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This study extends the classical theory of electromagnetism to include quantum phenomena, thus
creating a bridge between classical EM theory and quantum mechanics. This bridge is facilitated
through a mathematical structure that covers both Maxwell equations, Dirac equation and the Proca
equation. One outcome of this study is a new Lagrangian that maintains the same fermionic field
dynamics generated by the QED Lagrangian while being more compact and symmetric. Addition-
ally, this work introduces a ‘fermionic’ stress-energy tensor that can be integrated into Einstein’s
field equations as source of spacetime curvature, demonstrating compatibility with general relativity.

Introduction

Quantum mechanics departs classical mechanics by its
mathematical formulation. The wave function formula-
tion speared first in the creation of wave mechanics by
Erwin Schrodinger seminal work in 1926 and used in var-
ious flavors in different quantum fields. In 1928, Paul
Dirac introduced his renowned equation [1] as the spe-
cial relativity generalization of the Schrédinger equation.
Dirac formulated his equation by hypothesizing a matrix-
based solution for the mass shell condition, represented
by quantum operators and used the non-commutative
property of square matrices.

This study addresses the same problem using a sim-
ilar ’guessing’ approach but instead of using matrix
non-commutative properties and wave functions (bi-
spinors), the formalism adopted in this work is grounded
on a coordinate-independent symmetry, identified in
Maxwell’s equations. This approach manifest quantum
mechanics in the language of classical electrodynamics,
replacing the wave function with ’classical’ fields. An-
other important aspect is that to maintain local U(1)
symmetry, the Dirac Lagrangian requires an addition of a
gauge field which happens to be the electromagnetic field
while In this work, a local U(1) compatible Lagrangian
is derived in a single blow with no need in an additional
gauge field.

I. ON-SHELL ELECTROMAGNETISM

Consider the following operator matrix eigenvalue
equation:
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(1)
The operator matrix is populated with first derivative,
coordinate-independent differential operators. The state
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vector is composed of Sjand S; which are scalar fields
and Stand S~ which are complex vector fields, /' - the
imaginary unit, ‘m’ - the mass of the ’particle’ field, '¢/
- the speed of light and & - the reduced Plank constant.

Applying the same operator matrix to the left-hand
side of eq.1 and correspondingly multiplying the right-
hand side by j ¢ yields a set of scalar and vector Klein-
Gordon equations:

Sq Sq
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By selecting solutions of the form S oc e=7Wt=k) for
all state vector components and identifying

w =

E
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Hence, the mass-energy shell condition E? = |p|? + m2c*
is simultaneously satisfied for all rows of eq.2, similarly
to the Dirac equation case.

Let’s write eq.1 in its non-matrix form:
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Considering S* = ¢B* — jE* where E* and B+
can be identified as an electric-like and a magnetic-like
fields correspondingly, that have real amplitude coeffi-
cients. eq.3 can be expanded by real/imaginary separa-
tion to:
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V.-E = <Jm_c_lat>
h c
1
oV x Bt =VS) + (j%c+zat) E
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VxE = (jm—c——at) CB+
h c
(4)
V- B =0
V.Et = (j%c+lat) S
¢V x B~ =-VS; — <jm7c—%6t) E*

¢ retains its ’j’ factor is to align
e*j(wtfk-r) .

The reason the term j ¢
with the derivative of the complex exponent
The similarity of the top and bottom of eq.4 to Maxwell
equations is evident. Furthermore, if E+ are consider to
be electric fields, then the units of the scalar fields Si are
identified to be similar to electrical field by units compar-
ison. It can be demonstrated that all vector and scalar
fields in eq.4 uphold Klein-Gordon equation structure.

II. POTENTIALS AND GAUGE CONDITIONS

By following the same procedure used to derive the
electric and magnetic potentials from Maxwell’s equa-
tions, one can obtain the corresponding potentials:

T=VxA~ ()
Bt =V x At (6)

— Vet + < % - —at> cA* (7)
o Ve - (/%C + at> cA” (8)

Where the sign indices over the the scalar potential ¢
where arbitrarily chosen to align with the signs indices
of the vector potentials. This will prove useful in the
following sections.

To derive the gauge conditions one can start by sub-
stitute eq.6 and eq.7 in the third row of eq.4 :

cVxVx AT =

1
— VS + (f%c + Eat) [—v¢+ + (y’%c - —at> CA+}

Using the identity V x V x A =V(V - A) — V2A:

oV (V- AY) — V24 =

mce me\2 1
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reordering the terms:

(3 + e

=V [S+ ( =+ 8t)¢+—cV A*}

Since B x e 1Wi=k7T) and B+ = V x A%, it follows
that A¥ also has the same exponential dependency. Con-
sequently, due to the mass shell condition, the left-hand
side of eq.9 becomes null:

2
{(%’) + C%att - VQ} A* =0 (10)

Therefore, the right hand side of eq.9 is null. Thus, the
first condition is:

VAT - S+ (g’%c + %«%) ¢t =0 (11)

By applying a similar derivation to the seventh row
eq.4, a second condition can be obtained:

V- A"+ Sy —<gm—c—%at)¢=o (12)

By substituting eq.7 and eq.8 in the divergence of the
electric fields in eq.4, it can be shown that also the scalar
potentials ¢* satisfy the mass shell condition:

{(%6)2 + C—lzatt - Vz} ¢* = 0. (13)

From eq.11 and eq.12 one can express the scalar fields
in terms of the derivatives of the potentials.

Sf=cV. At 4+ (/%C + %at) ot (14)

Sy =—cV- A"+ </%C - -at> o~ (15)



A. Gauge conditions
1. Strong gauge condition
Consider the transformation:
A 5 AT +Vy (16)
GF = 6T — (20, +%°) x (17

where x = x (,1).
Applying this transformation on eq.14 and eq.15 :

h
SiE = +cV - (AT +Vy) +

(500 [o* - (Gawi) o]
C C
mc

SF =+4cvV- At + (jﬂc + %at> %
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Where the transition to eq.18 is based on the assump-
tion that the field y has of the form yoe 7(“!=*7) with
E = wh and p = kh. The transition to eq.19 is valid only
if x is a massive field that satisfies the mass shell con-
dition. It can be similarly demonstrated that the fields
E#*, B* are also conserved under the transformation de-
scribed in eq.16 and eq.17. Therefore, eq.16 and eq.17
constitute a gauge condition.

It’s worth noting that, unlike the Lorentz gauge con-
dition in which the gauge field x is (only) required to
have second derivatives in time and space, in this gauge
condition, y must be of the form yoe/“!=*7)with a mass
m which is identical to the mass term of the transformed
fields.

2. weak gauge condition

Consider the standard Lorentz gauge from classical
electromagnetism:

AT 5 A* 4V (20)
¢= = ¢t — Lox (21)
Applying this on eq.14 and eq.15 :

S§=+4cV- At + (g%c - %at> ¢t
c 1

. 1
Sy = +£cV - (A* +Vx) + (Jm? + Eat) (d)i - Zatx)

. 1
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Using the same transformation on eq.7 and eq.8:

to VT E <]% + %&) cAT
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, 1 c 1
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Ei = Ei + ;Vatx Fc <]% + ;6t> VX (25)

Writing the equivalent to Gauss law in eq.4 as follows:

1
V. Et = Q% + Eat> SF (26)

Substitute the transformed expressions in eq.23 and
eq.25:

V- {Ei + 1V{‘),gx Fc <j% + 15%) Vx] =
c h ¢
1 1 1
= (3554 =0, ) |5 F Vi - (35 F -0, ) A
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Hence eq.26 is invariant if the right term is null, hence:

{(m?c)z + c%att - vﬂ Bx =0

(27)

This result reiterates the previous constraint on x to
be a massive scalar field of the form yge?“'=*F")with the
same mass. This invariance can be demonstrated for the
rest of eq.4 using the same process. Therefore, under the
transformation described by eq.20 and eq.21, the fields
are not conserved (nor the Lagrangian in Sec.IITE) but

19, o o o 0 o,
0 25 o 0 jo, 0
o o o o jo, jo.
0 0 0 lo jo. —jo,
0 jo, jo, jo. —1i9, 0
jo, 0 jo. —jo, 0 -1y
j0y, —jo. 0 o, O 0
jO. jO, —j0y O 0 0

the ’equations of motion’ of the fields remain invariant.

III. TOWARDS CLASSIFICATION OF QED

A. Connection to Dirac Equation

Formulating eq.1 in Cartesian coordinate system re-
sults:

j0y  jO. Sq St
0 o, | |sF S
jo, 0 S| _ .mec|sST (28)
0 0 Sol =7h | sy
0 0 S S
-0, 0 Sy S,
0 -19,) \So S-

Eq.28 can be manipulated to align with the Dirac equation structure. This could provide a more direct comparison
between the suggested equation and the well-established Dirac equation:

To achieve the correct sign of the mass term, eq.28 needs to be multiplied by ' — 5/ :

The new gamma matrices can be identified as:

10 0 0 00 0 0
0 -1 0 0 000 0
0 0 -1 0 000 0
o |0 0 0o —-10000
T=lo 0o 0o o 100 0
0 00 00 100
00 0 0 0O0 10
0 0 0 0 000 1
0 0 000 0—j 0
0 0 00000 —j
0 0 00-00 0
5, |0 0 0003 0 o0
“Tlo 0o —50 000 0
0 0 04 000 0
50 00000 O
0 —5 00000 0
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5000 0 0 00
0 00— 0 0 00
0 050 0 0 00
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0j 00O 0 000
500 0 0 00 0



Therefore, eq.1 can be written as an ’extended’ 8 x 8
Dirac equation:

(j’y“@u - %C) S=0 (32)

Where the 4x4 Dirac gamma matrices were replaced
by 8x8 gamma matrices and the bi-spinor wave function
1) was replaced by 8 component complex vector noted as
S (to differ it from the traditional bi-spinor), composed
of 2 sets of scalar and vector ’electromagnetic-like’ fields.

the fifth gamma matrix can calculate by ~° =
3707 9?73 to be:

= (3 0) (33)

where
1000
0 100
=10 o010 (34)
0001

is the Minkowski metric. Furthermore, it can be
checked that similarly to the Dirac equation case, the
gamma matrices generate a Clifford algebra, character-
ized by the following anti-commutation relations:

YAy = A A = 2 (35)

Note that the sign at the right hand side of the anti-
commutation relation is dependent on the metric signa-
ture definition. Here the signature was chosen to be (-
1,1,1,1).

Additionally, v° anti-commutes with the four gamma
matrices-

{7 =7+ =0 (36)

Using the definitions of left and right chirality projec-
tion operators from quantum mechanics (Dirac formal-
ism), their corresponding definitions can be written as:

_ I~ 1 I, —n
FL="3 _2<—77 I4>

1497 I, n
PR: 27 :%<7] I4>

where I is the 4 x 4 identity matrix. These operators are
singular matrices as expected, and it is interesting to find
how the difference between the left and right operators
is related to the metric signature.

(37)

It can be shown that the non-zero eigenvalues are all
equal to 1 and the general eigenvectors of the parity pro-
jection operators have the form (using the notation of

eq.l)

So So
F F

Y = So | Yvr=| _ S0 (38)
—F F

Though ¥rand ¥g translation to EM-like fields and
their symmetries are of interest, it will not be covered by
this work and left to the inquisitive reader.

B. Spin

To investigate the spin property, we shall take the fa-
miliar path of defining the Hamiltonian and the angular
momentum operator within the Dirac formalism and then
evaluate their commutation relations.

The structure of the Hamiltonian is given by H =
a;p' + pmec? [2] and can be derived from the extended
Dirac equation (eq.32) by multiplying it by 7°, and us-
ing the relation 4940 = I:

ome

(jc’)o + 57°91 01 + j7°720 + j4° 7205 — v 7) S=0

Thus, by using the assumption that S o e7(wt—k)
for all state vector components and identifying w = E/k
and k = p/h, the Hamiltonian can be expressed as:

2 = 09 P!+ %22 + y04%p? + A0me?
Defining o as a' = ¢y%y* | i = 1,2, 3, the Hamiltonian
gets the form (using Einstein summation convention):

H=a'p" ++"mc? (39)

To check the conservation of angular momentum, the
standard QM angular momentum operator definition will
be used:

L; = ceijrx;p

Where €51, is the Levi-Civita symbol.

The standard procedure to assess angular momentum
conservation in the '’ direction is by checking if L; com-
mutes with the Hamiltonian. Since this calculation is
identical to the standard QM case (mainly using posi-
tion and momentum commutation relation) it will not
be articulated here and only the result of it is given:

[Li, H] = jeesjroashpy (40)

As expected, since the matrix algebra is identical to the
Dirac equation, there is an additional intrinsic angular
momentum term.



The spin generators are to be calculated similarly to
the Dirac equation case:

& =—a=-cy"" ,i=1,2,3

Explicitly:
0 7000000
5000 00 0 0
0 0 0-00 00
. 004 00000
==l 000 0-50 0 (41)
0000 j 0 00
00000 0 0 —j
000000 j 0
0 0 000 00
0 003400 00
500000 0 0
. 0 —5 0000 0 0
©2==Cl o 0 000 0 —j 0 (42)
0 00000 0 j
0 00034 0 00
0 0 000 00
000000 0
0 0—000 0 0
0 j 00000 0
5000000 0
W="C1 G 00000 0 —j (43)
000000 —j 0
000003 0 0
00 003j00 0

In an identical way to the Dirac equation case, the com-
mutation relation of the above matrices with the Hamil-
tonian yields:

[, H] = —2jcesjrarpr (44)

Consequently, upon combining eq.44 with eq.40:

Lo+ 2, H) =0 (45)

Hence, as in the Dirac equation formalism, the internal
spin angular momentum in direction i € [1,2, 3] is:

8 = g&i = —26757072 (46)
The eigenvalues and eigenvectors corresponding to the
spin in the ‘z’ direction are delineated in Table 1. It
is evident that in contrast to the Dirac equation, this
formulation introduces an additional (independent) spin
eigenvector for each spin eigenvalue.

Niv| 3h | —3h| ih | —3h| ik | =iRh| ih |—3h
Sy —i%| 7 0 0 0 0 0 0
S| 0 0 % | & 0 0 0 0
Sy o 0 |-igs j\% 0 0 0 0
St % kv 0 0 0 0 0
S:| 0 0 0 0 |ids |5 0 0
S;:| o 0 0 0 0 0 | &
Syl 0 0 0 0 0 0 |-i%s|igs
S;:| 0 0 0 0| % iz 0 0

TABLE I. Eigenvalues and eigenvectors for the spin operator

at 'z’ direction '—;‘&3

To discern between these two spin states (which can be
summed together), an examination of the resulted field
equations are provided. Consider the first eigenvector
in Table 1 while recalling that Sii = cBZvi — jEijE and
assuming all field amplitude coefficients are real, it is
evident that-

Ef =58t (47)

All remaining fields are null. Incorporating the relation
from eq.47 into eq.4 yields:

VEf =0

V- (Ef2)=0
me 1 (48)
i Et =

<‘7 h cat> : =0

V x (Ef2) =

The third row in eq.48 indicates that E}(and S per
eq.47) fluctuates over time without external momentum
while the mass is the sole contributor to the (negative)
energy. Moreover, all spatial derivatives of EF (and cor-
respondingly Sg) are zero. Consequently, E+ and Sg
exhibit no spatial variations, as could be anticipated per
the uncertainty principle (they are dispersed throughout
all space).

A comparable examination for the second eigenvector
in Table 1 yields a similar outcome, with the distinction
that in this instance, F} = —S{)" . Similarly, the fifth
and sixth eigenvectors yield identical results, albeit with
a positive energy. Consequently, one can identify that Sgt
is a scalar field that carries angular momentum in the 7/
direction when combined with a corresponding Ef field
component.

The third eigenvector in Table 1 is simplified to the
following relations:



B = Ef | eBf = —Ef (49)

Setting these relations in eq.4 and removing null and re-
dundant rows the remaining equations is as follows:

V- (-Efi+ Efg) =0
Vx (~Efi+Ef§) =0
V- (Efi+ Efg) =0

similarly to the previous cases, the mass is the sole con-
tributor to the (negative) energy.

In contrast to the previous case where the angular mo-
mentum was carried by the scalar field So(with no ap-
parent rotation in the equations), here the rotated vector
fields are identified to carry angular momentum.

An intriguing observation here is that the eigenvectors
of the spin operator couple fields which are not coupled
by eq.4. Hence, the mathematical description of spin
enforces coupling of two fields from separate sets (next

me 1 (50) to be marked by '+’ and ’'—’ signs). A single ’quazi-
<J7 - Z@) (Efe+Efg) =0 Maxwell’” equation set is insufficient to describe the spin
i Y phenomenon.
Vx (Eft+E;j) =0
expanding the nabla operators yields
C. Constructing a Lagrangian
(%E?j B ByE;r =0 While the Dirac equation formalism describes
0.Ef = OZE;_ =0 fermionic fields (matter) and aligns with special relativ-
0. Ef + 9, E{f =0 (51)  ity, it cannot be fully integrated in Einstein general the-
me 1 ory of relativity (GR) as the source of the space-time
(j— — —f)t> (Ejz+ E;’ 4) =0 curvature. On the other hand, Maxwell’s electromag-
h ¢ netism formalism can be incorporate in GR as a source
refining these equations : via the el.ectromagnetic stress-energy tensor, but it can-
i not describe matter fields.

Given that the formalism suggested in this work is
Ef = queﬁ (52) somewhat an expansion of Maxwell equations towards
b optajE . the Dirac equation (or vice versa) it is enticing to con-
cBy =cBye’® (53) struct a quantum-Maxwell-like Lagrangian that will de-
ELB (54) scribe quantum-matter and also be of a form that can
cB;‘ = E;‘ (55) be incorporated in GR (describing quantum-matter as a

Thus, ET and B™ are orthogonal and rotate in the
(z,y) plains all over space in a circular polarization man-
ner with no spatial variation. Additionally, the associ-
ated Poyniting vector is pointing at the +2 direction and

space-time curvature source).

The differential eigenvalues equation, eq.28, is the
starting point for the derivation of the Lagrangian and
can be written in an ’inverse’ form by interchanging the
roles of the state vector components and the derivatives:

Sy S{ S{)— S;' 0 0 0 0 _%at Sy
-Sf Sy S; -S,; 0 0 0 0 30, S
-Sf -S; Sy S, 0 0 0 0 70, S
~Sf S, -S; S 0 0 0 0 §o. | _ .me | SF (56)
o 0 o0 0 S S S5 S 19, | =7h | s¢
0o 0 0 0 =S5 5§ -s5f Sf 70z Sy
0o 0 0 0 -8, St S§ -S|\ % Sy
0 0 0 0 -8 -Sf S S 79: 52

— jEF and separating real and imaginary terms, eq.56 splits to two matrix

Utilizing the expansion S’z-i = cBijE b

equations:



For the real part:

So.
—cBf

For the Imaginary part:

0
Er
Ey
L}

0

o O O

In the two equations above, half of the rows were used
to define the potentials and thus will add no information
once replacing the fields with the potentials. Hence, these

EF  Ef
0 E7
-E; 0
E;, —-E;
0 0
0 0
0 0
0 0
cBf cB;
So B
—B 5
T
0 0
0 0
0 0
0 0

o 0 0 0 _1p, Sy
C
0 0 0 0 D ¢Bf
o 0 0 0 d, B
o 0 0 0 o, | .me|eBF
Sy E, E, E; o, | 77w | sF (57)
-cB; 0 -—Ef Ef Oy cB;
~eB; Ef 0 -Ef|| 9 B,
—cB, —Ef SF 0 0. cB;
o 0 0 0 _1p, 0
0 0 0 0 o, —Ef
0o 0 0 0 d, —E;
0 0 0 0 9, | .mec|—-E7
0 ¢B; ¢B, c¢B; 10, | o (58)
Ey S§ -Bf Bf O —E;
E; Bf 5§ —]-ii gy _%Z
E; -Bf B} S E —E;

first and fifth rows in eq.57 and the second, third, fourth,
sixth, seventh and eighth rows in eq.58. Therefore, all
these lines in eq.57 and eq.58 can be unified to a single

rows can be omitted without any loss of information. The 8 x 8 matrix equation as follow-
rows of the equations that do contain information are the

Sy Ef

—-Ef —-S7

—E} ¢B;
0 0
0 0
0 0
0 0

Changing the arrangement

B~ components:

S, Ef
—-Ef =Sy
~E} B}
—EY —cBy

0 0

0 0

0 0

0 0

Notice the intriguing combination of spacetime signa-

Ey

—cB;

o —cB, B

0
0
0
0

Ey
—cB7
—Sy
cB;
0

0
0
0

ET
cB;

—cB;

0

0
0
0

ET
cB,
—cB;
—Sy
0

0
0
0

tures in the derivative vector in eq.60.

o O o o

Sy
_E;
_E;
.

z

0

0

0

0
_SS-
_Ea_:
_E;

—F-

z

0 0 0 P Sy
0 0 0 D,y Ef
0 0 0 0y E;'
0 0 0 o, | me|E7

E; E; E; Lo, | =7 | st (59)
Sy ¢Bf —cBf o E;
—cBY —Sf eBf 9y E;
0, E7

CB;; —eBf 75'3'

of the four bottom rows, such that the components of B align with the signs of the

0 0 0 _1p, Sq
0 0 0 Oy Ef
0 0 0 Dy E;‘
0 0 0 9. | me| BT (60)
E, E; E; 0, | ' | -sT
Sq  —cBf cBf —0y E;
eBf S§ —eBf|| 9 By
—cBy c¢Bf S§ —0; B

Excluding the diagonal, the main blocks of the above
matrix has the form of the electromagnetic tensor[3]:



o E, E, E,

| —E: 0 —cB, cBy
Fi=1\_E, ¢B. 0 —cB,
—F, —cBy cB, 0

Consequently, the matrix in eq.60 can similarly be de-
fined as an exztended electromagnetic tensor Fyf;, and the
field vector be defined E* such that the fields dynamics
can be compactly written as:

F o me
852Fp,1/_j h

Ei y Mty V4t € [0717273} (61)
It can be easily checked that the scalar fields Sg, Sy

are invariant to Lorentz transformation by performing a

separate transformation on each matrix block in eq.60.

The inversion of the + signs on the left hand side of
eq.61 is attributed to the definition of the signs of the
potentials definitions which will be useful in following
equations. The classical electromagnetic (EM) tensor
can be written by the 4-potential as F** = Api —Aik
(using the notation Ay; = ;A% = %—ﬁ) Eq.60 is
slightly more complex due to the sign inversion over the
BT components and the mixing of 'positive and negative
energy’ potential terms in the definition of the fields. Uti-
lizing the potential construction of the fields in eq.5, eq.6,
eq.7, eq.8, eq.14 and eq.15, the extended electromagnetic
tensor F' can be expressed as follow (while using the nat-
ural units c = A =1):

F =
- (A;i + 8o~ —jm¢_> —0167 — AT —JmA]  —020™ — Ay — jmA; —85¢~ — Az, — jmA; 0 0 0 0
816~ + AL g+ JmAT A7+ B0d™ — jme Ayy— AL, A5 — AL, 0 0 0 0
D2™ + Ay +imAy AT, — A7, A7 +00¢™ — jme~ Az, — A7, 0 0 0 0
03¢~ + Az g +imAz Al g —Ag Ay —Ag, A; ;i + 009 — jme— 0 0 0 0
0 0 0 0 — (A;fz. T dod+ +jm¢+) —016" — Al +jmAT —0ag — AL, +jmA] —0s6% — Al + jmA}
0 0 0 0 o1pt + Al —jmAT A 4 oot + jmet A}, — A, A, —Af,
0 0 0 0 02t + AF, — jmAT A, — A%, Al + 006" + jmet A, —Af,
0 0 0 0 B3t + A o — jmA] Alg—Af, Aty —Af, Al + 000t + jmet
(62)
[
Until this point, the + superscripts and subscripts were Identifying the 4-potentials:
introduced to track the terms origin in the Dirac equation
formulation as positive and negative energy stationary Al = (o7, Al AT, AT) (63)
solutions. Now, the same + indexing can be incorporated — A= A— A-
' 8 P Al = (¢, A7, A7 AT) (64)

to differentiate between the top and bottom blocks of
eq.62 which are decoupled (they can be coupled by the
spin operator as was shown in the previous section).

Eq.62 can be expressed as Fy = (F_—F>:
+

Fy =
- (a)\Ai — ij(l) —H51 A0 — BoAl_ — ijl_ —9, A0 — 80A2_ — ijQ_ —63A(1 — 8014?1 —ij?i o 0 0 O
1A + 9pAl + jmAL O\AN — jmA° A2 — B AL 81 A3 — 93AL 0 0 0 0
02A0 + 99 A2 + jmA?2 By AL — 9, A2 InAX — jmAL 0y A3 — 93A2 0 0 0 0
93A0 L 99 A3 1 jmA3 93 AL — 9 A3 93A2 — 9, A3 A — jmAO 0 0 0 0
0 0 0 0 “ (2 AN T jmAY) 01 AU — 8oAL 1 jmAL —0, A0 — 00AZ + jmAL —03AY — 0o A% + jmAS.
0 0 0 © NAY + AL — jmAL IAY + jmAY NAL —92AL A3 — 93AL
0 0 0 0 82143_ + 80143_ — ]mAﬁ_ 8214},_ — 81143_ a)\Ai —|—]mA3_ 82141 — 83143_
o 0 0 O 83A3» + (90.»4:3r — ]mAi 83Ai — 81A‘i 83.»4?F — 82Ai aAAi —I—ij(i
(65)
[
and it presents a block level separation be-  tween ‘4’ and ’—’ notation. Recalling that the



(—+,+,+)-, (+,—,—,—) signatures are used for
the top and bottom blocks correspondingly, the partial
derivatives in their contra-variant form satisfy:

OMAN
PAY =

—0%A° +9TAL + 9242 + 9343

66
1o0A) o'l 242 —ppad (69)

Additionally, a corresponding extended metric tensor can
be defined as:

=% ) (67)

where n_and 7y are the two configurations of the metric
tensor:

1000 10 0 0
[ o100 o -10 o
=1 0010 ™T{oo0o -1 0
0 001 00 0 -1

(68)

Combining the 4 derivative with the mass term in accor-
dance with the mass-shell condition which holds true for
all frames of reference:

10

V%~ 0y =c* (%)2

i~ @0 = (52)’

h
me

~@F )+ 07 = ()

(05.0505.05) - (050505 .35) — () 0
(o0 +3% 005,05 ) - (69)
: (_ao— +jn—7;c,81_,82_,8§) ~0
(o o1 0505) - 0.0~k o) + () =0
(o +3% ot 0501 ) (70)

’ (a(—)'— _jmfc7_ai’—7_a;7_0;_) =0
1

eq.69 and eq.70 illustrate that in order to maintain the
invariance property for the '+’ superscript part, the mass
term should alternate signs between the contra-variant
and variant forms. Therefore, the mass term should be
indexed. Here we’ll use mg and mP, where, m® = —my
under the (+, —, —, —, )+ metric. Specifically, the mass
term changes sign when multiplies by 7%, together with
the spatial derivatives 8;". Another view of these invari-
ance conditions is considering them as a modification to
the 4-gradient definition for a massive fermionic field. It
is now possible to define the tensor Fjj as:

F =
—80A6 — BiAi_ +jmoAy —BlAa — 00A] —jmoAl —82146 — 00A; —jmoAs —BgAa — 80A3_ — JmoAz 0000
01Ag + 0oA] + jmoAT doAy + 0iA; — jmoAy alA; — 02A7 01A; — 03A7 0000
82140_ + 60A2_ +jm0A2_ 82141_ — BlAQ_ aoAO_ + GZAZ_ — ]moAa 6214; — 33A2_ 0000
83Ag + 80A; +jm0A?i 03A] — BlA; 03A; — azA; BoAg + (r“)iAl-_ — jmoAg 0000

alAf; + 6()‘41» — ijAT
(9214(‘)F + 60A; —j'm,()A;r

0000
0000
0000
0000 I3AT + 8o AT — jmoAS

—00Ag — 0 AT — jmo AT —01Af — AT + jmoAT —02AT — 80 AT + jmoA] —93AF — d0AT + jmoAT
30143 + 82'A;r + jm()Ag
o AT — 01 AT
AT — 91 AT

01 Ay — DA}
AY + 0 AL + jmoAf
d3AT — B AT

AL —d3AT
AT — d3AT
30A3_ + BZ-A;“ +jm0A3—

(71)

where the positions of the indices on the matrix terms (up/bottom) are merely for tracking purposes and do not
affect the signs. Note that the horizontal line in the middle of the matrix is used only as a visualization aid, separating

the matrix to top and bottom blocks.

Similarly,
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[
PR =
—90A40 — 9t AT — jmPA0  91AC £ 90AL — jmlAl 9240 + 9042 — jm0A2 93A0 + 9043 — jm0A3 0 0 0 0
—81A% —9%AL 4 jmPAl  90A0 + 9PAY + jmPA° 01A? —92AL O1A3 —p3AL 0 0 0 O
—92A4% — 9042 4 jmOA2 92AL —9tAZ 90A% + 97 A" + jmOA% 92A3 — 9342 0 0 0 0
—3A0 — 5043 4 jm0A3 H3AL — 9t A3 B3A2 — 9243 890 4 JiAL 4 jmO A0 00 0 0
0 0 0 0 —OAT A +jm0A% OTAT + OAL 1+ jmPAL 82AT + OAZ + jmPAL 9PAT + PAT t jmOAT
0 0 0 O —91AQ — %A% —jmPAL 8048 + 87 AL — jmOAY dTAZ —9%2AL dTAZ —93AL
0 0 0 0 —02AG — 9947 — jmlAL %Al —09'A2 A% + 90 AY — jmPAY DPAL — B3A%
00 0 0 —9%AG —90A% — jmP AT PPAL — alA;{ PPA% — 5243 OAG + A — jmPAS,
(72)
which can be written as:
P OrAY — v A* O4x4 + T]IW (80A(l —0'AL —|—]m0A(l) Og%4
+ O4x4 orAY — oV Al - O4x4 (0°A% —0'A", — jmPAT)
o [—OHPAY 4 50 AR 04x4
+Jm 10 Av Ov AR
O4%4 -4 A+ + 6 A+
FT, looks similar to FJ*FW (only with lowered indices). In a more compact formulation:
FE = (9" AL — 9 AL) ¥t (80A0 —0'AL + 'mOAO) — jm® (5“0A” - 6O”A") (73)
F - ¥ F) 0= F F=J ¥ 77 F F
Ef = (0uAF — GUAI) F " (00 Af — ;AT + jmoAf) — jmo ((5“0143 - 6O”Alf) (74)

The transform of FfF“' is F;“ :

F = — (o Ay — " ALY + jm° (6“0:/4; — 6% AL) Vi n (0P AL — 0" AL + jmP AY)
= —FJ‘F‘ + 2D1?ag(Fj‘F‘ ) (75)
= (2Diag — 1) F£¥

The proposed Lagrangian would be:

L= —FjF (76) o(FLFY)  —oc 0 (Ffﬁ)
9(0,4%)  5(F~) . 0(0,4F)
such that e (FQB ) e
=227 x [ (onoy - anah) ¥
y F
oL _ 9FLFY) o 9 (F5) AT ] (80)
¥ ¥ ¥
7] (8NAU ) 0 (8;;,141/ ) o (Fj/g) 0 (8NAU ) —9 [(F:;';y _ F:'V:N) = {nﬁuF:;Fw (561601/ _ 55%;:)}]
Examining the 0 (9, A}) derivative o O(FLFE) _ 2 [(F£” — F2') 4+ 2Diag(FY")]  (81)
g [ 4 5 (a#Az:f) - F F tag F
0 (F T 5) X oo where the multiplication by factor 2 in the diago-
o AT (5555 — 0255) ¢n_”5a5§5’£5,§ (6605 — 0t67) nal at the last transition is because (85dg — dt'6Y) =
(() ((),LLAV) —T?"(nﬁy) _ _2
where i € (1,2,3) (78) Using the expression for F;” from eq.75 -
Additionally, it can be shown (product rule) that- o ( %59 F””) . . , ‘ ,
6(5[—“4;) =2 {[F£" — (2Diag — 1) F2] 4 2Diag(F%")}
oL O (FLFE") B = 2{(2 — 2Diag) F{" + 2Diag(F§")} = AF}"
; Y =Y 2k (79) (82)
o(F5)  o(F3)

Proceeding to the second component of the Euler-
Unifying the two last results for eq.77: Lagrange equation:



OF g
0AF
— —jmo [3505 — 8304 + 6205605,

= —jmo (0500 — 630%4) — Jmod3 6, d0my,

(83)

O(FRFE)  or  OF
0 (AF) OF T,  0A7

= —2imFe’ x [5;53 — 596% + 5g5g5gn;p]

9 (Fff Fgl) , 0 0 -
TS = 2gmg [FY — P20+ F2P 6500
)
forv=0:
o (FRFe)
_ : B
W = —2jmoF3 555;5277,“,
= —2jm0F:‘FW5377W
o (FRFe)
—————% = 4jmoFY 85
0 (A7) Jmos (85)
and for v =1,2,3:
o (FF,F2") '
#AV;)F =2jm (F;O — F%’)
o(FLFE) .
= 4jmoF° 86
2 (A7) Jmoets (86)

In the final step, the tensor anti-symmetry F;O =
—FY was used.

Verifying that the selected Lagrangian satisfies the

Euler-Lagrange equation 9, (8(2—5) = 887‘: :

)
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F00 E+
FTO . Ef
FZEO = _4.7m0 S+

P E;

oL __ 4.
94, — 4jmg

oL _ wo_ ; —
oF (8(A#_V)) = —40F FI¥ = —4jmq pr | = oa

(87)
the central equation represents the Euler-Lagrange

equation, however, it is not identical to the original equa-
tion that had the derivative 9% . Making the transitions:

OF =94, mg—m°

Also, it’s important to note that changes in the mass
index only affect the last four lines (the '+’ section):

FS;
oL . EF
v — _AHY RV _ add 1
83F (G(Au,y)> 46¢F¢ 4]77¢ mo Eli
By

+ST

, EF

—AORFE = —4jm® | L] (89)
1
By

subtracting the ’ — 4’ factor from both sides of the
equation:

oupe — jmo | B

which is equivalent to the original field equation
(eq.60). Hence, the Euler-Lagrange equation is satisfied
with the Lagrangian L = —Ff, F£". where

FLY = (0" AL — 0V AL) 7o (0° A% — 0" AL £ jm° AT) —
—jm?° (5“0A; — 60”A’3‘F)
Therefore, using eq.60 and the conjugation relation

between Fj, and F£”, the field expression for the La-
grangian is given by:

L= L™+ LY = —F FM — Fh (89)
[ET)? =B >+ |55 P+ |[E7|* = |BT]> — S

3z- o+

=2

Thus, the scalar fields S; and SJ contribute the overall
Lagrangian of system in anti-symmetric manner. Specif-
ically, Sy makes a positive contribution to £~ , while S(')"
has a negative contribution to £*.

Next, FI” is to be verified to transform as a tensor
within the General Relativity framework [4]:
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3 — —0 —0
—aﬁ N 8A:F _ 8A:F _ap 8A:F _ 6A:F . 0—0 o 0 —Oz()—ﬁ _—0/3—04
Fo = (—%a £ FNo 70 0T, +gm Ay Jjm ((5 AL =6 AJF)
waB _ | O (Oxy o\ O (0T5 5
Fe = [aza (8?514; 7, \ w7 )| T
—0 —i
s 0xs Ox, | OA 0A —0 ox Ox oz Oz
oy J O e F 4 A 0 5650 2 AY 7 50y 5A6
" oz 0z | 7 0T O Jm {aza (azﬁ F)  ozs. \07a

[ 0=y, %8141 B x5 5 Oxs DAY
0T, 0T T 0Tp 0T 0T0T. T 0T OTg

0z 0T, 8:65 0%, 0T3 Oz~

5~ OT5 O~ 0 1o} —0 —i dxs Ox N Ox~ Oxs
Sy L Gy 1“0 9 _ im0 | 228 Tty ss0 (4 Ty T80 50v (49
Fno 9% 775 {( = +jm”, xi) (A:F, AﬂF)} jm [ o ) (A¢) 1) (A )}

[82:., Oxs AT Ows Oz, DAY }

Oz, Ozs [aAzF B aAﬂ

- 075 0Ty | Oxs oz,

Oxs Ox 0 0 < Oxs Ox :
oy YEs Gby 0 _( AO i 0 0 ULy 1650 (A7 _ 50v ([ AS
F_ 0., 075 K_@ffo +gm”, x) (A%, A:F)] Vi T, 075 [0°° (A%) — 0% (A3)]

os Oz Ovs [(0AL 0AL sy [ (9 0 O N a0 qin| 07580 (47 s0v (45
Y- (G - ) T (g £t g ) (4% A =g 5% (43) = 6 (a3)]

708 _ 025 0%y 15 D. Stress-E T
FO‘ = 20 70 oy (90) . ress-Energy Tensor
T 07,075 T
An extended stress-energy tensor can be defined as fol-
lows [5]:
v v A
TH = £FICgT Y0 5 g“ FJ Py’ (91)

Where the term F7_ (6%0 + im?, —%) (A%, AL)

is S§ fields which are invariant under coordinate trans-
form as they are scalar fields.

where the & sign on the first term and F on the sec-
ond, arise due to the signature difference between the
upper and lower blocks of Fi. Additionally, g&” is the
curved spacetime metric tensor extended to 8:::8 tensor

Consequentl B transforms as a tensor under a co- Hy
d vk of by ¢ = - 04,f1,4 where like in the case of 7%
ordinate change, 1ndlcat1ng that FL” aligns with General Oaxa g4
Relativity framework as a second rank tensor. each matrix block descrlbes the same curvature but in a
different space-time signature.
L Writing eq.91 in Minkowski spacetime:

Another noteworthy point is that the expression 54,

which is equivalent to the 4-current density (or the source
of the ficlds) is essentially the fields themselves, multi- " 2 o 1 Y A
plied by positive and negative ‘jm’ factors. 13" = £FZ7FL) :F 15 FxFx (92)



Using the symmetry of F**, the left term FJ’FMFi ) can
J
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be calculated by a matrix multiplication:

Sy —Ei Ey —-E! 0 0 0 0 -Sy -El -E) -El 0 0 0 0
Ef —S, -—cB; cBy 0 0 0 0 ~-Ef —S; ¢By —cBy 0 0 0 0
Ey ¢By -85 —cBy 0 0 0 0 —Ef —¢By —-S; By 0 0 0 0
A _ E; —c¢By ¢B; =-S5 0 0 0 0 —-Ef ¢By —cB; —-S; 0 0 0 0
FOFA 0 0 0 0 -8 -E; -E;, -E; 0 0 0 0 -S E; E, E;
0 0 0 0 E, S& —eBf cBf 0 0 0 0 By —séf —cBY By
0 0 0 0 E; cBfY S§ —cBY 0 0 0 0 E; cBf -Sf —cBY
0 0 0 0 B, —cBy c¢Bf SF 0 0 0 0 E, —cBy c¢Bf —SF
HX v
FEAFY, =
2
|E+|? - ‘SO_‘ eB; Ef — cBy EF eBy Ef — By EF eBy Ef — By Ef
2 2 2 2
BT Ef —eBy EL |S5|" = |Bt] + |eBT |+ |eBy —E}E}—cB; cBy —E}E} — ¢By ¢BS
2 2 2 2
¢B; EY — ¢B; Ef —EJEf—cB;cBy Bz | +|eBz |~ |Ef|" + |57 —EJE} — cB:cBy
2 2 2 2
By Ef —cB; Ef _EfEf —¢B;cB; —E}YEf —cB, cB; ‘cBy_’ —l—‘CB;‘ —‘Ej +‘SO_’
= 7
ng’ —|E‘|2 eBY E; —eBTEy ¢BYE; —cBYEZ eBYE; — By By
2 2 2 2
eBy BT —eBtEy |Bx| - |sf|" - |eBt| - |cB{] By Ey + cBicBy B EX +cBieBY
2 2 2 2
cBYE; —cBYEZ E7 Ey +cBfcBy 7| = |sg| —|eBZ| - |eBE By EZ +cBjcBY
2 2 2 2
cBiEy — cByE; E; ET +¢BieBY Ey BT +cBycBY ‘E; —’sg‘ —‘cB;"‘ —‘cB;;‘

Due to page boundaries constrains, the 8x8 block tensor is presented in a condensed format where the upper four
rows correspond to the upper (left) block and the lower 4 rows correspond to the lower (right) block.

The right term in eq.92 can be easily calculated to yield:

1 : 1 1
L (CUE T
such that

S A T VR
EFRTERNT e B IE =
cBz EY —c¢B; EY
—Ef Bf —cB; cBy

cB; B —cBy EF

3 (?BL + B%) ;
L(@B2 +B}) - |eBs | - |Bf

eB; Ef — By Ef
c¢B; EY —¢BIEF
cBy EY — cBy B

2

2 2
1(e*B2 + E%) - ‘CB; - ‘E;,’

—EfEj —cBycB;

—EBf Ef —cBy cBy
—EfEf—cB;eBy

(93)
cBy Ef — cBy B
—EfET —c¢BycBy
—EfEY —¢BIcBy
2 2
1(B2 + B3) - |eBz| - |BZ

¢BIE; —cBIE;
—Ey By —cBfcBy

2 2
-]

¢BYE, —cBy E;

3 (¢°BY + E2) ;
1 (B2 4 E2) - ‘ch - ‘E;

eBY By — eBf By

2

(czBi_ + EZ_) — ‘CB;_
—E; By —cBf cBY

cBfE; —cBYEZ — By By —cBfcBy 1

eBy Ey — cBF Ey

—E; Ey —cBYceBY

where the square terms inside the brackets are square of the absolute values.

cBy Ey —cBi Ey
—Ez E, —cBfeBY
—Ey E; —cBfeBy

2 2
L(@BL+E2) — |ent| - |EB2

Therefore, the tensor in eq.92 is similar to the ’classic’ tensor:
electromagnetic tensor, specifically, the scalar fields S
subtracts and do not appear in the final result.
Eq.92 turns to :
1 2 2 _ _ _
THY Ouxcs 2 (‘CB—| + ‘E+| ) Sx Sy Sz
M2 — X _ _ _ _
T = ( Osxa T > T = Sz Oz “Ozy " Oaz
Sy “Oys “Oyy Oy
where T"is the ’standard’ electromagnetic stress-energy S —0,, —0., —0.



S(leBoP+1B-F) 55 S5 st

wo| g
S‘?i —O'?iz —Uz}l —O'lf
Sz Oz 70—2y 0z

and 8T = EF x¢B¥* corresponds to the Poynting vector.
Additionally,

of = EYE}f + *Bf Bf — %5”- (1B + ¢ [B7)")

corresponds to the Maxwell stress tensor.

1(IeBP +|ByP +1eBs* + [E-[*) 57 +8F

S, +SF
S, +S;f
S, + S

THY :T/_UI + Tj’_“/ _

By following the previous procedure using the defini-
tion from eq.91 for a curved spacetime, it is possible to
incorporate the fermionic field stress-energy tensor into
the Einstein field equation (up to units conversion)-
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Given that there is only one 4-dimensional spacetime,
T" and T} need to be consolidated into a single 4-
dimensional stress-energy tensor. There are two options
for this consolidation each yielding different result. The
first option is to add all the squared field terms linearly
such that the phase differences between the fields in 7"
and T are ignored. The second option is to add the
field terms before squaring them in the energy terms or
multiply them in the S; and o;; terms. Since the phase
difference between the '+’ and '—’ field sets plays a role
in determine the spin orientation, as described in a previ-
ous section, and the spin orientation has no energy con-
tribution for a free particle, the first consolidation option
seems more appropriate. Hence the corresponding 4 di-
mensional stress-energy tensor is-

— T+ — T+
Al a

- —gt g 5t _5- _ ot

Oz Gaj_x Oy Uiy Orz Uiz

Oy — O — Oy — ay+y —0y, — Uz_’f

0.2 T O0zp "0y T O0zy O, =0y

E. Local U(1) Symmetry

Consider the Lagrangian in terms of the fields and in-
vestigate its behavior under local U(1) transformation
[6]. According to eq.93:

o7 - = (| - 5 1B+ e

(95)

Since only the absolute value of the fields exist in the

Lagrangian, it is indifferent to the field’s phases, there-

fore, it holds U(1) symmetry at the fields level. Hence
there is no need for a gauge field.

1 yve Next let’s check the electromagnetic tensor (potential
Ry — §Rguv = FTMV (94) level) under local U(1) transformation-
|
P = (o Ay — or Al) o (00 A — 0 Al & jmO A ) — jm® (540 Ay - 6™ A%) (96)
grouping terms :
P = [(aM — jm°610) A% — (9" — jm°6") A;‘F] T [(80 +jmP®) AS — 87‘,4;] (97)

under the transformation (same gauge transformation
presented in eq.28-29):

Al A= AF 4 (9" — jmdt) x(x) (98)

Starting with the first term of eq.97:

(0" — jmOr?) Ax — (9" — jm"3"°) A =
= (9 = jm"3") [A% + (9 — jmd™) x(x)] —
— (9" — jmP6%) [A + (9" — jmo°) x(z)]
_ (BH _jm05u0) A; _ (au _jm()(SUy) Ai +
+ (01— gm®6+0) [(9” — jmd™) x(x)] -
= (0" = gms®) [(2* — jmé"®) x(=)]



where the last transition used to the commutation rela-
tion:

[(6" — jm8) , (8* — jms®)] =0 (100)

Therefore, according to eq.99 the first term of the elec-
tromagnetic tensor in eq.97 is invariant. The second term
of eq.97 is to be investigated next-

(0° 4+ jmP) A} — 9" AL =
= (8° £ jm°) [A% + (8° — jmd™) x(z)] —
9" [AﬁF + (8i — jmﬁio) X(’I’)]
= (80 + jmo) [AO + (80 — jm) X(.T)] —
9" [AﬁF +0'x(z)]
= (0% +jm°) AL — 9"AL + (101)
+ (0" £ jm®) (8° — jm) x(z) — 8'0"x(x)

using the argument given in eq.70, the term +jm0 is
equal to +7m, hence-

(00 :I:jmo) A?F — aiAg'F =
= (80 j:jmo) A(:)F — aiAéF +
+ (00 + jm) (00 — jm) x(z) — Oif?ix(m)
= (0° £ jm®) AL — 0" AL + (102)
+ (0000 +m?) x(z) — 0'0'x(x)

Therefore, the electromagnetic tensor is invariant under
local U(1) transformation if the last two terms of eq.102
cancel each other. Thus the transformation field y(z)
needs to satisfy:

(0°0° + m? — 9'0") x(z) =0

(O +m?* = V?) x(z) =0 (103)
which is the mass shell condition. Hence, given that the
transformation field x(z) is a massive field with the same
mass as the fermionic field, the extended electromag-
netic tensor and hence the electromagnetic Lagrangian
are both invariant under the transformation described by
eq.98. Therefore, unlike the case of the Dirac Lagrangian,
no additional gauge field is required to be added to main-
tain the symmetry, as long as the transformation is of the
form of eq.98 and satisfies eq.103. Note that if instead
using eq.98, one would use the classical mass-less Lorentz
gauge condition, equations of motion would be invariant
thought the Lagrangian would not be invariant, as shown
in SubSec.IT A.

It is important to note here that the field equation of
motions can be similarly formulated by Dirac equation
framework as described in Sec.IIl and that the Dirac-
like Lagrangian with the 8 x 8 gamma matrices also de-
scribes the same dynamics, but it needs an additional
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(electromagnetic) gauge field in order to maintain local
U(1) symmetry. Thus, symmetry-wise, the Lagrangian
suggested in eq.76 and eq.95 is a better framework to
work with.

IV. SUPPORTING FORMALISM FOR SPIN 0,
1/2, 1

The compatibility of the above formalism to the Dirac
equation was widely discussed in Sec.III and up until
now we considered it as description of the fermionic field
(spin 1/2). Tt was also shown in Sec.I that S5 fields (and
every vector field component) satisfy the Klein-Gordon
equation (spin 0) just as the components of Dirac’s bi-
spinors. Next, it will be shown that the Proca equation
and Maxwell equations are both degenerate cases of eq.60
(or eq.1).

The Proca equation

Degenerate the potentials AT ,¢* and the scalar fields
S as follow:

Sf =S5 =5
b5 =g = o (104)
At=A—=A

Summing eq.14 with eq.15 while applying the degener-
acy described by eq.104 and divide the equation by factor
of 2 yields:

So = j% o (105)
Subtracting eq.7 and eq.8 while defining yields:
mc?
E- —Et=2j——A (106)

Next, the top and bottom parts of eq.4 are to be
summed while using the first row of eq.104 :

V-(BT+B7) =0
V. (BT +EY) = 2j5-S,
1 _ me o
¢V x(BT+B ):Eat(E +E+)+g7(E — EY)
_mc?

Vx (B +B")=j— (B"-B")-0,/(B"+B")

Defining 2B = BT + B~ and 2F = E- + ET,| the
above equations can be written as:



oV.-B =0 (107)

W . E = Qj%CSO (108)
2

2V x B = ~0,E +j5° (E-~EY)  (109)
mc?

Using eq.104 AT = A~ relation in eq.110 cancels the
first term on the right hand side.

Additionally, using eq.106 on e¢q.109 and using eq.105
on eq.108, the above equations yield the following:

V-B=0 (111)
me\ 2
V. E-=-— (7) %o (112)
1 mce\ 2
¢V x B~ -0,B - (7) cA (113)
VxE=-8,B (114)

Note that combining the potential relations in eq.104
together with the definitions 2B = BT + B~ and 2E =
E~ + E™ results that ¢ and A are the potentials of E
and B fields. Therefore, using the Maxwell form, the
above four equations can be compressed to the Proca
equation:

2
ou(0"B” —0'B") + (©°) B (115)

h
where B is the corresponding four potential: B, =

(L6, 4).

An interesting consequences is that by this formalism
it can be shown that the massive Proca Lagrangian is
local U(1) invariant (under eq.98 transformation) by its

17

‘extended’ structure with Aff components. This may sug-
gest that the Higgs mechanism by spontaneous symmetry
braking is less needed.

Mazxwell equations

To degenerate eq.4 to homogeneous Maxwell equa-
tions, the following degeneracy should be taken:

Sf=8y,m=0 (116)

Next, the top and bottom parts of eq.4 are to be
summed while using eq.116 and the total field definitions
2B=B"+ B and2E=E~ + E™:

V-B=0 (117)

V-E=0 (118)
1

¢V x B =-0,E (119)
C

VxE=-6B (120)

Which are the homogeneous Maxwell equations.
SUMMARY

This study introduce new field equations that extend
Maxwell equations, satisfy the Dirac equation, and de-
scribe the intrinsic spin momentum phenomenon using
a representation of fields instead of bi-spinor wave func-
tion. This representation lead to local U(1l) invariant
Lagrangian with no need for additional gauge field (force
carriers). It was also shown that Maxwell equations and
Proca equation are both degenerate versions of the orig-
inal equation set. It was mentioned that the Proca mass
term under this new formalism can be shown to be local
U(1) symmetric by defining the transformation to include
the mass in adjacent with the time derivative, thus, relax-
ing the need of the Higgs mechanism. Additionally, this
study suggests a stress-energy tensor that encapsulates
the dynamics of the Dirac equation is presented. This
tensor can be integrated into the formalism of Einstein’s
field equations, serving as a bridge between quantum me-
chanics and general relativity.
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