

x — ' (§) B _csinh (ﬁ)

t+ At —t/(2'()) cosh (ﬁ) 7

 w-rer 1
At + At —t'(2'(£)))? cosh (:57)

and

Tz —x 2
(t+ At - t'(l"(ﬁ)))\/l LG 75 At — E/ﬁ();(g))y - A
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. i(t+At—t (@' (€))) _idtmc? .
So it turned out that e R L — ¢~ %, and there is no depen-

dence on & or 2’ — x in this phase factor at all. Many people will probably
think that the fact that the dependece on £ or 2’ — z vanished completely
must be a sign of something having gone wrong. For example, one might
think that the relativistic phase factor would have to be of such kind that

im(m—x/)2

we could derive the non-relativistic phase factor e~ 2rat ~ out of it as a
approximation. Then one might also think that the non-relativistic phase
factor cannot be derived out of a phase factor where there is no non-trivial
dependence on € or 2/ — x at all. The truth turns out to be surprising,
because actually the non-relativistic phase factor can be derived from a for-

iAtmc?

mulation that uses the relativistic phase factor e~ = . The way it works
is that the the non-relativistic phase factor with the dependence on 2’ — x
arises from an expression related to the curvature of the hyperbola and the

phase factor 67% in the past values of the wave function (¢, 2’). With
this information it now makes sense to try an ansatz that the relativistic
time evolution kernel will be of the form K(At) and not K(At,§). This
maybe means that K (At) is not really an integration kernel now, or that it
is a trivial constant kernel.

Let’s try to approximate a solution to the 4th order approximation of
the relativistic Schrodinger equation by using a function At — K(At) and
the parametrized hyperbola. So we want the equation

i(t+At) 2 4 i
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to be true. In this situation it makes sense to use the approximations
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Some things cancel, and the equation that we want to be true is approxi-
matively
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The left side of (3) can be written in the form
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The right side of (3) can be written in the form
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The factor e~ 2rm appears similarly on the left and the right sides of (3), so
no parameter needs to be adjusted for these to become equal. Also the term
Sﬁg; appears similarly on the left and the right sides of (3). No similar
term proportional to p? is present on either side. Terms proportional to p?
are present in the intermediate steps, but they vanish due to cancellation.

All we have to do is to set

K(At) = —
T 8mAtc?
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and then Equation (3) is true.

This was an interesting result, so next it would make sense to check
whether a similar calculation could be repeated with the 6th order approxi-
mation of the relativistic Schrédinger equation. This means that now we
want the equation

4 6

i(t+At) 2, P2 __p p i 1
e_ h (TnC +2m 8m3c2+16m564)€ﬁpx (1 + O(?))
C

4

e / K(At)ef%t/(x/(g))(m52+%787:7362+%)6ipx/(5)d5

to be true. In this situation it makes sense to use the approximations

G S +O(i)
6c2At2 120cA Attt b

and

2 4 6
T < S | 1
t'(x (6)) =1 22\t 24cA A3 7208 A5 + O(CS)'

Some things cancel, and the equation that we want to be true is approxi-
matively

_iAt 2, 2 _p* 8 1
e h (mc +2’m 8m3c2 16m5¢34) (1 + O<—6))
C

o0

.2 . .6 2 4 6
= K(At) / e(2hlc-§2At+24hc4At3+720};§6At5 +O(c%)) (mc2+§7m_87rz:3c2+16:;5c1)
—00

eir (6t idsm tmtaa +0(6)) g

The left side of (4) can be written in the form

_iAtmc®  _iAtp? iAtpt iAtpb At?p8 1
e R e 2hm (1 — — ( ))
8hm3c? 16hmbSct 128h2mbct
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The right side of (4) can be written in the form
s 2 242 4 4.2 4
K(At) / G%Jr(‘f’?mi\ﬁr%) C%Jr(* 16ihpm%At+481Ffm€At3 +72l(:;:,it5) 14+O(%6)
—0o0

G%P(Hﬁﬂzﬁﬁw(%))d&

[e.o]

2.2 3 4
zmg ip€ ip“E ip€ imé 1
= K(At) / e2rat TR e(4hmAt Toha Tounass ) )

—00

. 4.2 .
__ip~§ ip2et
e ( 16hm3 At + 48hmAt3 +

6
120ﬁAt4 + 72%2&5 ) %4 60(%) d§

- i [ (o )
(A1) / eamait t it T enae T 2anas

Q

- 2¢2 s =3 : 4
s ;<4§%n§At + 6?%152 + 21?2%)2014 * O(c ))
. ) ) ) . .
(1 + (_1 1617;1%& * 487};5&3 + 122)];5&4 * 722(7)7722755)? + O<?>)
(1+0(5))ae

o0

ime? | ipt ip? ip* 9
— K(Al i+ (1 -
(A1) / e + (4hmAt(32 16hm3AtC4)£
. . . 2 4

+ Zp2 253 ( = 5T - 4 2 p2 2 4)54

6hAt2c 24hAt3¢ 48hmAt3c 32h2m2At2c
4 ( ip B P’ )55 " ( m _ 7p? )56

120hAtAct  24R2m A3t T20RAE A 288R2At4ct
2

. mp 7 m 8 l
144h2Atd¢ 45 1152h2At6C4£ + O(cﬁ))d5
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_ K(AY) ZWihAtef% (1
m
ip? ipt At?p?  ihAt
+ <4hmAt02 - 16hm3AtC4)< m2 + m )
ip At*p3  3ihAEp
+ 6hAt2c2 ( m3 m2 )
im in p4 At4p4 6ihAt3p2 3h2AL2
+ (24hAt3c2 + A8hmA3cA 32h2m2At2c4>( m4 + m3  m2 )
ip p° AtPp®  10ihAt Y 15R2AED
* (120hAt4c4 B 24h2mAt3c4) ( ms mi + m3 )
im 7p? AtSpS  15ihAP*  45R2AtYY? 15iR3AL
+ (720hAt5c4 B 288h2At4c4>( ms C T s T A B )
mp At'pT  21iRASp°  105R2APS 105iR3 Attp
T 144R2AP5A ( omT mo md mi )
m? At®p8  28ihAtPS  210R2ASp*  420iR3AtPp? 105K AL
B 11521712At604< m?s + m7 B m0 B md + m# )
+0(5))
_ KA 2miAL iz (1
m
P2 iAtp4 p4 iAtps
* <_ 4m2c? ' 4hm3c2 | 16mAct 16hm5c4)
p2 iAtp4
* <2m202 B 6hm3c2>
ih P2 ihp? iAtp4 p4 iAtpb At?p8
+ <_ 8mAte2  4m2c2  16m3Atct + 24hm3c2  32mict  6hmPct 32h2m604)
ihp? 13p* 49 Atpb At?p8
+ <8m3Atc4 © 24mAct T 120hmb et 24h2m6c4>
K2 29ihp? 103p* 523iAtp® TA?p®
+ <48m2At2c4 96m3Atct | 96mict  1440hmSct 288h2m6c4)
35ihp? 35p* TiAtp At?p8
* <_ 48m3Atct  48mAict + 48hmbc + 144h2m6c4)
35h2 35ihp? 35p* TiAtps At?p8
+ <_1384m2At204 1 96m3Atd T 102mAch | 288hmct 1152h2m6c4)
+0(5))
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2mihAL _inep? ih 1 35 h?
(A = ¢ 2 SmAtZ T \18  384) m2A
+( 1+1 1> p? +< 1+1+29 35+35> ihp?
4 2 4/ m?2c2 16 8 96 48 96/ m3Atct
VTR VAR W T A
4 6 24/ hm3c? 16 32 24 96 48 192/ mict
N ( 1 1 49 523 7 7\ iAtpS
16 6 120 1440 48 288/ hmbct
+( 1+1 7+1 1 )At2p8 +O(1)>
32 24 288 144 1152/ h2mSct b
2MIRAL _ intp? ih 9h?
— K(At *fm(1 . .
(&) m . SmAtc? 128m2At2ct
At 1 i Atpf At2p8 1
(st g - s - g+ 0(3)
8hm3c2 = 64mic 16Amoc 128h2mbct b
2MIRAL _iney? ih 9h?
— K(At *7m(1 — — )
(&) m . SmAtc?  128m2At2ct
(1 iAtp* iAtpb At?p8 N O( 1 ))
8hm3c? 16AmSct 128h2mbct b))
iAtp? . . X
The factor e~ T and the terms ~2t° —éﬁfﬁ)ﬁ& and —% appear

8hm3c2)

similarly on both the left and the right sides of (4). The terms proportional
to %z vanish in the same way as earlier above. Also terms proportional to
Ig—j are present in the intermediate steps, and they vanish similarly. In the

last step we use the equation
1
+0(5),
6

and there the term proportional to p* gets its coefficient right because

o)

1 ih Th?

h 9n2 2 IAF2A
1= SmZAtCQ T 128m2AL2A 8mAtc 128m2At?c

<1 + Sm%tﬁ + O(;))(#ﬁr‘f@ + 6477114(;4)1’4 -

All we have to do is to set

iAtpt
S8hm?3c?

) 2
_ il
K(At) = ih 9h2 ’
T 8mAtcZ T 128m2ZAt2A

and then Equation (4) is true.

It is extremely unlikely that Equation (4) could be made true with the
right choice of K (At) like this via a mere coincidence, so at this point we
know that the use of the hyperbola is probably related to some real result.
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Nevertheless, it is still reasonable to ask whether a similar calculation could
be repeated with the 10th order approximation of the relativistic Schrodinger
equation. At least we might want to see how the function K (At) turns out
in that case. This means that next we want the equation

i(t+At) 6 5p8 710

2 4
_i(t+AL) 2, p° __p p° __ 5p p i 1

e R (mc tom 32 T o5 A 128m7c6+256m9c8)6ﬁpz<1—|—O(W>)
C

4 6 5p8 7,10 s

o
i 2, P2
— /K(At)e_ht/(xl(g))(mc +§W—87:3c2+165L5c4_128m7c6+256€n9c8)eipx/(g)dé“
—0oQ

to be true. In this situation it makes sense to use the approximations

3 &° 3 ¢’

/ _
O =2+ 8+ 5oxE ¥ 50a0 T 50100A0 T 3628305AF

+0()

o &2 ¢ S &
P@l) =t = 508; ~ 3IAB ~ T08M5 | 1032050

§10 1
S -
3628800c10 A9 cl?

Some things cancel, and the equation that we want to be true is approxi-
matively

e

) 2 6 8 1
iAt 2, p° __p P ___5p 7p 1
at (me?+ 35 8m3c2 T T6mBcA ~ 128m7c0 T 356mIe ) (1 + O(TO))
c
[es) i§2 4 i§4 i

;10
= K(At) / e(2h02At 2anctae3 T 720n

6 ) 2 4 6 8 10
Soamt s AT T oA +O () (me 2o - Py B O TP )
cOAt 40320hc® At 3628800hc Y At c 2m  gm3c 16m°c 128m ' c 256m7c

—oo

e%"(5+ GCQEZt? + 120cszt4 + 5040502At6 * 35288£OZSAt8 +O(ﬁ)) de.
(5)
The left side of (5) can be written in the form
_iAtch _’iAtP2 ZAtp4 2Atp6
e h e 2mm (1 —
8hm3c? 16AmSct
N ( At? N 5iAt ) : ( At? TiAt ) 0
128R2mbct " 128hm7c8 )P 12852mb  256hm9c8 )P
iAt3 TAL? 19 iAt3ptd
(st o ¢ e
3072R3 MmOt 1024h%2m10c8 2048~3m11c8

At4 16 1
T f o5 T O(To))'
98304h4m1=¢ c

18



The right side of (5) can be written in the form

o0
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—00
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1/ ip?e? ip€3 imé* \41 1
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The coefficients of the terms proportional to p*, pb, p8, p'°, p'2, p'* and p'o
are all the same on both the left and the right sides of Equation (5). The
puzzle pieces of the calculation fit together perfectly. In the last step we use
the equation
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and there the term proportional to p* gets its coefficient right because
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the term proportional to p® gets it coefficient right because
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the term proportional to p® gets it coefficient right because
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the term proportional to p'0 gets it coefficient right because

(1+ ih +O(i>>( At? _ 29iAt )
SmAtc? ct 128A2m8ct  1024AmOc8
At? TiAt 1

= 128PmE | 6hmIS (CTO)

and the term proportional to p'? gets it coefficient right because
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All we have to do is to set
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and then Equation (5) is true.
If somebody is interested in repeating the calculation, he or she will
probably find it smart to check the formulas
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as separate exercises.
We should contemplate on what this discovery means. When one fact
is that we are using the quantity At, because we are interested in the dif-
ferential operator J;, and another fact is that we are using some kind of

approximations, one might think that it must be so that the approxima-
tions become very accurate in the limit At — 0. Let’s take a closer look at
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whether this is the case. Suppose we want to use an approximation
oo o0
a1x2+a2x4+a3x6 ayx? 4 6 1 4 62
e dr = e (1 + (agx"+asz”) + 5(@216 +asz”) )dw.
—0oQ0 —0o0

When does this make sense, and when does it not? To answer the question

we do the change of variable x = ﬁu, and write the integral in the form
ai

00
U 24 92 g4y 936 1
ela1l laq| lag] du.

Vil

—00

From here we see that if the relations ||;12|‘2 <1 and ‘Lald‘L < 1 are true, then
the approximation makes sense, and if these relations are not true, then the
approximation does not make sense. In our study above we have been using

coefficients that satisfy the relations

1
ap K —
1 At:
1 1
© X xpE % Apa
1 1
43 X NpA 43 X N5
and so on. So the relevant ratios have been
jas| 1 jaz] 1
lai|? Atc?’ la|? Atct’
jas| - 1 jas| 1
la|? At2ct’ lai|3 At2c67

and so on. If we ignore At, and only pay attention to ¢, then from that point
of view these ratios seem to be small, because the speed of light ¢ is usually
considered to be large. However, if we assume that At is small, and take this
into account, then we see that these ratios are actually not small. The ratios
diverge in the limit At — 0. This means that the approximations we have
been using in the above study have been kind of approximations that are
only valid with sufficiently large At. The approximations will stop working
in the limit At — 0. This is a peculiar result, and eventually it is not
obvious what it means. An obvious attempt to conclude something is that
there will probably be some difficulty in turning the integral formulation of
the time evolution equation into a differential equation.

Nevertheless, it is extremely unlikely that Equation (5) could be made
true with the right choice of K(At) via a mere coincidence, so it is a safe
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conclusion that our discovery is probably related to some real result. The
problem is that it’s just not obvious what that result is. In other words, at
this point it is a reasonable conjecture that there exists a function At +—
K (At) that works so that when the time evolution of a wave function is
defined according to the formula

Wt + At,z)
= K(At) 7 ¢<t + At — At cosh (%) @ + cAtsinh (%))d{,

then a relation that looks like

ihopp(t,x) “= or =" /(mc2)2 — 2h2024)(t, x)

will be true. A precise description of the function At — K(At) is not yet
known, but apparently it has a representation that looks like

2

__ilAtme
K(At) _ V QW%Ate "

1 ih - 9h2 4 75ih3 4 3675h4
ct 1024m3At3c6 32768mAAtdc8

T 8mAte? 128m2At?

When only a finite number of terms of the series are being used, this repre-
sentation is more useful with large At, and less useful with small At.

One concern is that the Taylor series of the quantity +/(mc?)? + ¢2p?
with respect to p converges for |p| < me, and diverges for |p| > mec. A
simple conclusion from this fact is that if we are interested in studying the
relativistic Schrodinger equation, we maybe shouldn’t be using the Taylor
series of the square root. However, this doesn’t necessarily mean that the
above calculations with the Taylor series would be nonsense. Sometimes it
can happen that first we prove some result in a limited domain, where some
series converges, and then the result can be extended outside that domain
with an argument using analytic continuation. Since at this point we do
not yet know what the precise result of our conjecture is, consequently it is
difficult to speculate about how precisely the analytic continuation should
be used.

Earlier I uploaded an article Extreme Oscillation Phenomenon of Rela-
tivistic Propagator [4] to viXra, and there I discussed the paradoxical issue
that the solutions of the relativistic Schrodinger equation seem to exhibit
small amplitude leaking from outside the past light cone. Our new con-
jecture discovered here maybe affects the earlier discussion, so we should
contemplate on the relations between these phenomena. Let’s assume that
there is “=" sign in our conjecture. What would this imply? Then we would
have two different integral formulations of the solutions to the relativistic
Schrodinger equation. One formulation uses the straight line ¢/ = ¢, and the
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other formulation uses the hyperbola c?(t + At — /)2 — (z — 2/)? = 2At?,
and these formulations would be equivalent. If we use the straight line, it
looks like that 1 (t + At, x) depends on the past values of 1 outside the past
light cone, which looks bad. The values of ¥ outside the past light cone are
on the lines {t}x | — oo, x — cAt] and {t} x [z + cAt, oo[. If we use the hyper-
bola, it looks like that 1 (t + At, z) is fully determined by what is inside the
past light cone, which looks good. Then there is a paradox: Is ¥(t + At, x)
affected by the values of i outside the past light cone or not? One possible
solution to this paradox is that if we assume that the wave function satisfies
the relativistic Schrodinger equation on all past spacetime points ' < ¢, then
it could be, although it is not obvious whether this is true, that the values of
¥ on the lines {t}x | — o0, z—cAt] and {t} X [x+ cAt, co| will be having been
determined by the values of ¥ inside the past light cone. So when we write
Y(t+ At, z) in terms of the values of ¥ on the lines {¢t} x | — 00,z — cAt] and
{t} x [x + cAt, 00|, it looks bad and suspicious, but it would still be equiv-
alent to ¥(t + At, x) having been written in terms of the values of 1 inside
the past light cone. Maybe the solution to the paradoxes of the relativistic
Schrédinger equation is no more complicated than this?
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