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Abstract

In the standard transformer architecture, in-
creasing model parameters leads to linear
growth in computational cost and activation
memory. To address this issue, we propose
a novel Infinite Parameter Large Language
Model (IP-LLM) architecture that decouples
model size from computational cost and de-
vice memory. Existing large language models
are all fixed-parameter models, while human
knowledge is infinite and expands daily. Finite
parameters are inherently limited in their capac-
ity to accommodate this boundless knowledge.
Our IP-LLM architecture can potentially ac-
commodate infinite knowledge, resolving this
issue and laying the foundation for realizing a
truly omniscient and omnipotent artificial gen-
eral intelligence in the future.Our architecture
surpasses MOE in performance while requiring
significantly less memory.

1 Introduction

Scaling laws for neural language models show the
power of scaling (Kaplan et al., 2020; Hoffmann
et al., 2022): increasing the number of parame-
ters, amount of training data, or the computational
budget has proven to be a reliable way to improve
model performance. However, there is a linear
relationship between computational footprint, as
measured by FLOPs and device memory consump-
tion, and parameter count.

To decouple computational cost from parame-
ter count, we group the parameters of large mod-
els, each group storing a specific type of knowl-
edge. During inference, only the relevant param-
eter group participates in computation, reducing
both computational load and device memory con-
sumption.

We partitioned the data into 22 categories and
designed a 24B-parameter model. The model com-
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Figure 1: Parameters A, B, C, and D store knowledge
for different categories. When reasoning about Category
A problems, only parameter A needs to be loaded into
memory, eliminating the need to load all parameters.

prises 24.5 billion parameters, of which 7.2 bil-
lion are dedicated to the base component, 0.7 bil-
lion to the routing component, and the remaining
16.6 billion are distributed across 22 distinct cate-
gories. During inference, only the 7.2B base, 0.75B
router, and the parameters for a single data category
(0.75B) are loaded into memory, totaling 8.7B. This
represents a 65% reduction in inference memory
consumption compared to a fixed 24.5B parameter
model.

This paper makes the following contributions:

• Inspired by the routing mechanism of MoE,
this paper proposes a novel approach that
leverages all model parameters for routing,
instead of a subset, significantly enhancing
routing accuracy. Our approach first classi-
fies the input text into a specific domain based
on model predictions, subsequently employ-
ing parameters specialized for that domain to
perform inference.

• We proposes a segmented pretraining frame-
work, separating the pretraining process into
two phases. The first phase emphasizes the ac-
quisition of foundational linguistic knowledge,
including lexical, grammatical, and syntactic
elements, as well as basic world knowledge.
The second phase then focuses on learning



knowledge built upon this linguistic founda-
tion.

• We propose a novel infinite-parameter large
language model capable of lifelong learning
without catastrophic forgetting, by strategi-
cally training new knowledge onto fresh pa-
rameters.

• This innovation results in a drastic reduction
in both training cost and inference memory
consumption for the large language model.
We observe a significant decrease in training
cost, while inference memory consumption is
lowered by approximately 65%.

2 Related Work

Several recent works (Shazeer et al., 2017; Lep-
ikhin et al., 2020; Fedus et al., 2022; Zhou et al.,
2022) have adopted the Mixture-of-Experts (MoE)
architecture to decouple computational cost from
parameter count.

(Geva et al., 2021; Dai et al., 2022) argue that
feedforward (FFW) layers store factual knowledge
(Geva et al., 2021; Dai et al., 2022).These lay-
ers constitute approximately two-thirds of the to-
tal parameters in a transformer architecture. The
Mixture-of-Experts (MOE) architecture deviates
from the traditional single dense feedforward net-
work (FFW) by utilizing a set of sparsely activated
expert modules, frequently implemented as FFWs.

Clark et al. (2022) investigated the scaling prop-
erties of MoE language models, demonstrating that
increasing the number of experts can effectively
enhance performance without incurring additional
inference costs. However, their experiments re-
vealed that the efficiency gains offered by MoEs
plateau after reaching a particular model size.

More recently, Krajewski et al. (2024) identi-
fied that this plateauing phenomenon was a con-
sequence of using a fixed number of training to-
kens. Their findings demonstrate that when the
number of training tokens is optimized for compu-
tational efficiency, MoEs consistently outperform
dense models in terms of FLOPs (floating-point
operations) per parameter. Furthermore, they intro-
duced granularity, the number of active experts, as
a novel scaling dimension. Their empirical studies
revealed that employing higher granularity leads to
improved performance.

3 Task Definition

Our model utilizes a mechanism for selective pa-
rameter loading during inference, enabling success-
ful reasoning even under memory constraints. Only
a small subset of parameters is required to be re-
tained in memory.

We define a given model f that comprises three
specified models fbase,frouter,fA,fB ,fC and a set
of input-output pairs (x, y). we can define this
process as:

x′ = fbase(xi) (1)

fbase represents the inference process of the pa-
rameters in the base part. The input x is subject to
parsing via the fbase

R = frouter(x
′) (2)

frouter represents the inference process of the pa-
rameters in the routing part. After passing through
the frouter, we obtain R, which signifies the cate-
gory to which the input belongs.

f(xi) =



fA(x
′) if R = TokenA

fB(x
′) if R = TokenB

fC(x
′) if R = TokenC

...

x′ if R ∈ other

(3)

fA represents the inference process of the param-
eters that encode domain knowledge from A.fB
and fC follow the same pattern. Based on the deter-
mined category, it select corresponding parameters
for inference.

4 Training strategy

The dataset is comprised of two distinct compo-
nents. The first part focuses on training a base
model, emphasizing foundational linguistic knowl-
edge including vocabulary, grammar, syntax, and
basic world knowledge. The second part consists
of domain-specific knowledge, used to train the
router and specialized parameters for each domain.

As a first step,in consideration of computational
resource constraints, we employ the Qwen1.5-beta-
7B-Chat (Bai et al., 2023) model ,a pre-trained
language model with strong performance in various
tasks,as the base model.

Next, we introduce four additional transformer
layers after the final layer of the base model. These



Figure 2: Comparison

layers are then trained on domain-specific data to
acquire specialized knowledge, while the remain-
ing parameters are frozen. After training, these new
transformer layers are updated, and the process is
repeated for other domains.

After training, the new four transformer layers
replace the previous four layers, and the process is
repeated for other domains.

Finally, we add four transformer layers to the
final layer of the base model to serve as a router.
This router is trained using a dataset composed of
all domain-specific data, where each data point is
labeled with its corresponding domain.

5 Experiments

5.1 Datasets

To ensure fair comparison, we use our proprietary
evaluation pipeline. Performance is assessed across
a diverse array of tasks categorized as follows:

Popular aggregated results:
MMLU (Hendrycks et al., 2020) (5-shot)

Math: GSM8K (Cobbe et al., 2021) (8-shot)
with maj@8 and MATH (Hendrycks et al., 2021)
(4-shot) with maj@4

The evaluation results, shown in Figure 2,
demonstrate a significant performance improve-
ment in our trained model compared to the original
model.

6 Conclusion

In this paper, we introduce a novel architecture
for large language models that offers significant
advantages in terms of reduced device memory
requirements for both training and inference, while
also enabling the model to learn new knowledge
without catastrophic forgetting.

7 Limitations

In this work, we did not train the base model from
scratch due to computational constraints. Training
the base model from scratch might further enhance
performance. We will address the issue of multi-
domain knowledge fusion in a subsequent paper.
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