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Abstract. In this paper we show that a unification of gravity and inertia, as it is

achieved in the context of a correct implementation of Mach‘s principle, strongly

suggests that elementary particles are oscillatory solitons in the gravitational field

(or more general: a unified field including the gravitational one). We show how

the properties of elementary particles then give rise to the phenomenology of

special relativity as well as quantum mechanics in the usual classical framework

and in flat, 3-dimensional Euclidean space. The oscillatory solitons exhibit the

same structure as was originally postulated by De Broglie for the quantum wave

function in his double solution theory. This structure of the elementary particles

naturally gives rise to elementary quantum phenomena, like their wave-particle

duality, the uncertainty relation, the De Broglie relations E = ℏω and p = ℏk
and discrete energy levels for bound states. A formula for h can in principle

be obtained. This opens up the possibility of explaining the origin of quantum

mechanics in a purely classical framework. At the same time, also the special rel-

ativistic phenomena like length contraction, time dilation, the relativistic energy-

momentum relation, and the apparent constancy of the speed of light can be

explained from just the structure of the solitons in flat, 3-dimensional space. The

speed of light is just an apparent constant when measured with co-moving rulers

and clocks, provided by the elementary particles themselves. It obeys the usual

vector addition, just like all other velocities and vectors do, too. Ultimately, mass

itself can be explained as entirely of (gravitational) field origin, as the field en-

ergy which is concentrated within the soliton. This will also yield an explanation

for the energy-mass equivalence. No additional scalar field like the Higgs field is

needed. Further, also problems like the twin paradox, the measurement problem,

and the infinite self-energies of elementary particles can be resolved in a soliton

model.
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1. Introduction

An explanation of inertia as of gravitational origin and inertia in non-

relativistic, classical mechanics, as was attempted in [1-7], and successfully in [6,7],

has far-reaching consequences for the nature of mass, the structure of elementary

particles, and the origin of relativistic and quantum effects. The origin of inertia has

long been an unsolved problem in physics. Already very early it was assumed, based

on the empirical equality of gravitational and inertial accelerations and masses, that

inertia has its origin in gravity [8,9]. Indeed, many attempts were undertaken to

explain gravity and inertia from a unified law in classical, non-relativistic physics.

They assumed velocity-dependent gravitational potentials, only containing relative

quantities (to fulfill Mach’s principle), like the Weber potential [2-5]

VWeber = −Gm1m2

r12
(1− ṙ212

2c2
), (1.1)

or the Riemann-potential [6,7]

VRiemann = −Gm1m2

r12
(1− v2

12

2c2
). (1.2)

Here, r12 = |r1 − r2| and v12 = v1 − v2 , G is the gravitational constant, and c is

the speed of light. It was shown, that the velocity-dependent part of the potential

then gives rise to an inertial term, instead of the usual Newtonian kinetic energy.

Although the Weber potential (1.1) leads to anisotropic inertial masses and is thus

ruled out by experiment, the Riemann potential indeed allows us to explain inertia

as entirely of gravitational origin, as was shown in [6,7]. As a consequence of such a

theory, inertial mass is no longer an intrinsic, a priori property of the particles, but

a derived quantity from the gravitational mass and the gravitational field itself. In

concrete terms, in [7], we found that the inertial mass m∗k of a particle k is given

by1)

m∗k =
2φk

c2
mk (1.3)

Here, mk is the gravitational mass, c the speed of light and the gravitational po-

tential

φk =
∑
j ̸=k

mj

rkj

As a consequence, inertial mass is no longer an intrinsic property of the particles.

Unlike in current theories, where inertial mass is an a priori property of the particles,

which they possess independently of the existence of any fields, the situation has

1Similar expressions were also obtained from the other theories based on the Weber potential
(1.1), however, those expressions were tensorial
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now changed completely. It is a derived property from their gravitational mass

and other field quantities. Especially, if there were no gravitational field, a particle

would possess no inertial mass, as follows directly from (1.3). Only gravitational

mass remains as an intrinsic, a priori property of the particles. But this mass only

has a meaning in relation to the gravitational field. The only thing it does is quantify

the strength of the coupling to the gravitational field. Without a gravitational field,

the gravitational mass has no meaning at all. This puts (gravitational) mass and

gravitational field on the same fundamental level: There is no gravitational field

without mass, but, in turn, the concept of mass is meaningless in the absence of a

gravitational field. Thus, it is an obvious conclusion that mass is nothing more than

a specific manifestation of the gravitational field itself. Particles are then a kind of

localized ”lump” of field energy in the gravitational field. The natural candidate

for such a ”lump” is the soliton, since it possesses all the properties that particles

have: It is a stable, localized wave packet that propagates shape-persevering and

even retains its form after collisions with other solitons.

This also connects to the double solution theory of De Broglie for a determin-

istic description of quantum mechanics [10]. His initial idea for matter waves [11]

was that every particle possesses an internal oscillation, described by some periodic

function, which De Broglie wrote as

ψ = a0 exp

(
i

ℏ
Et

)
(1.4)

with the oscillation frequency ω = E0/ℏ = m0c
2/ℏ and a0 a constant amplitude.

For a particle moving with a velocity v this expression then reads

ψ = a0 exp

(
i

ℏ
(Et− p · x)

)
. (1.5)

This ψ wave was later further developed by Schrödinger in his wave mechanics. De

Broglie soon considered the description with just this ψ wave as incomplete. He

wrote that ‘the plane monochromatic ψwave [...] did not actually describe reality,

but that it could give in a precise way only the phase of the wave phenomenon

surrounding the particle, since the constant amplitude a could not represent the

true amplitude of this phenomenon.’ [10, p. 8]. Instead, he argued, that to every

such ψ wave should correspond a wave

u(x, t) = f(x, t)ψ(x, t), (1.6)

with f being an amplitude function, replacing the constant a0. This function u is

then ‘the true representation of the physical entity ’particle’, which would be an



5

Figure 1. The breather solution (1.8) for the parameters β = 0.6 ,
q = 1.2 , d = 0.2.

extended wave phenomenon centered around a point, which would constitute the

particle in the strict sense of the word.’The particle is then represented ‘by a very

small singular region in space where the function u would take a very large value

and obey a non-linear equation, of which the linear equation of wave mechanics

would only be an approximate form valid outside the singular region. ’ [10, p. 99].

This behavior is guaranteed by the function f, which will have its highest value at

the ”position” of the particle, and fall off towards zero far away from it.

The form described by De Broglie is exactly the structure that a specific

type of soliton possesses, namely the breather. Breathers are localized lumps of

energy in space and oscillatory in time. This was first noticed by Enz [12] for the

one-dimensional Sine-Gordon equation

□φ =
1

d2
sin(φ). (1.7)

Here, d is some length parameter. This equation has breather solutions given by

φ(x, t) = 4 arctan

cot(q)
cos

(
γ sin(q)

d
(ct− xβ)

)
cosh

(
γ cos(q)

d
(x− vt)

)
, (1.8)

with v the velocity of the breather, β = v/c and γ = 1/
√

1− β2. q is a real

parameter and one can see that d is a 1/e radius of the breather. We can see that

the solution indeed has the form (1.6) proposed by De Broglie. We can identify the

internal oscillation as

ψ = cos

(
γ sin(q)

d
(ct− xβ)

)
, (1.9)

and the amplitude function f as

f = cot(q) sech(
γ cos(q)

d
(x− vt)). (1.10)
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It has its highest value at the particle’s position x = vt and falls exponentially far

away from it. We can thus write

φ = 4arctan(u).

The function arctan doesn’t change the general structure of the solution since it is

strictly monotonic and point symmetric; thus, it especially maps zero to zero. φ and

hence also u obeys a non-linear equation, for the former this is eq. (1.7). The struc-

ture of the breather solution (1.8) is not specific to the Sine-Gordon equation, but

general for breather solitons. They are localized lumps of energy in space and oscil-

latory in time, thus they always possess the form (1.8) with an oscillatory function

ψ and an amplitude function f which falls off to zero far away from the ”position”

of the lump. Further, solitons are an intrinsically non-linear phenomenon; they owe

their stability to a balance between dispersion and non-linear effects. Thus, they

always obey a non-linear equation. This is exactly the structure proposed by De

Broglie. It thus suggests itself that particles are breather solitons in the gravita-

tional field, or more generally, a unified field that will eventually include gravity

and electromagnetism. A famous objection against soliton models of elementary

particles, originally put forward by Derrick [13], does not apply to breathers. They

are oscillatory and thus are no stationary solutions. This was already pointed out

by Derrick himself.

In this paper, we want to show how from such a breather structure of the

elementary particles, all special relativistic as well as quantum phenomena can

be derived in a purely classical framework, in flat, three-dimensional Euclidean

space. They arise solely from the structure of the elementary particles. Their

soliton nature naturally gives rise to their wave and particle properties, explaining

the wave-particle duality. Further, it is not necessary to introduce any notion of

particle or mass a priori. Instead, both can be derived from purely fields and energy.

This will allow us to actually explain the origin of the energy-mass equivalence by

showing that the expression

m =
E

c2
,

takes the role of the mass, with E the field energy of the soliton. The latter will

have a well-defined, finite value because solitons are extended particles, removing

the problem of infinite self-energies. Finally, the breather-soliton nature of the

particles will allow us to explain the origin of the De Broglie relations

E = ℏω,
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p = ℏk,

and the quantum constant ℏ. We show, that a formula for ℏ can be obtained from

a breather-soliton theory. The form, which the obtained formula possesses agrees

with the known ’coincidence’

ℏ ∼ mprpc, (1.11)

with mp and rp the mass and radius of the proton.

It must be emphasized that we do not possess the final field equations with

the corresponding breather-soliton solutions yet. This paper aims to demonstrate

how such a theory would work in principle and what its possibilities are. Finding

the correct field equations and breather-soliton solutions will be a task in future

research.

2. Particles as breather-solitons in the gravitational field

We now want to demonstrate how the idea of particles being a part of the

gravitational field can be expressed mathematically. Therefore, we consider the

simplest relativistic field equation, which takes into account a finite propagation

speed of light

□φ = 4πGρ.

If we assume mass now as a part of the gravitational field, we can write this equation

in the form

□φ = − 1

d2
V ′(φ), (2.1)

where the field potential V is some function of the gravitational field φ, and d is a

length parameter. This equation now for example possesses traveling wave solutions

for any function V. They are implicitly given by

1√
2

∫
1√
V (φ)

dφ =
1

d
γ(x− vt− x0),

If the solution φ satisfies the condition that it falls off to zero far away from the

’position’ x = vt+ x0 of the particle, the solution is a solitary wave. One example

is the non-linear Klein-Gordon equation, with the potential V given by

V (φ) = aφ2 − bφn, n ∈ N

with a, b > 0 real parameters2). The solitary wave solutions to this potential are

given by

φ(x, t) = [
a

b
Sech2(

√
a

2
(n− 2)

γ

d
(v − vt− x0))]

1
n−2 . (2.2)

2For a < 0 or b < 0 and n even, the solutions are imaginary, and thus unphysical



8

-4 -2 2 4
z

0.2

0.4

0.6

0.8

1.0

φ

Figure 2. The solitary wave solution (2.2) for the values a=b=1
and n=4. It is plotted the field amplitude φ against the distance
z = γ

d
(x− vt− x0) to the position of the particle.

For n > 2, they fulfill the requirement of falling off to zero far away from the

particle’s position, thus, they indeed are solitary waves. They describe a localized

lump of field energy in the gravitational field, propagating along the trajectory

x = vt + x0. Such a lump of field energy then represents an (extended) particle.

The solution (2.2) is plotted in figure 2. To describe a universe consisting of N

particles, fully integrable equations are needed with N soliton solutions (cf. section

6). In such solutions, the solitons do, unlike it is the case for solitary waves, retain

their original shape after collisions with each other, which is an essential property

of particles. Such equations of the form (2.1) are for example the Sine-Gordon

equation. But also three-dimensional equations with oscillatory soliton solutions,

as demanded by De Broglie, have been found for various V [14]. Searching and

finding soliton solutions to equations of the form (2.1) is a subject of current, active

research. Finding the correct field equations and the corresponding breather-soliton

solutions remains a task to be done. For now, we will assume they exist and focus

on showing the capabilities of such a breather-soliton theory of elementary particles.

As we already elaborated, the solutions have the form (1.6)

φ(x, t) = φ0(ψ(
ct

d
)f(

r

d
)) (2.3)

for a breather resting in the coordinate origin. Here, r = |r| is the distance and φ0

is a possible scaling function like the arctan in the Sine-Gordon breather, which we

allowed for more generality. The function ψ is periodic in time and the function

f decays towards zero as r goes towards infinity. For simplicity, we also assumed
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that the amplitude function is spherical; its decay depends only on the distance

from the ’position’ of the particle. For a moving breather, we then have due to the

Lorentz-symmetry of the underlying field equation (2.1)

φ(x, t) = φ0(ψ(
γ

d
(ct− β · r))f(

√
γ2(r|| − vt)2 + r2⊥

d
)). (2.4)

Here, r⊥ and r|| are the position vectors perpendicular and parallel to the direction

of motion of the particle. In the following two sections, we’re going to show now,

how the phenomenology of special relativity and quantum mechanics can be derived

from this breather-structure of the particles.

3. Relativistic phenomena

We first want to show that all special relativistic phenomena come out as a

consequence of the breather-soliton nature of the elementary particles in flat, three-

dimensional Euclidean space. No Minkowski space has to be introduced. Neither

time dilation, length contraction, nor the constancy of the speed of light have to be

postulated, but can be derived from the breather-soliton nature of the particles. The

same also applies to relativistic mechanics. Because the particles are described as a

part of the field, it is unnecessary to make mechanics Lorentz-symmetric separately,

as was done by introducing special relativity. The Lorentz-symmetry of the field

equations directly results in the Lorentz-symmetry of particle (soliton) mechanics.

The soliton theory also allows for a resolution of the twin paradox: All relativistic

effects occur when a particle moves relative to the rest frame of the field, which

serves as an absolute rest frame like Lorentz’s aether.

3.1. Relativistic kinetic energy and momentum. We start with the expres-

sions for the kinetic energy and momentum. The field energy and momentum

derived from equation (2.1) are given by the expressions

E =

∫
R3

1

2
(
1

c2
(
∂φ

∂t
)2 + (∇φ)2) + 1

d2
V (φ) d3x, (3.1)

p =
1

c

∫
R3

(
∂φ

∂t
∇φ) d3x. (3.2)

Those expressions form a 4-vector [15], that is they transform under Lorentz trans-

formations into a frame moving with a velocity -v as

E → γ(E + vp), (3.3)

p → γ(p+
v

c2
E). (3.4)
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Therefore, we have for a resting breather

E = E0, (3.5)

p = 0, (3.6)

with E0 its rest energy. For a moving one, we have

E = γE0, (3.7)

p =
E0

c2
γv. (3.8)

Those are the well-known relations for the relativistic energy and momentum of a

moving particle, with an important difference. The particles are part of the fields

and are not postulated to exist a priori. The energy E0 is part of the field energy

and is calculated via equation (3.1). Further, we have not introduced any notion

of mass a priori. From equation (3.8) we can see that the role of the rest mass is

played by

m0 =
E0

c2
(3.9)

Taking (3.7,3.8) and (3.9) together, we obtain the relativistic energy-momentum

relation

E =
√
m2

0c
4 + c2p2 (3.10)

Thus, particle mechanics inherit their Lorentz-covariance from the Lorentz-

symmetry of the underlying field equation. This doesn’t need to be done ’by

hand’, like was done with the introduction of special relativity. When at the end of

the 19th century, physicists saw that Maxwell’s equations were Lorentz-invariant,

but mechanics were not, mechanics was made Lorentz-covariant by introducing

special relativity. If particles are solitons in the (gravitational) field, then the

Lorentz-covariance of mechanics directly follows from the Lorentz-invariance of the

field equations.

3.2. Length contraction. We now show how the phenomenon of length contrac-

tion arises from the soliton nature of the particles. For simplicity, we first show this

in the example of the one-dimensional Sine-Gordon breather 3), and later for the

general breather-type soliton (2.4).

The elementary particles themselves provide elementary rulers. Their “size”

L is characterized by a certain α (e.g. 1/e) decay of the amplitude function f (and

thus also the whole function φ ) of the breather soliton, as is shown in fig. 3 below.

3This was done in a different way also by Günther [16,17] in the context of the Sine-Gordon model
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Figure 3. The amplitude function (1.10) is plotted against the dis-
tance z = x − vt − x0 to its “position” x = vt + x0; exemplarily for
the values q = π/4 and d = 1/

√
2. The particle’s “size” is defined as

the length L at which the value of the field amplitude has dropped to
a fraction α < 1 of its highest value at x = vt+ x0.

We have at a distance z = x − vt − x0 = ±L/2 away from the ’position’ of the

breather for the amplitude function (1.10)

f(z = ±L
2
) = cot(q) Sech(

γ cos(q)

d

L

2
) = αf(0) = α cot(q).

Solving for L gets us

L =
2d

γ cos(q)
sech−1(α)

For a resting breather, we then have

L =
2d

cos(q)
sech−1(α) =: L0, (3.11)

since γ = 1. For a moving one, we get

L = γ−1L0 =
√

1− β2L0. (3.12)

Thus, every moving particle is contracted by the known Lorentz factor. For a gen-

eral, three-dimensional breather, we can define its length in the same as above. How-

ever, we have to distinguish between its length L|| in the direction of the breather’s

motion, and L⊥ the one perpendicular to it. For the first, we have at a distance

L/2 away from the position of the breather in the direction of motion r⊥ = 0 and

r|| − vt = ±L/2 and thus

f(
γL||
2d

) = αf(0) ↔ L|| = γ−12df−1(αf(0))

For a resting breather, we therefore have

L|| = 2df−1(αf(0)) =: L0. (3.13)

For a moving one, we get

L|| = γ−1L0 =
√

1− β2L0. (3.14)
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On the other hand, for the second case, we have at a distance L/2 away from the

position of the breather perpendicular to the direction of motion r⊥ = ±L/2 and

r|| − vt = 0, thus

f(
L⊥
2d

) = αf(0) ↔ L⊥ = 2df−1(αf(0)) = L0. (3.15)

The three-dimensional breather is Lorentz-contracted only in the direction of motion

by the known Lorentz factor but remains unchanged perpendicular to it.

Since all macroscopic rulers and also all other material objects are composed

of elementary particles, they inherit this behavior. It must be noted, that length

contraction here is a real physical effect. It is not space contracting, but matter itself

contracts when it moves. Further, like in special relativity, the effect is unobservable

for the observer when he uses comoving rulers to measure objects at rest in his frame:

Since the rulers themselves change their length by the same factor as the objects,

he always measures the same size for any object as he would measure if his frame,

together with the object, were at rest.

3.3. Time dilation. We now turn to the phenomenon of time dilation. For simplic-

ity, we again first show this for the Sine-Gordon breather, and a general breather-

type soliton afterwards. As we already established, every particle (breather), pos-

sesses an internal oscillation described by the oscillatory function ψ. These inter-

nal oscillations of the particles provide elementary clocks. For the Sine-Gordon

breather, this function was given by (1.9)

ψ = cos

(
γ sin(q)

d
(ct− xβ)

)
.

If the breather rests, we have

ψ = cos

(
sin(q)

d
ct

)
,

from which we can read of the oscillation frequency

ω =
sin(q)c

d
=: ω0. (3.16)

If the same breather moves with a velocity v, we have at any fixed position on the

moving breather r = vt+ a0, and thus

ψ = cos

(
c sin(q)

γd
t− γ sin(q)

d
β · a0

)
(3.17).

From this, we can read off the frequency of the moving breather

ω =
c sin(q)

γd
= ω0

√
1− β2. (3.18)
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Thus, a moving elementary clock runs slower by the inverse Lorentz factor. The

second term is a trivial phase, which just depends on which co-moving position on

the moving particle we evaluate the frequency. As one can see, the frequency itself

is independent of this position: The whole moving particle oscillates with the same

reduced frequency (3.18). For a general breather-soliton, we can do the same as

above. For a breather at rest, we have for the oscillatory function in (2.3)

ψ(
c

d
t).

This function oscillates with a frequency of4)

ω =
sc

d
=: ω0, (3.19)

with s a dimensionless parameter. An elementary clock at rest therefore ticks with

a frequency ω0 . We now consider the same breather moving again and evaluate

the periodic function at some fixed position r = vt+ a0 of it. We get

ψ(
γ

d
(ct− β · r)) = ψ(

c

dγ
t− γ

d
β · a0). (3.20)

Thus, the function ψ oscillates with a reduced frequency

ω =
sc

dγ
= ω0

√
1− β2. (3.21)

Since all matter is composed of elementary particles, all macroscopic clocks and

macroscopic processes inherit this behavior. As for the length contraction, this is

a real physical effect. It is not time running slower, but just all processes includ-

ing clocks. Again, this effect is unobservable for the observer when he measures

processes of objects at rest inside his moving frame, when he uses comoving clocks.

All comoving clocks run slower by the same factor as all processes, thus he always

measures the same time elapsing for any processes as he would measure if both were

at rest.

3.4. Lorentz transformation and Einstein velocity addition. From the

length contraction and time dilation effects derived in the two previous sections,

the Lorentz transformations and the relativistic velocity addition formula can be

derived. This was done in great detail by Günther[17] for the Sine Gordon model.

Since the derivations only rely on the elementary rulers and clocks exhibiting con-

traction and dilation as was derived in the previous two sections, the derivations

carry over to the general case considered here.

An important thing to point out though is how the Lorentz-transformations

and velocity addition formula come about. As we already pointed out, it is not space

4For the Sine-Gordon model, we have s = sin(q), and the period of the oscillating function P = 2π.
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and time changing in a moving frame, but the elementary rulers and clocks con-

tracting, respectively dilating. This allows for a very clear and simple explanation

of the origin of the Lorentz transformation, and especially where the difference to

the Galilean transformation arises from. We demonstrate this in the example of the

Lorentz transformation of the x-coordinate; the time-coordinate and the velocity

addition formula follow the same underlying idea (cf. Günther[17] ).

Take two reference frames S and S’, with S’ moving with a velocity v relative

to S. Then the Galilean transformation between the two reads

x′ = x− vt

Now, since the observer moving with S’ has his rulers contracted according to (3.12),

he will measure for the same distance

x′ = γ(x− vt)

which is the Lorentz transformation of x. It naturally arises due to the change

of the (elementary) measuring instruments in the moving frame and the resulting

changes in the measured quantities. Apart from that, the normal Euclidean vec-

tor addition holds. The difference between the Galilean transformation and the

Lorentz transformation is a pure measurement-effect coming from the used rulers

and clocks changing. The same also applies to the relativistic velocity addition:

The usual vector addition of velocities remains valid, the difference is again a pure

measurement effect, coming from the use of comoving rulers and clocks.

3.5. Apparent constancy of the speed of light. From the derived phenomena

of time dilation and length contraction, we can show now that the speed of light

appears constant in any moving reference frame. Unlike in special relativity, this

does not have to be postulated either, it comes out as a natural consequence of the

properties of the solitons providing elementary clocks and rulers. The speed of light

is only apparently constant when measured with comoving rulers and clocks, but

otherwise, again, obeys the normal velocity addition. This was shown similarly also

by Günther [16,17] in the context of the Sine-Gordon model.

Before we start showing this, we first have to remark, that it is not possible

to measure the one-way speed of light, but only the two-way speed of light can be

measured directly. Any measurement of the one-way speed of light depends on a

convention as to how to synchronize clocks at the source and the detector. Thus,
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the only thing required to show is that the measured two-way speed of light equals

c in any frame of reference.5)

To show this, consider a test section of rest length ∆x0 . A light signal is

sent back and forth and the time it takes to get back to the start is measured. The

measured speed of light is always

c =
2L

T
, (3.22)

with L the measured length and T the measured time. If the section is at rest, the

time needed for a light signal to travel back and forth within the test section is

∆t =
2∆x0
c0

.

The measured time is just T = ∆t, and the measured length of the section L = ∆x0.

The measured speed of light then is thus

c =
2∆x0
∆t

= c0.

Consider now the test section moving with a velocity v, and a co-moving experi-

menter. In this case, the time the light signal needs to travel back and forth is

∆t→ =
2∆x

c0 − v
, (3.23)

∆t← =
2∆x

c0 + v
, (3.24)

∆t = ∆t← +∆t→ =
2∆x

c0

1

1− β2
=

2∆x0
c0

γ.

In the last step, we have made use of the fact that the test section is contracted

by ∆x =
√

1− β2∆x0 according to (3.12). The time, measured again with a co-

moving clock, is reduced by T =
√

1− β2∆t, according to (3.21). Thus, we have

for the measured time

T =
√
1− β2∆t =

2∆x0
c0

The measured length for the test section stays L = ∆x0, since the rulers are con-

tracted by the same factor as the section. Thus, the experimenter will always

measure the same length for it, as was already pointed out in the section about

length contraction. This yields for the measured speed of light

c =
2L

T
= c0

Thus, we measure the same value for the speed of light in any frame. Notice, that we

assumed standard velocity addition to be valid for the speed of light, as is expressed

5It was shown by Günther that, like in special relativity, it is possible to choose the synchronization
convention in such a way, that also the one-way speed of light is the same in any moving frame
[17]
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by the equations (3.23-3.24). No assumptions about its constancy were postulated.

The fact that it appears constant in a moving frame is a natural consequence of

the rulers and clocks, provided by the elementary particles, changing in this frame,

according to what was demonstrated in section 3.2 & 3.3.

3.6. The twin paradox. The soliton model also allows for a satisfactory solution

to the twin paradox without relying on iffy assumptions about a very extraordinary

behavior of time dilation during accelerated motions. In a soliton model, all

relativistic effects, like time dilation, length contraction, mass increase, etc., always

occur when a particle moves relative to the rest frame provided by the field that

generates it. Therefore, the field plays the same role as an absolute rest frame,

like Lorentz’s aether. This immediately removes the twin paradox in the same way

Lorentz’s aether model does. Only the twin that moves relative to the absolute

rest frame of the field experiences time dilation, the other one doesn’t.

This concludes our section about the special relativistic effects. As we have

seen, all the phenomenology of special relativity comes out as a consequence of

the soliton properties. We emphasize again, that no Minkowski space is needed.

No change in time or space occurs in a moving frame of reference. It is just the

elementary particles that change their properties in a moving frame and thus

give rise to all the relativistic phenomena in flat, 3-dimensional Euclidean space.

Further, the Lorentz-symmetry of particle mechanics follows directly from the

Lorentz-symmetry of the field equations.

4. Quantum phenomena

Next, we will turn our attention to quantum phenomena. Like for the

special relativistic ones, they will come out entirely of the properties of the solitons

in a purely classical framework. It is then unnecessary to postulate the validity

of a special ’quantum mechanics’ at a microscopic scale. It will emerge by itself

from the soliton nature of the elementary particles. The soliton model explains the

wave-particle duality in a natural way since solitons are localized waves exhibiting

particle properties. Therefore, particles naturally possess wave and particle prop-

erties when described as solitons. Further, due to particles not being points, but

spread out distributions in space, one naturally obtains the uncertainty principle

via the bandwidth theorem. However, unlike in quantum mechanics, the waves are

not statistical in nature, but purely classical wavepackets of field energy. Further,

discrete energy levels can arise for bound states in the same way they occur for
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standing waves in classical mechanics. Of course, it has to be shown, that the

soliton model leads to the same quantitative predictions (especially for the energy

levels) as quantum mechanics, once the correct soliton equations are found. Also, it

is still unclear what spin, and therefore entanglement looks like in the soliton model.

4.1. The Uncertainty relation. The soliton model naturally gives rise to the

quantum phenomenon of uncertainty. The wave nature of the particles gives rise to

the uncertainty principle due to the bandwidth theorem for signals. Since a wave is

a spread-out phenomenon, one cannot simply ascribe a position to it, as one would

do for a point particle. Instead, one has to define its position as a suitable average

with the amplitude of the wave. Suppose our wave is given again by the function

φ(x, t). We can define the weighted average for some quantity g analogous to the

expectation value in quantum mechanics by

⟨g⟩ =
∫
R3 φ(x, t)

2g(x) d3x∫
R3 φ(x, t)2 d3x

, (4.1)

and the mean square deviation for position and wavenumber variables in the well-

known way as

∆x2 = ⟨(x− ⟨x⟩)2⟩, (4.2)

∆k2 = ⟨(k− ⟨k⟩)2⟩. (4.3)

k here is defined as the operator

k = −i∇,

just like in quantum mechanics. Then, the bandwidth theorem states the inequality

∆x2∆k2 ≥ 1

4
. (4.4)

This is exactly the Heisenberg uncertainty principle, apart from the De Broglie

relation p = ℏk. It comes out naturally just from the soliton nature of the particles.

For the De Broglie relations themselves, we will show in the next section, how

they emerge as a necessary consequence of breather solutions to relativistic field

equations. If one defines the mean square deviations for angular frequency and

time in the same way as done above for k and x as, with the frequency operator

ω = i
∂

∂t
,

then one also gets the second uncertainty relation

∆ω2∆t2 ≥ 1

4
. (4.5)
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This is again equivalent to the Heisenberg uncertainty relation for energy and time,

apart from the relation E = ℏω, which we will also derive in the next paragraph.

It must be emphasized again, that the average value (4.1) has no statistical

character, and neither has the function φ(x, t). It is just the weighted average with

the amplitude of the wave φ which is a classical ’lump’ of field energy, thus a real

wave in the classical sense.

4.2. The De Broglie relations. We are now going to show how the De Broglie

relations can be derived from the breather-soliton theory. For the Sine-Gordon

model, this was already shown by Enz [12]. We will show later, that this is not

restricted to the Sine-Gordon breather, but a consequence of the Lorentz-symmetry

of the underlying field equation when applied to a breather solution. Therefore, any

breather solution to a relativistic field equation provides the De Broglie relations.

We recall that for the Sine Gordon field, we had for the periodic function (1.9)

ψ(x, t) = cos

(
γ sin(q)

d
(ct− βx)

)
,

which described the internal oscillation of the particle. From this, we can read off

the frequency and wavenumber as

ω =
sin(q)c

d
γ, (4.6)

k =
sin(q)

cd
vγ. (4.7)

On the other hand, the energy and momentum of the breather can be calculated

using equations (3.1-3.2), which yields

E = 16d cos(q)γ, (4.8)

p =
E0

c2
vγ. (4.9)

From equations (4.6-4.7) and (4.8-4.9), we find the De Broglie relations

E = ℏω, (4.10)

p = ℏk, (4.11)

with Planck‘s constant h given by

ℏ =
E0d

sin(q)c
. (4.12)

The De Broglie relations are, however, not just coincidentally included in the Sine-

Gordon breather. All breather solutions to relativistic field equations exhibit them.

They are a result of the Lorentz-Symmetry of the underlying field equations. A
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resting breather has the general form (2.3)

φ(x, t) = φ(ψ(
ct

d
)f(

r

d
)),

where ψ is an oscillatory function periodic in time in the sense of De Broglie and

f is the corresponding function of spatially variable amplitude. Now, ψ has an

oscillation frequency ω=sc/d with s some dimensionless parameter. If we consider

the same breather moving, due to the Lorentz-symmetry of the underlying field

equation, we have for the periodic function

ψ(
γ

d
(ct− β · r)). (4.13)

From this, we can read off

ω =
sc

d
γ (4.14),

k =
s

cd
vγ. (4.15)

Recalling E = E0γ and p = m0γv , which are also valid again according to (3.7-

3.8), we obtain the relations (4.10-4.11) with h given by (4.12) (the parameters s

and d are, of course, different in general here). It is very interesting to compare the

expression (4.12) with the
”
coincidence“ (1.11)

ℏ ∼ mprpc =
Eprp
c

Since s ∼ 1, one can see that this expression has the same structure as (4.12).

In (4.12), E0 is the energy of the fundamental particle (the breather) and d its

1/e length, a fundamental length scale, entering via the field equation (1.7). The

’coincidence’ (1.11) has the same structure, with the fundamental particle being

the proton (or the neutron). This also suggests that protons and neutrons are

elementary particles in the soliton picture. It is remarkable and non-trivial, that

in all relativistic breather models, the expression for h depends on the rest-energy

and radius of a fundamental particle (the breather solution) in the exact same way

that is found in the
”
coincidence“ (1.11).

It is also interesting to notice, that the reason why breather solutions to

relativistic field equations exhibit the De Broglie relations, is the structure of the

Lorentz-Transformations, under which these equations are invariant. More pre-

cisely, the transformation of time

t→ γ(t− v · r
c2

)
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If the field equations would only exhibit Galilean symmetry, time would transform

as t → t and therefore (4.13) would yield neither of the De Broglie relations (4.10-

4.11). This is even more remarkable since the De Broglie relations are already

fundamental in non-relativistic quantum mechanics. It shows again, how quantum

mechanics and relativistic phenomena in a soliton theory have a common origin in

the breather structure of the elementary particles.

4.3. Discrete energy levels. The soliton model can also give rise to discrete en-

ergy levels for bound states. This discrete nature of the energy levels of bound

states can arise from the modes of the trapped breathers in a potential, similar

to the modes of a standing wave in classical physics, with a wave and a reflected

wave superimposed. As an example of how this works, we consider a Sine-Gordon

breather trapped in an infinite potential well of width L. The breather is reflected

at the walls of the well, resulting in a second breather, traveling in the opposite

direction with the same velocity and phase shifted by π. Thus, the entire solu-

tion is a two-breather solution to the Sine-Gordon equation, which can be found

analytically. This solution has to fulfill the boundary conditions

φ(0, t) = φ(L, t) = 0

for all times t, as well as satisfy the Sine-Gordon equation (1.7). The explicit

calculations are carried out in a separate paper [18], as they are a bit more technical.

Demanding that the solution fulfills the boundary conditions, one obtains

kL = nπ, n ∈ N, (4.16)

for the wavenumber k of the breather, as defined by equation (4.7). The solution is

then a breather oscillating back and forth between both ends of the potential well.

The condition (4.16) exactly agrees with the quantization condition derived from

quantum mechanics. If we combine this with the De Broglie relation (4.11) and

plug both in the relativistic energy-momentum relation (3.10), we obtain

En =

√
(m0c2)2 + c2ℏ2(

nπ

L
)2. (4.17)

Those are the well-known energy levels for the infinite potential well obtained from

the Klein-Gordon equation of relativistic quantum mechanics. To show that also

for more sophisticated potentials, in general, the energy levels agree with those of

the Klein-Gordon equation, remains a task to be done. Of course, this is to be

expected from the full theory.



21

4.4. The measurement problem. The soliton model can also resolve the mea-

surement problem. Or more precisely, it doesn’t arise in the first place. Since the

particles in the soliton model are real waves instead of probability waves, no ’col-

lapse’ occurs when a measurement is performed. The wavefunction does not collapse

to a point particle with a determined, discrete position or momentum, but instead

stays a spread out distribution in space, still fulfilling the uncertainty relation (4.4)

at every time.

Yet still, unlike in ’hidden variable theories’, there is no deeper reality be-

hind the wave. No discrete particle with a well-defined trajectory ’sits’ behind the

wave. The wave is the deepest reality, similar to the Copenhagen interpretation

of Quantum mechanics. However, unlike in Quantum mechanics, the wave is not

statistical, but a true, classical wave.

4.5. Bell’s theorem. This also brings us to Bell’s theorem, one of the major

bottlenecks for classical, deterministic theories of quantum phenomena. A final

discussion of this topic has to wait until it is clear what the mechanism for spin,

and thus entanglement in the framework of the soliton theory is. Nevertheless, it

is worth looking at what we already know about the soliton theory to shed light

on what a possible answer to the EPR experiment looks like. Therefore, we first

recall what the violation of Bell’s inequality implies that a quantum theory cannot

at the same time be deterministic and local. Here, it is especially important to

recall what deterministic means in this context: That behind the, according to

quantum mechanics, statistically distributed quantities (like position, momentum,

spin-direction, etc.) exist ’hidden variables’, possessing a well-defined, specific

value, like it is the case for a classical point particle moving on a well-defined

trajectory. That behind the quantum mechanical wavefunction ψ hides a deeper

reality, which cannot be known, due to, for example, unknown initial conditions,

like it is the case for the De Broglie-Bohm theory. As we already saw, this is

not the case for solitons. There are no hidden variables behind them. No deeper

reality hides behind the wave. Instead, the wave itself is the true reality, similar

to the Copenhagen interpretation of Quantum mechanics. Thus, the soliton

model is non-deterministic according to the definition given above, despite being a

purely classical theory. At every time, the particles obey the uncertainty relations

(4.4-4.5). Therefore, it is likely that the soliton theory will indeed violate Bell’s

inequalities in the same way as Quantum mechanics does.
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This concludes our section about quantum phenomena. We saw that basic

quantum phenomena like the wave-particle duality and uncertainty relation

arise naturally from a soliton model of particles in a purely classical framework.

Nevertheless, it is non-deterministic according to the definition used in the context

of hidden-variable theories. The solitons (the waves) are the most fundamental

nature; no deeper reality ’hides’ behind them, like, for example, hidden trajectories

of point particles. It was shown, how in principle discrete energy levels arise

for bound states, in the same way they do for standing waves. Finally, the

breather-soliton nature of elementary particles enables one to explain the origin

of the quantum constant h and another ’coincidence’ (1.11). This highly suggests

that particles indeed exhibit such a breather-soliton nature and that this is at the

heart of quantum mechanics.

5. Self-energy, the Coulomb singularity, and renormalization

Due to the particles not being points, but spread out distributions in space,

the soliton model immediately removes the problem of infinite self energies, as well

as the unphysical 1/r singularity in the potentials, be it gravitational or electro-

magnetic. As is well known, both problems can be tracked down to particles being

described as points. We will restrict ourselves here to the gravitational potential,

but all arguments apply to the electromagnetic as well. The energy of a mass

distribution in a stationary gravitational field is given by

E =
1

8πG

∫
R3

(∇φ)2 d3r. (5.1)

For a point particle, which we without loss of generality assume to be at the center,

the gravitational potential φ reads

φ =
Gm

r
,

which, if plugged into (5.1), yields an infinite energy. One can see, that this infinite

self-energy is a consequence of the likewise unphysical singularity of the 1/r field,

which in turn is a result of point particles being the source. This, one can easily

see by plugging the Dirac distribution into the equation for the potential

φ = −G
∫
R3

ρ(r′)

|r− r′|
d3r′. (5.2)

On the other hand, one can easily see that the potential (5.2), as well as its deriva-

tive, remains finite for r → 0 for any density which remains finite in this limit, too.

Now, a particle described by a soliton, obviously fulfills this requirement. There-

fore, the singularity in the potential as well as the resulting infinite self energy are
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removed. Indeed, as mentioned at the beginning, the solitons are part of the field.

Thus, the energy calculated by equation (3.1) contains both the combined energy of

the particle (the core field) and its (far-) field. As we saw, it yields a well-defined,

finite value for its rest mass. No renormalization is required.

It must be emphasized, that from a physical perspective, there is no reason

to demand that elementary particles are point-like, as is claimed in [19]. As is the

case in the soliton model, a particle can be at the same time elementary in the

sense that all other matter is built out of it, and still be extended and possess an

internal structure. At the same time, it is not ’built up’ of any more fundamental

building blocks, like for example point particles. As we already saw, the wave

(the soliton) is the most fundamental object; nothing else ’sits behind it’. The

assumption, that elementary particles are such whose ‘[...] mechanical state is fully

described by three space coordinates and three components of velocity’ [19, p. 53], is

invalid for solitons. Consequently, also the conclusion that an elementary particle,

if extended, would need to be undeformable (because otherwise it could not be

described by a single set of three space coordinates), is not correct. Indeed, solitons

deform under external perturbations and mutual collisions and retain their original

shape afterward. Thus, no instantaneous action at a distance needs to take place

between different ’parts’ of an extended particle, like this were the case if it indeed

consisted of rigidly moving sub-parts. Further, as was shown in section 3.1, the

solitons exhibit the known relativistic energy and momentum relations (3.7-3.8) as

a consequence of the underlying field equations. Thus, it is impossible to accelerate

them to the speed of light, or even beyond it, just as in special relativity.

6. N-soliton solution: The Quantum-relativistic N-particle model

In non-relativistic, classical mechanics, the universe is described by an N-

particle model. Many soliton equations possess analytic N-soliton solutions, as well

as N-breather solutions [20,21]. They are then the natural quantum-relativistic

generalization of the N particle model in classical mechanics. Those solutions de-

scribe particles (the soliton core fields), their (far-) fields as well as their mutual

interactions (and the resulting motion) in a single solution to the underlying field

equations. As an example, we give the N-breather solution of the 1-dimensional

sine-Gordon equation (1.7)

□φ+
1

d2
sin(φ) = 0.
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Its N-soliton solution is given by [21]

φ = arctan

(
fi
fr

)
, (6.1)

f = fr + ifi = W (ψ1, ..., ψN). (6.2)

Here, fr, fi denote the real and imaginary part of f and W is the Wronskian with

the entry vector ψ = (ψ1, ..., ψN)
T

W (ψ1, ..., ψN) = |ψ(0), ψ(1), ..., ψ(N−1)|

=

∣∣∣∣∣∣∣∣∣∣∣

ψ
(0)
1 ψ

(1)
1 ... ψ

(N−1)
1

ψ
(0)
2 ψ

(1)
2 ... ψ

(N−1)
2

... ... ... ...

ψ
(0)
N ψ

(1)
N ... ψ

(N−1)
N

∣∣∣∣∣∣∣∣∣∣∣
, (6.3)

with ψ
(j)
k = ∂jψk/∂X

j. The number N is the number of solitons in the solution.

The functions ψk are given by

ψk = ak exp

(
ζk
2

)
+ ibk exp

(
−ζk

2

)
, (6.4)

ζk = αkX +
1

αk

T + ζ
(0)
k

X = (x+ ct)/2d and T = (x− ct)/2d are the light cone coordinates. α, a and b are

complex parameters, ζ(0) a complex phase.

The N-breather solution is obtained from the 2N-soliton solution by setting

ψ = (ψ11, ψ12, ψ21, ψ22..., ψN1, ψN2)
T , (6.5)

with

ψk1 = ak exp

(
ζk
2

)
+bk exp

(
−ζk

2

)
, ψk2 = a∗k exp

(
ζ∗k
2

)
+ib∗k exp

(
−ζ
∗
k

2

)
. (6.6)

N is the number of breathers, respectively particles.

It is expected that the correct gravitational field equations possess such

N-breather solutions, too. They are then the relativistic generalization of the N-

particle model in classical mechanics.

7. Breather interaction

Of course, one does not just want to recover the phenomenology of special

relativity and Quantum mechanics, but also the known behavior of particles in

classical physics. As stated at the beginning, it is well known that solitons exhibit

particle behavior in the sense that they propagate and collide shape-preserving. In

[22], it was shown that in the Sine-Gordon model, two colliding breathers behave
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like classical particles of equal masses under collision. To show that the breather-

solitons in the full theory behave the same way under collisions, but for in general

different masses, remains to be shown once the correct field equations are found.

However, an important difference between the collisions of solitons and classical

particles is already apparent in the Sine-Gordon model: The momentum transfer is

not discrete in time, but continuously mediated via the solitons fields. For example,

for two colliding Sine-Gordon breathers one obtains a trajectory in the centre of

mass frame given by

x±(t) = ±1

a
cosh−1(g cosh(bt) + k), (7.1)

for both particles ”+” and ”-”. Here, a, b, g and k are constants depending on the

initial velocities v1, v2 of the breathers as well as the parameter q. The trajectory

(7.1) belongs to an accelerated motion of both breathers, during which momentum

is transferred from one breather to the other. This acceleration is caused by the

breathers’ fields. It shows again, how particles and their fields are indeed described

in a single framework. One can also see, that the motion due to these fields is

indeed included in the multi-soliton solutions to the underlying field equations.

If one calculates the potential for this interaction between two Sine-Gordon

breathers and evaluates it in the classical, non-relativistic limit, one obtains an

interaction potential of the form

V = f(r12)(1 + αβ2
12), (7.2)

with α a dimensionless parameter of order of unity. This is the same form as

exhibited by the potentials (1.1-1.2), on which the Machian theories are based,

which initially led us to the conclusion that particles are breather-solitons in the

gravitational field. In the full theory, it is expected that the potential (7.2) for the

interaction between two particles in the classical, non-relativistic limit will agree

with the gravitational potential (1.2).

Generally, the solitons should posses a far field and a core field. The far

field should coincide with the gravitational field caused by the particle and thus

fall off as 1/r or less6 ). The core field, which is in the conventional sense the

actual particle itself, will have a much faster decay than the far field, most likely

exponential, like it is the case in the Sine-Gordon model. Should it be true, that

the field turns out to be a unified field, the electrical and gravitational fields would

be two different components of this far field. This would then also yield a model

6In the light of the dark matter problem, it could well be, that the fall off is slower than 1/r.
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for electric charge and enable one to also find an expression for the unexplained

electric field constant ϵ0 . Consequently, this would enable us to explain the force

ratio between the electric and gravic force7).

8. Quarks

In the Sine-Gordon model, the most fundamental soliton solution is not the

breather, but the kink and the anti-kink. One can calculate the single soliton

solution from (6.1-6.4) by setting N=1 and a1, b1, α1 ∈ R. This yields the well-

known kink/anti-kink solution

φ±p (z) = 4 arctan(exp(±z)). (8.1)

z =
γ

d
(x− vt)

Here, ’+’ corresponds to the kink, and ’-’ to the anti-kink. A breather is now

composed of two such kinks, as one can see from (6.5): the parameters of each of

the two single soliton solutions ψk1 and ψk2 are chosen to be complex conjugates

to each other, that is ak2 = a∗k1, bk2 = b∗k1, αk2 = α∗k1. The single breather solution

(1.8) is then obtained by setting N=1 with (6.5). Now, this solution can also be

written in terms of the kink/anti-kink solution as [23]

φ(x, t) = φ+
p (Γ(x− r/2)) + φ−p (Γ(x+ r/2))− 2π, (8.2)

with

r(t) =
2

Γ
sinh−1(cot(q) cos(ωt)) (8.3)

and Γ = cos(q)/d, ω = sin(q)c/d. For simplicity, we restricted ourselves to the case

of a stationary breather here, but the decomposition remains valid for a moving

breather; it can be obtained by a Lorentz transformation of the equations (8.2-8.3).

From (8.2-8.3), we can see that the breather is nothing but a kink and an anti-kink

oscillating around their common center of mass. It is a bound state between a

kink and an anti-kink. Like the elementary particles, it is composed of two (also

extended) particles. It suggests itself that kink and anti-kink play the role of quark

and anti-quarks in the Sine-Gordon model. The breather would then correspond

to a simple Pion in this model. In the full theory, there should exist more than

one type of kink solution, with each corresponding to one of the quarks, and the

anti-kink solutions to the anti-quarks. The different types of particles are then the

bound (breather) states between those different types of kinks and anti-kinks, like

the breather solution in the Sine-Gordon model.

7The gravitational constant, the second unknown in this ratio, can already be calculated in the
Machian unifed theories of gravity and inertia
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9. Conclusion

We have shown that it is suggested by a unification of gravity and inertia

that elementary particles are oscillatory solitons in the gravitational field, or more

generally, a
”
unified“ field. We saw, that such breather solitons have exactly the

structure which had been proposed by De Broglie for the quantum mechanical wave

function in his double solution theory. We have shown, that from such a theory

of elementary particles, all the basic phenomena of special relativity and quantum

mechanics can be derived in a classical framework, in flat 3-dimensional Euclidean

space. However, the theory yields actual physical explanations for the relativistic

effects like length contraction, time dilation, and the energy-mass equivalence as

well as for the mentioned quantum phenomena. Unlike in current theories, they

are not ad hoc postulates, but natural consequences of the soliton nature of the

particles. Further, we were able to explain the apparent constancy of the speed of

light, instead of having to postulate it. It is not constant but only appears to be

constant due to the changes of the elementary rulers and clocks in moving frames,

provided by the elementary particles. Also, problems like the twin paradox, the

measurement problem, and the need for renormalization don’t occur in the soliton

model. It is unnecessary to introduce any notion of mass or particle a priori, but

instead, both come out of the theory. The particle mechanics inherit the Lorentz

symmetry from the field equations automatically,, it also doesn’t have to be put in

by hand. This also leads us directly to the origin of mass, which could be explained

as entirely of field origin, as the energy of the soliton divided by c2. Ultimately,

explaining the origin of quantum mechanics from the breather-soliton nature of the

particles enabled us to derive an expression for the unexplained quantum constant

h and the De Broglie relations.

The above said leads us to the conviction, that a soliton theory of elementary

particles, as was presented here, could be the gateway to a unified field theory

from which both relativistic phenomena and Quantum mechanics emerge. It would

therefore be worthwhile to direct research in this direction and search for suitable

candidates for non-linear field equations with soliton solutions. This especially

also applies to mathematical research for the soliton solutions, which is an active

field of research, but should get more attention in the light of a possible physical

application. From our elaborations, we can already list a couple of properties those

solutions must have:
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1) They must be solutions to a 3-dimensional, Lorentz-invariant non-linear

field equation, like (2.1) (but also more general equations are possible)

2) They must be localized in all three space dimensions and oscillatory in time, that

is, of breather type.

3) The breather-type solutions (particles) must be composed of multiple single-

soliton solutions (quarks).

4) There must exist (analytic) N-soliton solutions, and thus, N-breather solutions

to the underlying field equations.

5) The solitons must possess a near and a far field. The near field constitutes the

actual particle, the far field what is in current terminology the field generated by

the particles. The near field is probably exponential, the far field 1/r.

Since Special relativity is based on space and time changing, while in the

soliton theory, it is the elementary particles themselves that are changing in flat,

Euclidean space, it is necessary and possible to part ways with this theory when

pursuing the soliton approach further. The same, consequently, also applies to

General relativity and Quantum mechanics in its current formulation. The soliton

nature of the elementary particles then describes the effects currently described

by Special relativity and Quantum mechanics. To show, that the soliton theory

can reproduce all the successful quantitative predictions of Quantum mechanics,

remains a task to be done, once the full, three-dimensional field equations and

soliton solutions are found. The same also applies to those experiments, which

are currently correctly described by General relativity without additional ad hoc

assumptions like dark matter or dark energy. For those effects, it can be expected

that the soliton theory yields a physical explanation, should it indeed turn out to

be the unified field theory physics is looking for.
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