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Abstract

In this paper, we had given a proof of the Collatz conjecture in elementary
algebra. Since any given positive integer is conjectured to return to odd 1 in
operations, we analyze continuous inverse operations starting with odd 1, it had
proved that all of the inverse path numbers of a given non-triple is obtainable
and any inverse operation path tends to infinity, we can get any odd and even,
to do continuous forward operations for a positive integer obtained it will return
to the odd 1 along the inverse operation paths.
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The Collatz conjecture is the 3x+1 conjecture, also known as Kakutani’s problem, and
it has not been proved since it was proposed [1]. The Collatz operation is described
by the following function

f(x) =

{
3x+ 1 if x is odd
x
2 if x is even

,

where ∀x ∈ N+, for this function there exists s ∈ N+such that

f (s)(x) = 1.

As a given even number will be firstly converted to an odd number from the function
above and then we again get another odd number, it is clear that we can take odds
directly to analyze, and then we have the operation formula as bellow

p =
3n+ 1

2k
, (1.1)
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or
2kp = 3n+ 1, (1.2)

where n and p are both odds, k ∈ N+. It is not difficult to see from (1.2) that odd p
is not a triple, but a non-triple. To do an inverse operation for (1.1) we then have

n =
2kp− 1

3
. (1.3)

Definition 1.1. The operation process from n to p using (1.1) is called one time of
forward operation and times of operations is called continuous forward operations,
and for n, p is called its forward path number. The operation process from p to n
using (1.3) is called one time of inverse operation and times of operations is called
continuous inverse operations, and for p, n is called its inverse path number.

In the odd set, each side of an odd triple has a non-triple such as 1, 3, 5, or there
are two non-triples between two adjacent triples such as 5 and 7 between 3 and 9. We
called the left one as left non-triple and the right one as right non-triple.
Lemma 1.2. In the odd set, a triple has not any inverse path number, while a non-
triple has an infinite number of inverse path numbers and they are obtainable.

Proof. Let a triple in the odd set be 3(2t− 1) = 6t− 3, and then we can get the left
non-triple 6t−3−2 = 6t−5 and right non-triple 6t−3+2 = 6t−1 respectively, where
t ∈ N+ and 2t−1 is an odd, for example, when t = 1, the triple is 3, its left non-triple
is 1 and its right non-triple is 5. Let the inverse path numbers of 6t−3, 6t−5 and 6t−1
be n0, n1 and n2 respectively. Next, we analyze these three inverse path numbers.

a) The triple 6t− 3. By (1.3) we have

n0 =
2kp− 1

3
=

2k(6t− 3)− 1

3
= 2k+1t− 2k − 1

3
, (1.4)

obviously, the right-hand side of (1.4) is not an integer, thus a triple has not any
inverse path number.

b) The left non-triple 6t− 5. By (1.3) we have

n1 =
2kp− 1

3
=

2k(6t− 5)− 1

3
=

2k(6t)− 5 · 2k − 1

3
= 2k+1t− 6 · 2k − 2k + 1

3

= 2k+1t− 2k+1 +
2k − 1

3
= 2k+1(t− 1) +

2k − 1

3
. (1.5)

In three consecutive positive integers 2k − 1, 2kand 2k + 1, there must be a triple.
If k is even, 2k − 1 is a triple, if k is odd, 2k + 1 is a triple. Let k = 2m, where
m ∈ N+, by (1.5), we have

n1 = 22m+1(t− 1) +
22m − 1

3
. (1.6)
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It is not difficult to see from (1.6) that the non-triple 6t− 5 has an infinite number
of inverse path numbers and they form an inverse path number sequence, to do one
forward operation for each of them they all return to 6t− 5.
In (1.6), let m = 1, then we have

n1 = 8t− 7, (1.7)

it is the first inverse path number of a left non-triple and also the smallest one.
In (1.6), let t = 1 (6t− 5 = 1, the smallest left non-triple), we then have

n1 =
4m − 1

3
. (1.8)

As mincreases in sequence, we obtain the following infinite increasing sequence

1, 5, 21, 85, 341, 1365, 5461. . .

where the triples is underlined, and they are all the inverse path numbers of the
first left non-triple 1. We called this sequence as basic sequence.
Next, we analyze the relationship between two adjacent inverse path numbers in a
sequence. Let n1,m be an inverse path number from (1.6), n1,m+1 be its next, thus
from (1.6), we have

n
1,m = 22m+1(t− 1) +

22m − 1

3
. (1.9)

We replace m in (1.9) with m+ 1 and to find n1,m+1, then from (1.6) we have

n1,m+1 = 22(m+1)+1(t− 1) +
22(m+1) − 1

3
= 22m+1+2(t− 1) +

22m+2 − 4 + 3

3

= 4(22m+1(t− 1)) + 4

(
22m − 1

3

)
+ 1

= 4

(
22m+1(t− 1) +

22m − 1

3

)
+ 1 = 4n

1,m + 1,

(1.10)

that is
n

1,m+1 = 4n
1,m + 1. (1.11)

In all the sequences which are obtained from the left non-triples, two adjacent
inverse path numbers satisfy (1.11).

c) The right non-triple 6t− 1. By (1.3) we have

n2 =
2kp− 1

3
=

2k(6t− 1)− 1

3
=

2k(6t)− 2k − 1

3
= 2k+1t− 2k + 1

3
. (1.12)

Let k = 2m− 1, from (1.12) we then have

n2 = 22mt− 22m−1 + 1

3
. (1.13)
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It is not difficult to see from (1.13) that the right non-triple 6t − 1 has an infi-
nite number of inverse path numbers and they also form an inverse path number
sequence, and to do one forward operation for each of them they all return to 6t−1.
In (1.13), let m = 1, we then have

n2 = 4t− 1. (1.14)

It is the first inverse path number of a right non-triple, and also the smallest one.
In (1.13), let t = 1 (6t− 1 = 5, the smallest right non-triple), we then have

n2 = 4m − 22m−1 + 1

3
. (1.15)

As m increases in sequence, we obtain the following infinite increasing sequence
which is composed of all the inverse path numbers of the right non-triple 5

3, 13, 53, 213, 853. . .

As the same, to do one forward operation for each of them they all return to the
second odd 5 in the basic sequence.
In the same way, from (1.13) we can also derive a formula of the relationship
between two adjacent inverse path numbers in a sequence obtained from the right
non-triples as below

n
2,m+1 = 4n

2,m + 1. (1.16)

In all sequences which are obtained from the right non-triples, two adjacent inverse
path numbers satisfy (1.16). By (1.11) and (1.16), we have

ni,m+1 = 4ni,m + 1, (1.17)

where i = 1, 2. From (1.17), we can see that any inverse path number sequence is
an infinite increasing sequence.

Corollary 1.3. In a sequence, there is a triple in every three consecutive inverse path
numbers.

Proof. Let a triple be 3t, where t takes odds. Thus using (1.17) we can get one by one
three consecutive inverse path numbers after 3t as follows

� the first 4(3t) + 1 = 12t+ 1 = 3(4t+ 1)− 2 it is a left non-triple,
� the second 4(12t+ 1) + 1 = 48t+ 5 = 3(16t+ 1) + 2 it is a right non-triple,
� the third 4(48t+ 5) + 1 = 192t+ 21 = 3(64t+ 7) it is a triple.

This is the order of every three consecutive inverse path numbers in any sequence.
Using this property, we can easily determine whether a non-triple is a left one or right
one.

Remark. Expanding n1 in (1.6) and n2 in (1.13) out for any t ≥ 1 and m ≥ 1, the
odds of them just be all of the odds in the odd set, but we still needs a proof because
this argument is the key to proving this conjecture. Here, we further analyze this issue.
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From lemma (1.2) we know that the inverse path numbers of any non-triple form a
sequence in which every two adjacent inverse path numbers satisfies (1.17), and we
have two first inverse path numbers 8t−7 from (1.7) and 4t−1 from (1.14). The odds
from 8t− 7 and 4t− 1 for any t ≥ 1 is a part of the all odds in the odd set. It is clear
that the rests is 8t−3 for any t ≥ 1. To verify. We let the odds be represented as 2t−1
for any t ≥ 1, where t ∈ N+, and let the inverse path numbers in any sequence except
the first be T (t), then by (1.17) we have

T (t) = 4(2t− 1) + 1 = 8t− 3.

Based on the starting odds 1 of 8t − 7 and 5 of 8t − 3, and the same gap of 8, it is
not difficult to see that they can be represented as 4t − 3. As 4t − 1 − (4t − 3) = 2,
thus we obtain the continuous odd series, that is, we get any odd in the odd set. For
this issue, we will still analyze in Theorem 1.5.

Now we analyze the continuous inverse operations starting with the odd 1. By odd
1 we get the basic sequence, for all the non-triples in the basic sequence except the
odd 1 we can get countless sequences (Lemma 1.2). To take it repeatedly we can get
continuous inverse operation paths. We skip the triples in any sequence. If there has
not any cycle in the continuous inverse operation paths, then all the paths will tend to
infinity because the quantity of the odds smaller than a given odd is finite.
Lemma 1.4. Any two inverse path numbers from the same or different sequences are
not equal to each other.

Proof. From (1.17) we can see that there has not any two equal inverse path numbers
in a sequence. Suppose n1(t1,m1) = n2(t2,m2), then by (1.6) and (1.13) we have

22m1+1(t1 − 1) +
22m1 − 1

3
= 22m2t2 −

22m2−1 + 1

3
, (1.18)

or
12 · 4m1(t1 − 1) + 2 · 4m1 = 6 · 4m2t2 − 4m2 ,

that is
4m1(12t1 − 10) = 4m2(t2 − 1). (1.19)

If m1 = m2, by (1.19) we have

12t1 − 10 = 6t2 − 1, (1.20)

that is
2(2t1 − t2) = 3, (1.21)

based on parity properties, we can see that (1.21) does not hold for positive integers.
If m1 > m2, by (1.19) we have

4m1−m2(12t1 − 10) = 6t2 − 1, (1.22)
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we can also see that (1.22) does not hold for positive integers.
If m1 < m2, by (1.19) we have

12t1 − 10 = 4m2−m1(6t2 − 1), (1.23)

as 4m2−m1(6t2 − 1) ≡ 0 (mod4), but 12t1 − 10 ≡ 2 (mod4), thus (1.23) does not hold
for positive integers.
Thus, by (1.21), (1.22) and (1.23) we have n1 ̸= n2. In the same way, it can be
proven that any two inverse path numbers from two different sequences which are both
obtained from two different left non-triples or right non-triples is also unequal.

Theorem 1.5. There are all of the odds in the continuous inverse operation paths
and the Collatz conjecture holds.

Proof. From Lemma 1.4 we can see that there has not any cycle in any continuous
inverse operation path starting with the odd 1 or another (if it is a triple, to take its
next inverse path number using (1.17)), thus any path will tends to infinity, and to do
continuous forward operations for any odd obtained in the paths, it will return to the
odd 1 or the starting odd. If there is an odd missed in one of the paths starting with
the odd 1, it also will return to the odd 1 when doing continuous forward operations
for it as its continuous inverse operation paths tend to infinity, thus it must also be at
one of the inverse operation paths. From this we can draw a last conclusion that we can
obtain any odd in the inverse operation paths and thus the conclusion in the remark
holds, that is, n1 and n2 exactly contain all odds. From all odds obtained we can get
all evens if to multiply with 2k in (1.1) for each odd, thus we can get any positive
integer. As to do continuous forward operations for any positive integer obtained in
the paths, it will return to the odd 1, thus the Collatz conjecture holds.
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