Article

Statistical Physics Model of Seismic Activation Preceding a Major Earthquake

Daniel Brox †

† Affiliation; brox@alumni.caltech.edu

Abstract: Starting from earthquake fault dynamic equations, a correspondence between earthquake occurrence statistics in a seismic region before a major earthquake and eigenvalue statistics of a differential operator whose bound state eigenfunctions characterize the distribution of stress in the seismic region is derived. Modeling these eigenvalue statistics with a 2D Coulomb Gas statistical physics model, previously reported deviation of seismic activation earthquake occurrence statistics from Gutenberg-Richter statistics in time intervals preceding the major earthquake is derived. It is also explained how statistical physics modelling predicts a finite dimensional nonlinear dynamic system describes real time velocity model evolution in the region undergoing seismic activation, and how this prediction can be tested experimentally.

Keywords: seismic; activation; statistical; physics

1. Introduction

An increase in the number of intermediate sized earthquakes (M > 3.5) in a seismic region preceding the occurrence of a major earthquake (7 < M < 8), referred to as seismic activation, has been observed to occur before many major earthquakes [5]. For example, seismic activation was observed in a geographic region spanning 34°N – 38°N × 20°E – 27°E ≈ 444km × 630km for a period of time between January 1, 1966 and April 10, 2002 [38]. Figure 1 shows a schematic plot of the cumulative distribution of earthquakes of different magnitudes in a region undergoing seismic activation in two different time intervals of equal duration preceding occurrence of a major earthquake at time τ = τ0, where τ is a real time parameter and τ0 is the time of major earthquake occurrence [30]. Importantly, the cumulative distribution of earthquakes in a time interval of fixed width increasingly deviates away from a Gutenberg-Richter linear log-magnitude plot as the end of the time interval approaches τ0.

As an alternative to counting earthquakes of different magnitude in different time intervals preceding a major earthquake at time τ = τ0, seismic activation has also been quantified as a power law increase in the cumulative Benioff strain C(τ) defined as:

\[C(\tau) = \sum_{i=1}^{n(\tau)} M_{0,i}^{\tau/2} \]

where M_{0,i} is the seismic moment of the \(i^{th} \) earthquake in the region starting from a time \(\tau = 0 \) preceding the major earthquake, and \(n(\tau) \) is the number of earthquakes occurring in the region up to time \(\tau \) [27]. For example, it has been put forth that \(C(\tau) \) should equate to the power law expression:

\[a - b(\tau_0 - \tau)^\gamma, \]

where \((\tau_0 - \tau)\) is the time to major earthquake occurrence, \(a\) is the cumulative Benioff strain at \(\tau = \tau_0\), and the constants \(b\) and \(\gamma\) are used to fit the formula to measured data [26]. When a fit to real seismic data is performed, a value \(\gamma \approx 0.3\) is typical [5].
A mathematical model of seismic activation based on damage mechanics of earthquake faults has been put forth to account for equation (2) with a value $\gamma = 1/3$ [3]. In this model, cumulative Benioff strain is expressed as a function of the spatial average of a real time varying crack density parameter defined at each location along an earthquake fault. Then, the value $\gamma = 1/3$ is derived by assuming a particular form for the differential equation describing real time evolution of the crack density that derives from a Boltzman kinetic type description of how cracks of different lengths at different positional locations propagate and join together [38].

In addition to the damage mechanics model of seismic activation, an empirical model of seismic activation using statistical physics known as the Critical Point (CP) model has been put forth to account for equation (2) with a value $\gamma = 1/4$ [30]. In this model, it is assumed, based on seismic observation, that earthquakes occur at a constant rate in the seismic region, and that the mean rupture area $A(\tau)$ of earthquakes occurring at time τ satisfies:

$$A(\tau) \propto \left(\frac{1}{\tau_0 - \tau} \right). \tag{3}$$

In turn, assumption (3) is justified by identifying the lengthscale $L(\tau) \propto A(\tau)^{1/2}$ with the correlation length of a statistical physical system described by Ginzburg-Landau mean field theory with a temperature parameter depending on τ [31]. Importantly, previous work has not explained why it is physically reasonable to describe statistics of seismic activation with thermal equilibrium statistical physics formalism, or precisely which statistical physics systems are relevant to modelling seismic activation. Therefore, the objective of this article is to advance the detailed mathematical description of the correspondence between nonlinear differential equation modelling and statistical physics modelling of seismic activation in a way that allows for testing of statistical physics model predictions against real seismic measurements.

The outline of the article is as follows. Section 2 introduces a sine-Gordon equation modelling earthquake fault dynamics during seismic activation and explains how inverse scattering theory of this equation implies a relationship between statistics of earthquake occurrence during seismic activation and the eigenvalue statistics of a differential operator whose eigenfunctions characterize the distribution of stress in the seismic region. Section 3 uses this relation to model eigenvalue statistics with a 2D Coulomb Gas statistical physics model, and explains how this model accounts for deviation of earthquake occurrence statistics from Gutenberg-Richter statistics during seismic activation. Section 4 concludes by commenting on how the 2D Coulomb Gas statistical physics model implies the phase
space dimension of a nonlinear dynamical system characterizing real time velocity model evolution in the seismic activation region is finite, and how this implication can be tested against real seismic measurements.

2. Materials and Methods

2.1. Fault Dynamics

In 1+1 spacetime dimensions, the differential equation:

$$A\partial_t^2 U(t,z) + B\partial_t U(t,z) - C\partial_z^2 U(t,z) = -\sin(U(t,z)/D).$$

has been used to model migration of earthquake hypocentres along earthquake faults in seismic regions over periods of time during which multiple earthquakes occur [7]. In this equation, t is real time, z coordinates the direction of earthquake hypocenter migration along an earthquake fault, $U(t,z)$ is the local displacement of elastic material across the earthquake fault, $A\partial_t^2 U(t,z)$ is the local inertial force acting on the fault material, $B\partial_t U(t,z)$ is the local elastic restoring force acting on the fault material, and $C\partial_z U(t,z)$ and $\sin(U(t,z)/D)$ are local frictional force acting on the fault material attributed to periodic contact of the material with tectonic plates on either side of the fault. If the earthquake fault material has constant height h and shear modulus μ along the fault, a solution to equation (4) can be interpreted to describe propagation of shear stress acting on fault material.

Restricting focus to the case $C = 0$, it follows that with rescaling of t, z, and $U(t,z)$, each of the constants A, B, and D in equation (3) can be scaled to 1, so it is now assumed that each of these constants is 1. With this assumption, and definition of the matrices:

$$M = \begin{bmatrix} -i\omega & -\frac{1}{2}U_z(t,z) \\ \frac{1}{2}U_z(t,z) & i\omega \end{bmatrix},$$

$$N = \begin{bmatrix} \cos U(t,z) & \sin U(t,z) \\ -\sin U(t,z) & -\cos U(t,z) \end{bmatrix},$$

for an arbitrary complex number ω, the equation:

$$M_1 - N_2 + MN - NM = 0,$$

is equivalent to equation (3) [21]. This equivalence is of mathematical interest, because the associated linear system:

$$\begin{bmatrix} \Psi_1(t,z) \\ \Psi_2(t,z) \end{bmatrix} = M \begin{bmatrix} \Psi_1(t,z) \\ \Psi_2(t,z) \end{bmatrix},$$

has an infinite set of left and right scattering (i.e. Jost) solutions $\Psi_{\lambda,L}(t,z)$ and $\Psi_{\lambda,R}(t,z)$, indexed by complex numbers λ, with asymptotics:

$$\Psi_{\lambda,L}(t,z) = \begin{bmatrix} 0 \\ e^{i\lambda z} \end{bmatrix}, \ z \to -\infty,$$

$$\Psi_{\lambda,L}(t,z) = \begin{bmatrix} L(\lambda t)e^{-i\lambda z} \\ \frac{\Lambda(\lambda)}{\rho(\lambda)} \end{bmatrix}, \ z \to -\infty,$$

and:

$$\Psi_{\lambda,R}(t,z) = \begin{bmatrix} e^{-i\lambda z} \\ 0 \end{bmatrix}, \ z \to -\infty,$$

$$\Psi_{\lambda,R}(t,z) = \begin{bmatrix} e^{-i\lambda z} \\ \frac{\Lambda(\lambda)}{R(\lambda t)e^{i\lambda z}} \end{bmatrix}, \ z \to \infty,$$
whose time evolution determines solutions to the original sine-Gordon equation via the inverse scattering method [1]. Moreover, linear system 8 also has a finite set of bound state solutions called Baker-Akhiezer functions.

Figure 2 is a diagram of how the inverse scattering method applies to solve the sine-Gordon equation [1].

\[
\begin{align*}
\text{sine-Gordon solution} & \quad \xrightarrow{\text{direct scattering } t=0} \quad \{R(\lambda,0), \{\lambda_j, c_j\}\} \\
U(0,z) & \quad \rightarrow \quad U_j(0,z) \\
\downarrow & \quad \downarrow \\
U(t,z) & \quad \leftarrow \quad U_j(t,z) \quad \leftarrow \quad \{R(\lambda,t), \{\lambda_j, c_j e^{-it/2\lambda_j}\}\} \\
\text{inverse scattering at } t & \quad \text{time evolution}
\end{align*}
\]

Figure 2. Schematic of diagram of inverse scattering method applied to solve the sine-Gordon equation [1].

\[
\Psi_j(t,z) \propto e^{-k_j |z|}, \quad |z| \to \infty
\]

(17)

and also has a finite set of bound state eigenfunctions \(\Psi_j(z) \) which decay exponentially with increasing \(|z| \):

\[
\Psi_j(z) \propto e^{-k_j |z|}, \quad |z| \to \infty
\]

(17)

in which exponential growth and decay of the bound states determines the geometric form of the elastic perturbation \(\Psi(t,z) \) over time. For example, if \(V(z) \) is a potential well of height \(V_0 > 0 \) which is nonzero for \(|z| \leq L \), and zero elsewhere, there exist finitely many bound state eigenfunctions \(\Psi_j(z) \) which decay exponentially with increasing \(|z| \):

\[
\Psi_j(z) \propto e^{-k_j |z|}, \quad |z| \to \infty
\]

(17)
for a discrete set of wavenumbers:

\[k_j = \sqrt{(V_0 + E_j)/B}, \]

(18)

whose inverse values determine characteristic length scales at which unstable growth of fault material displacement occurs across the earthquake fault. Figure 3 shows a plot of resonant and bound state frequency locations for 3 situations in which \(-\frac{1}{2}V(z)\) is a square well potential of increasing width and fixed height.

The inverse scattering solution shown in Figure 2 also demonstrates that the bound state eigenfunction coefficients:

\[C_j(t) = e^{-it/2\lambda_j}c_j, \]

(19)

satisfy the system of ordinary linear differential equations:

\[\dot{C}_j(t) = (-i/2\lambda_j)C_j(t), \]

(20)

implying unstable material displacement across the fault can be effectively described as the motion of a point in a dynamical system phase space \(S\) of real dimension \(2N\), specified by a system of \(2N\) ordinary differential equations, for which the \(2N\) values of \(-i/2\lambda_j\) are Lyapunov exponents.

2.2. Fault Dynamics to Statistical Physics

To relate the nonlinear differential equation description of fault dynamics (4) to a statistical physics model, start by introducing dependence of equation (7) on a parameter \(\tau\) so that it reads:

\[M_\tau(\tau) - N_\tau(\tau) + M(\tau)N(\tau) - N(\tau)M(\tau) = 0, \]

(21)

where:

\[M(\tau) = \begin{bmatrix} -i\omega & -\frac{1}{2}U_z(t, z; \tau) \\ \frac{1}{2}U_z(t, z; \tau) & i\omega \end{bmatrix}, \]

(22)

\[N(\tau) = \frac{i}{4\omega} \begin{bmatrix} \cos U(t, z; \tau) & \sin U(t, z; \tau) \\ \sin U(t, z; \tau) & -\cos U(t, z; \tau) \end{bmatrix}. \]

(23)
Figure 4. Schematic illustration of seismic activation in a 2D geometry at four different times τ in which each black line represents an earthquake fault along which rupture has occurred, and each red line represents an earthquake fault along which shear stress is increasing prior to rupture at $\tau = \tau_0$.

The introduction of the parameter τ is the inverse scattering analog of introducing a parameter τ into the coefficients of elastic equation (15):

$$\partial_t^2 \Psi(t, z) - B(\tau) \partial_z^2 \Psi(t, z) + V(z; \tau) \Psi(t, z) = 0,$$

(24)

and interpreting τ as a real time parameter tracking the progression of seismic activation. Note that this interpretation implicitly assumes seismic activation and elastic wave propagation across the region undergoing seismic activation occur on sufficiently different timescales that it is reasonable to clock these processes with different real time parameters τ and t.

Now suppose material fracture along an earthquake fault caused by previous earthquakes during a period of seismic activation influences elastic scattering according to equation (15) with potential function $-\frac{1}{2} V(z; \tau)$ equal to a τ-dependent constant perturbed by random disorder over a compact interval of length L_0 [19]. With this supposition, non-uniformity of the potential term in equation (24) at time τ accounts for scattering of elastic waves, and the maximum localization length $1/k_f$ of a bound state eigenfunction solving equation (24), henceforth denoted $L(\tau)$, is interpretable as a length of fault material which is unstable to rupture. With reference to Figure 4, showing a schematic illustration of seismic activation in a 2D geometry at four different times τ, this length of unruptured fault material may be visualized as a line segment where shear stress exceeding some critical threshold has accumulated.

In 3 spatial dimensions, the previous discussion of stress localization in 1 spatial dimension can be generalized if it is assumed that shear waves propagating within a region of seismic activation at time τ are described by an elastic wave equation that is equivalent to equation (21) with matrices $M(\tau)$ and $N(\tau)$ determined by the P and S wave velocity model of the region at time τ. With this assumption, previous work simulating localization of stress in random fracture networks implies shear waves may be localized in 3 spatial dimensions at angular frequencies ω greater than a mobility edge frequency $\omega_c(\tau)$ [22]. Based on this previous work, it is now postulated that bound states of the τ-dependent inverse scattering problem have eigenfrequencies $\omega > \omega_c(\tau)$, are localized in space with maximum localization length $L(\omega; \tau)$ satisfying:

$$L(\omega; \tau) \propto (\omega - \omega_c(\tau))^{-1},$$

(25)

and that the localization length of at least one such bound state is identifiable with the rupture length of the major earthquake occurring at time $\tau = \tau_0$.

To quantify these statements, it is now recalled that in both contexts of localization of seismic and electromagnetic waves in disordered elastic and dielectric materials, in analogy to the theory of Anderson localization, elastic and photonic states may be non-localized (i.e. extended) or localized at eigenfrequencies below or above a mobility edge frequency ω_c, as shown in Figure 5 where the leftmost dashed line is located at frequency ω_c [19,23]. It is also recalled that according to the scaling theory of Anderson localization, as a disorder parameter W in a 3D disordered electronic model Hamiltonian is increased from 0 to some critical value W_c, the distribution of normalized energy level spacings of non-localized...
states at a conduction band center changes from delta function (i.e. uniform level spacing) to Poisson as the two boundaries between localized and non-localized states (i.e. mobility edges) on opposite sides of the band center converge together [15,35]. More specifically, this theoretical statement is that as W is increased from $W \approx 0$ to $W \approx W_c$, the distribution of normalized energy level spacings at the band center is described by the Wigner surmise distribution:

$$P_\beta(s) = c_0 \left(\frac{\pi s}{2} \right)^{\beta} e^{-\frac{1}{2} \beta \left(\frac{s}{\tau} \right)^2 - \left(c_1 s - \frac{s^2}{2} \right)},$$ \hspace{1cm} (26)

with constants c_0 and c_1 determined by conditions:

$$\int_0^\infty P_\beta(s)ds = 1$$ \hspace{1cm} (27)

$$\int_0^\infty sP_\beta(s)ds = 1,$$ \hspace{1cm} (28)

and a value of β which decreases from $\beta \approx \infty$ to $\beta \approx 0$. The relevance of this scaling theory to modelling seismic activation is now suggested by conjecturing that a Wigner surmise distribution with a τ-dependent value of β describes the density of elastic resonant scattering states in a neighborhood of $\omega_c(\tau)$, and that $\beta(\tau)$ decreases monotonically to a value $\beta(\tau_0)$ as $\tau \rightarrow \tau_0$.

3. Results

As initial evidence for the conjectured correspondence between major earthquakes and bound states of inverse scattering theory, first assume that during the time interval (τ_1, τ_2) the value of $\omega_c(\tau)$ is approximately constant, and that the density $\rho(\omega)$ of non-localized eigenstates in a neighborhood of the mobility edge shown in Figure 5 satisfies:

$$\rho(\omega) \propto |\omega - \omega_c(\tau)|^{\beta(\tau)}.$$ \hspace{1cm} (29)

Furthermore, assume that the decay time of each non-localized resonant scattering is inversely proportional to a diffusion constant $D(\omega)$ satisfying:

$$D(\omega) \propto |\omega - \omega_c(\tau)|.$$ \hspace{1cm} (30)

Then, if non-localized states correspond to seismic activation earthquakes with rupture length proportional to $1/(\omega - \omega_c(\tau))$ occurring during the time interval (τ_1, τ_2), and the state decay time corresponds to the recurrence time of earthquakes of the same magnitude, the number of earthquakes N_c with rupture length $L > L(\omega; \tau)$ occurring during the time interval satisfies:

$$N_c \propto |\omega - \omega_c(\tau)|^{2+\beta(\tau)},$$ \hspace{1cm} (31)

from which it follows:

$$\log_{10} N_c = \delta - (2 + \beta(\tau)) \log_{10} L(\omega; \tau).$$ \hspace{1cm} (32)

Therefore, noting the relation between seismic moment and Richter magnitude:

$$M_L = \left(\log_{10}(M_0) - 9 \right) / 1.5,$$ \hspace{1cm} (33)

and the definition of the seismic moment:

$$M_0 \propto L(\omega; \tau)^2,$$ \hspace{1cm} (34)

that equation (32) is equivalent to the Gutenberg-Richter relation:

$$\log_{10} N_c = \delta - 0.75(2 + \beta(\tau))M_L.$$ \hspace{1cm} (35)
Figure 5. Photonic density of states in a disordered dielectric material [19]. Shaded region indicates frequencies associated with localized states.

Referring back to Figure 5, at times \(\tau \) when the density of non-localized states is approximately constant so that \(\beta(\tau) = 0 \), the Gutenberg-Richter b-value is the physically reasonable value 1.5 [17,19].

If we now suppose that relation (30) is replaced with relation:

\[
D(\omega) \propto |\omega - \omega_c(\tau)|^{2/3},
\]

(36)

descriptive of critical slowing down of non-localized elastic state diffusion when \(\omega \approx \omega_c(\tau) \), it follows that relation (31) is replaced with relation:

\[
N_c \propto |\omega - \omega_c(\tau)|^{5/3+\beta(\tau)},
\]

(37)

and the Gutenberg-Richter b-value in equation (35) is 1.25. Similarly, if the critical slowing down exponent in relation (36) is replaced with a value between 0 and 1, the Gutenberg-Richter b-value attains a value between 0.75 and 1.5. Therefore, if the density of non-localized photonic states \(\rho(\omega) \) in Figure 5 is roughly constant except for a neighborhood of \(\omega = \omega_c(\tau) \) where \(\rho(\omega) \propto \omega^{\beta(\tau)} \), and the critical slowing down exponent decreases from 1 to a value between 0 and 1 as \(\omega \) approaches \(\omega_c(\tau) \) from below, it follows that the deviation from Gutenberg-Richter statistics shown in Figure 1 is accounted for by the physics of light localization and correspondence between non-localized photonic states near the mobility edge and seismic activation earthquakes.

Having provided initial evidence that Wigner-Dyson distributions are relevant to accounting for deviation of earthquake occurrence statistics from Gutenberg-Richter statistics during periods of seismic activation before a major earthquake, it is now further conjectured, in keeping with previous statistical physics models of seismic activation, that \(\beta(\tau) \) can be regarded as a parameter in a \(\tau \)-dependent 2D Coulomb gas statistical physics model whose parameters at different values of \(\tau \) are related by renormalization group flow [14]. In part, this conjecture is motivated by previous work demonstrating the porous medium equation, a nonlinear diffusion equation in 1 spatial dimension, is equivalent to a renormalization group flow equation for a disorder potential in a statistical physics model whose parameters at different values of \(\tau \) are related by renormalization group flow [2,8].
A phase diagram of a 2D Coulomb gas with a renormalization group flow indicated by arrows is shown in Figure 6. In this diagram, different values of the flow coordinate \(t \) equate to \(\beta(\tau) \) at different values of \(\tau \) in such a way that \(\beta(\tau_0) \) is the horizontal coordinate of a point of tangency between two of the Ford circles. It should also be noted that this diagram corresponds to the \(M = 1 \) description of a more general 2D Coulomb gas statistical physics model defined by a field theory with \(M \) complex fields \(\phi \) whose domain of definition is a 2D complex plane, and whose amplitudes quantify the density of eigenvalues of a differential operator at different complex frequencies [13].

To elaborate on this identification of a statistical physics model relevant to modelling seismic activation, suppose that as a result of stress accumulation in the Earth’s subsurface during seismic activation, the elastic potential function \(V(x, y, z; \tau) \) descriptive of a seismic region’s seismic velocity model oscillates around its average value at each point in space at a set of characteristic frequencies \(\text{Re}(\omega_j) < \omega_j(\tau) \), where each complex frequency \(\omega_j \) is an inverse scattering theory resonant frequency [29]. Next, suppose random variation of the seismic region elastic velocity model during activation can be approximated by attributing it to oscillation at a finite number \(M \) of these eigenfrequencies \(\omega_j \). With this supposition, the \(M \) \(\tau \)-dependent complex eigenfrequencies of the shear stress eigenfunctions define a torus of real dimension \(2M \) identified by a point in a Siegel moduli space \(\mathcal{M} \), and \(\tau \)-dependence of the complex frequencies is determined by motion of a point in the moduli space. It is this motion which is described by the renormalization group flow of a 2D Coulomb gas model near its critical point, assuming the model has \(M \) fields \(\phi_j \) and coefficients coordinating points of \(\mathcal{M} \) [9,11,40]. In passing, the possibility that correlation functions of the statistical field theory satisfying differential equations of order \(N \) describe \(N \) bound states of shear stress nucleation in the Earth’s subsurface before the moment of earthquake rupture is noted [39].

4. Discussion

Previous work has identified predicting the time of occurrence of major earthquakes as a possible application of statistical physics models of seismic activation, but this application has not yet been realized [5]. In more recent times, earthquake early warning algorithms such as FinDer and Virtual Seismologist have been developed which can in principle use previous earthquake occurrence statistics as input, and most recently, artificial intelligence algorithms such as QuakeGPT have been developed for predicting the occurrence of major earthquakes using seismic event records created with stochastic simulators as training data [4,32]. Therefore, a practical applied science goal for the statistical physics model presented...
in this article appears to be improving the predictive performance of one or more of these existing earthquake early warning algorithms by appropriately modifying their earthquake occurrence statistical inputs, acknowledging that preliminary tests of the model’s validity against real seismic data must be passed before achieving this application objective can be considered a realistic possibility.

From a geophysical testing point of view, if it is true that the growth of unstable stress modes within the Earth during seismic activation are determined by statistical physics renormalization group flow mathematics, and, as a result, a nonlinear dynamical system of phase space dimension \(N \) characterizes the nucleation of shear stress in a seismic region preceding a major earthquake, a geophysical signal processing technique known as singular spectrum analysis should apply to determine this phase space dimension \([6]\). Therefore, it is suggested that coda wave interferometry measurements of relative changes in seismic surface wave and/or body wave velocity be performed between pairs of seismic stations in a seismic region over a duration of time during which seismic activation is known to have occurred, and used as input to a time domain multichannel singular spectrum analysis algorithm \([25]\). The number of channels of this algorithm would equate to the number of station pairs, and the number of singular values output by the algorithm in different time windows preceding occurrence of a major earthquake should provide some indication of a finite value for \(N \) if the statistical physics model of seismic activation is correct in principle. With reference to previous geophysical application of singular spectrum analysis, performed in the frequency domain, the signal processing algorithm suggested here is different in that it should be carried out in the time domain \(\tau \) rather than the frequency domain \([33]\).

In conclusion, work towards improving current earthquake early warning systems can proceed in two directions. Firstly, as an initial check on whether or not the statistical physics modelling approach presented here could be of practical utility, work can be done to determine whether or not changes of the Earth’s elastic velocity model preceding major earthquakes, as determined by coda wave interferometry, can be processed to extract an integer identifiable as the phase space dimension of a nonlinear dynamical system. Secondly, work can be done to elaborate upon the statistical physics mathematical model of seismic activation presented in this article to determine other tests of its scientific validity and potential for practical application.

Funding: This research received no external funding.

Acknowledgments: Thanks to Dr. Girish Nivarti and Professor Richard Froese for their willingness to entertain discussions about the content of the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References

