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Abstract Starting from earthquake fault dynamic equations, a correspondence be-
tween earthquake occurrence statistics in a seismic region before a major earthquake
and eigenvalue statistics of a differential operator whose bound state eigenfunctions
characterize the distribution of stress in the seismic region is derived. Modelling
these eigenvalue statistics with a 2D Coulomb Gas statistical physics model, pre-
viously reported deviation of seismic activation earthquake occurence statistics from
Gutenberg-Richter statistics in time intervals preceding the major earthquake is de-
rived. It is also explained how statistical physics modelling predicts a finite dimen-
sional nonlinear dynamic system describes real time velocity model evolution in the
region undergoing seismic activation, and how this prediction can be tested experi-
mentally.
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1 Introduction

An increase in the number of intermediate sized earthquakes (M > 3.5) in a seis-
mic region preceding the occurrence of a major earthquake (7 < M < 8), referred
to as seismic activation, has been observed to occur before many major earthquakes
[6]. For example, seismic activation was observed in a geographic region spanning
21◦N −26◦N ×119◦E −123◦E for a period of time between 1991 and 1999 preced-
ing the magnitude 7.6 Chi-Chi earthquake [11]. Figure 1 shows a schematic plot of
the cumulative distribution of earthquakes of different magnitudes in a region under-
going seismic activation in two different time intervals of equal duration preceding
occurrence of a major earthquake at time τ = τ0. In this figure, τ is a real time pa-
rameter, and τ0 is the characteristic time of major earthquake recurrence assuming
an earthquake of similar magnitude occurred in the same region at τ = 0 [31]. Im-
portantly, the cumulative distribution of earthquakes in a time interval of fixed width
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Fig. 1 Plot of the cumulative distribution of earthquakes of different magnitudes in a seismic zone in two
different time intervals of equal width preceding occurrence of a major earthquake at ∆τ = τ0 − τ = 0
[31].

increasingly deviates away from a Gutenberg-Richter linear log-magnitude plot as
the end of the time interval approaches τ0.

As a means of predicting the time τ = τ0 at which a major earthquake preceded
by seismic activation occurs, seismic activation has also been quantified as a power
law increase in the cumulative Benioff strain C (τ) defined as:

C (τ) =
n(τ)

∑
i=1

M1/2
0,i , (1)

where M0,i is the seismic moment of the ith earthquake in the region starting from a
time τ = 0 preceding the major earthquake, and n(τ) is the number of earthquakes
occurring in the region up to time τ [28]. For example, it has been put forth that C(τ)
should equate to the power law expression:

a−b(τ0 − τ)γ , (2)

where (τ0−τ) is the time to major earthquake occurrence, a is the cumulative Benioff
strain at τ = τ0, and the constants b and γ are used to fit the formula to measured data
[27]. When a fit to real seismic data is performed, a value γ ≈ 0.3 is typical [6].

A mathematical model of seismic activation based on damage mechanics of earth-
quake faults has been put forth to account for equation (2) with a value γ = 1/3 [4].
In this model, cumulative Benioff strain is expressed as a function of the spatial aver-
age of a real time varying crack density parameter defined at each location along an
earthquake fault. Then, the value γ = 1/3 is derived by assuming a particular form
for the differential equation describing real time evolution of the crack density that
derives from a Boltzman kinetic type description of how cracks of different lengths
at different positional locations propagate and join together [39].
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In addition to the damage mechanics model of seismic activation, an empirical
model of seismic activation using statistical physics known as the Critical Point (CP)
model has been put forth to account for equation (2) with a value γ = 1/4 [31].
In this model, it is assumed, based on seismic observation, that earthquakes occur
at a constant rate in the seismic region, and that the mean rupture area A (τ) of
earthquakes occuring at time τ satisfies:

A (τ) ∝
1

(τ0 − τ)
. (3)

In turn, assumption (3) is justified by identifying the lengthscale L (τ) ∝ A (τ)1/2

with the correlation length of a statistical physical system described by Ginzburg-
Landau mean field theory with a temperature parameter depending on τ [32]. Impor-
tantly, previous work has not explained why it is physically reasonable to describe
statistics of seismic activation with thermal equilibrium statistical physics formalism,
or how to test predictions of these models other than time of major earthquake occur-
rence. Therefore, the objective of this article is to advance the detailed mathematical
description of the correspondence between nonlinear differential equation modelling
and statistical physics modelling of seismic activation in a way that advances testing
of model predictions against real seismic measurements.

The outline of the article is as follows. Section 2 introduces a sine-Gordon equa-
tion modelling earthquake fault dynamics during seismic activation and explains how
inverse scattering theory of this equation implies a relation between statistics of earth-
quake occurrence during seismic activation and the eigenvalue statistics of a differen-
tial operator whose bound state eigenfunctions characterize the distribution of stress
in the seismic region. Section 3 uses this relation to model eigenvalue statistics with a
2D Coulomb Gas statistical physics model, and explains how this model accounts for
deviation of earthquake occurrence statistics from Gutenberg-Richter statistics during
seismic activation. Section 4 concludes by commenting on how the 2D Coulomb Gas
statistical physics model implies the phase space dimension of a nonlinear dynami-
cal system characterizing real time velocity model evolution in the seismic activation
region is finite, and how this implication can be tested against real seismic measure-
ments.

2 Methods

2.1 Fault Dynamics

In 1+1 spacetime dimensions, the differential equation:

A∂
2
τ U(τ,z)+B∂τU(τ,z)−C∂

2
z U(τ,z) =−sin(U(τ,z)/D). (4)

has been used to model migration of earthquake hypocentres along earthquake faults
in seismic regions over periods of time during which multiple earthquakes occur [8].
In this equation, τ is real time, z coordinates the direction of earthquake hypocen-
ter migration along an earthquake fault, U(τ,z) is the local displacement of elastic
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material across the earthquake fault, A∂ 2
τ U(τ,z) is the local inertial force acting on

the fault material, B∂ 2
z U(τ,z) is the local elastic restoring force acting on the fault

material, and C∂τU(τ,z) and sin(U(τ,z)/D) are local frictional force acting on the
fault material attributed to periodic contact of the material with tectonic plates on ei-
ther side of the fault. If the earthquake fault material has constant height h and shear
modulus µ along the fault, a solution to equation (4) can be interpreted to describe
propagation of shear stress acting on fault material.

Restricting focus to the case C = 0, it follows that with rescaling of τ , z, and
U(τ,z), each of the constants A, B, and D in equation (3) can be scaled to 1, so it is
now assumed that each of these constants is 1. With this assumption, and definition
of the matrices:

M =

[
−iω − 1

2Uz(τ,z)
1
2Uz(τ,z) iω

]
, (5)

N =
i

4ω

[
cosU(τ,z) sinU(τ,z)
sinU(τ,z) −cosU(τ,z)

]
, (6)

for an arbitary complex number ω , the equation:

Mτ −Nz +MN −NM = 0, (7)

is equivalent to equation (3) [22]. This equivalence is of mathematical interest, be-
cause the associated seismic wave scattering problem defined by the linear system:[

Ψ1(τ,z)
Ψ2(τ,z)

]
= M

[
Ψ1(τ,z)
Ψ2(τ,z)

]
, (8)

has an infinite set of left and right scattering (i.e. Jost) solutionsΨλ ,L(τ,z) andΨλ ,R(τ,z),
indexed by complex numbers λ , with asymptotics:

Ψλ ,L(τ,z) =
[

0
eiλ z

]
, z → ∞ (9)

Ψλ ,L(τ,z) =

L(λ ,τ)e−iλ z

T (λ )
eiλ z

T (λ )

 , z →−∞, (10)

and:

Ψλ ,R(τ,z) =
[

e−iλ z

0

]
, z →−∞ (11)

Ψλ ,R(τ,z) =

 e−iλ z

T (λ )
R(λ ,τ)eiλ z

T (λ )

 , z → ∞, (12)

whose time evolution determines solutions to the original sine-Gordon equation via
the inverse scattering method [2].

Figure 2 is a diagram of how the inverse scattering method applies to solve the
sine-Gordon equation in terms of solutions to linear system (8). In this diagram, real
time evolution of an equation solution U(τ,z) is related by inverse scattering to real
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Fig. 2 Schematic of diagram of inverse scattering method applied to solve the sine-Gordon equation [2].

time evolution of the reflection coefficients R(λ ,τ) and a finite set of complex num-
bers {c j} associated with eigenvalues {λ j} of bound state solutions to linear system
(8). Note that in terms of inverse scattering theory, these bound states are in cor-
respondence with zeroes of the function T (λ ), whereas resonant and anti-resonant
scattering states are in correspondence with zeros of the reflection coefficients R(λ ,τ)
and L(λ ,τ) at fixed values of τ . Also, note that according to inverse scattering the-
ory, the eigenvalues {λ j} may have non-zero imaginary components, and are located
symmetrically with respect to the imaginary axis. This fact is important because it
demonstrates that when one or more bound states exist whose magnitudes along the z-
axis are constant or increase without bound as τ increases, the distribution of stress in
the seismic region is unstable to perturbations oscillating at an associated frequency
ω j, and the spatial form of the stress distribution is determined by the precise form
of the relevant bound state eigenfunction.

To clarify physical interpretation of the Jost functions used by the inverse scatter-
ing method, note that in general, for a potential function V (z) compactly supported
along the z-axis, the operator:

−B∂
2
z +V (z), (13)

has infinitely many eigenfunctions Ψ(z) satisfying the elastic wave equation:

−B∂
2
z Ψ(z)+V (z)Ψ(z) = EΨ(z), (14)

with positive real eigenvalues E = ω2, and finitely many bound state eigenfunctions
Ψj(z) with negative real eigenvalues E j < 0. Consequently, a solution Ψ̄(t,τ,z) to the
linear seismic wave equation:

∂
2
t Ψ̄(t,τ,z)−B(τ)∂ 2

z Ψ̄(t,τ,z)+V (τ,z)Ψ̄(t,τ,z) = 0. (15)

in which the auxillary seismic wave scattering time parameter t is introduced, and τ

tracks parameter changes associated with seismic activation, has a resonant scattering
expansion of the form:

Ψ̄(t,τ,z) =
N

∑
j=1

et
√

−E j a jΨj,a(τ,z) + e−t
√

−E j b jΨj,b(τ,z) (16)

+ ∑
ω

e−itω RωΨω(τ,z),

in which exponential growth and decay of the bound states determines the geometric
form of an elastic perturbation Ψ̄(t,τ,z) over time. For example, if V (τ,z) is a po-
tential well of height V0 > 0 which is independent of τ , nonzero for |z| ≤ L, and zero
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Fig. 3 Plots of resonant frequency and bound state frequency locations for 3 square well potentials of
increasing width.

elsewhere, there exist finitely many bound state eigenfunctions Ψj(z) which decay
exponentially with increasing |z|:

Ψj(z) ∝ e−k j |z|, |z| → ∞ (17)

for a discrete set of wavenumbers:

k j =
√
(V0 +E j)/B, (18)

whose inverse values determine characteristic length scales at which unstable growth
of fault material displacement occurs across the earthquake fault. Figure 3 shows a
plot of resonant and bound state frequency locations for 3 situations in which − 1

BV (z)
is a square well potential of increasing width and fixed height.

2.2 Fault Dynamics to Statistical Physics

Now suppose material fracture along an earthquake fault caused by previous earth-
quakes during a period of seismic activation influences elastic scattering according
to equation (15) with potential function − 1

BV (z;τ) equal to a τ-dependent constant
perturbed by random disorder over a compact interval of length L0 [20]. With this
supposition, non-uniformity of the potential term in equation (15) at time τ accounts
for scattering of elastic waves, and the maximum localization length 1/k j of a bound
state eigenfunction solving equation (15), henceforth denoted L (τ), is interpretable
as a length of fault material which is unstable to rupture. With reference to Figure
4, showing a schematic illustration of seismic activation in a 2D geometry at four
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Fig. 4 Schematic illustration of seismic activation in a 2D geometry at four different times τ in which each
black line represents an earthquake fault along which rupture has occured, and each red line represents an
earthquake fault along which shear stress is increasing prior to rupture at τ = τ0.

different times τ , this length of unruptured fault material may be visualized as a line
segment where shear stress exceeding some critical threshold has accumulated.

In 3 spatial dimensions, the previous discussion of stress localization in 1 spatial
dimension can be generalized if it is assumed that shear waves propagating within
a region of seismic activation at time τ are described by an elastic wave equation
that is equivalent to equation (7) with τ-dependent matrices M and N determined
by the P and S wave velocity model of the region at time τ . With this assumption,
previous work simulating localization of stress in random fracture networks implies
shear waves may be localized in 3 spatial dimensions at angular frequencies ω greater
than a mobility edge frequency ωc(τ) [23]. Therefore, based on this previous work,
it is now postulated that bound states of the τ-dependent inverse scattering problem
have eigenfrequencies ω > ωc(τ), are localized in space with maximum localization
length L (ω;τ) satisfying:

L (ω;τ) ∝ (ω −ωc(τ))
−1, (19)

and that the localization length L (ω0;τ0) of at least one such bound state is iden-
tifiable with the rupture length of the major earthquake occurring at time τ = τ0.
Notably, this postulate is in accordance with identifying ω0 −ωc(τ0) as the corner
frequency of the major earthquake, since the definition of major earthquake seismic
moment M0 implies:

M0 ∝ L (ω0;τ0)
3, (20)

which in conjunction with relation (19) implies the scaling relation:

ω0 −ωc(τ) ∝ M−1/3
0 , (21)

that has previously been reported as a corner frequency scaling relation by seismolo-
gists [1].

To quantify these statements in statistical terms, it is now recalled that in both
contexts of localization of seismic and electromagnetic waves in disordered elastic
and dielectric materials, in analogy to the theory of Anderson localization, elastic
and photonic states may be non-localized (i.e. extended) or localized at eigenfre-
quencies below or above a mobility edge frequency ωc, as shown in Figure 5 where
the leftmost dashed line is located at frequency ωc [20,24]. It is also recalled that
according to the scaling theory of Anderson localization, as a disorder parameter W
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Fig. 5 Photonic density of states in a disordered dielectric material [20]. Shaded region indicates frequen-
cies associated with localized states.

in a 3D disordered electronic model Hamiltonian is increased from 0 to some crit-
ical value Wc, the distribution of normalized energy level spacings of non-localized
states at a conduction band center changes from delta function (i.e. uniform level
spacing) to Poisson as the two boundaries between localized and non-localized states
(i.e. mobility edges) on opposite sides of the band center converge together [16,36].
More specifically, as W is increased from W ≈ 0 to W ≈Wc, the distribution of nor-
malized energy level spacings at the band center is described by the Wigner surmise
distribution:

Pβ (s) = c0

(
πs
2

)β

e−
1
4 β( πs

2 )
2−

(
c1s− β

4 πs
)
, (22)

with constants c0 and c1 determined by conditions:∫
∞

0
Pβ (s)ds = 1 (23)∫

∞

0
sPβ (s)ds = 1, (24)

and a value of β which decreases from β ≈ ∞ to β ≈ 0. The relevance of this scaling
theory to modelling seismic activation is now established by conjecturing that if λ

is the wavenumber of a spherical acoustic wave in 3 spatial dimensions, a Wigner
surmise distribution with a τ-dependent value of β describes the density of zeroes of
the reflection coefficient R(λ ,τ) in a neighborhood of origin in the complex λ plane,
and that β (τ) decreases monotonically to a value β (τ0) as τ → τ0.
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3 Results

As initial evidence for the conjectured correspondence between major earthquakes
and bound states of inverse scattering theory, first assume that during the time inter-
val (τ1,τ2) the value of ωc(τ) is approximately constant, and that the density ρ(ω)
of localized eigenstates in a neighborhood of the mobility edge shown in Figure 5
satisfies:

ρ(ω) ∝ |ω −ωc(τ)|β (τ). (25)

Furthermore, assume that the decay time of each localized state is proportional to its
localization length L (ω;τ), interpreted as the mean free path of acoustic scattering
at frequency ωc(τ). Then, if localized states correspond to seismic activation earth-
quakes with rupture length proportional to 1/(ω −ωc(τ)) occurring during the time
interval (τ1,τ2), the total number of earthquakes Ṅc with rupture length L >L (ω;τ)
occurring during the time interval satisfies:

Ṅc ∝ |ω −ωc(τ)|2+β (τ), (26)

from which it follows:

log10 Ṅc ≈ δ − (2+β (τ)) log10 L (ω;τ). (27)

Therefore, noting the relation between earthquake seismic moment and Richter mag-
nitude:

ML = (log10(M0)−9)/1.5, (28)

and the seismic moment relation:

M0 ∝ L (ω;τ1)
3, (29)

equation (27) is equivalent to the Gutenberg-Richter relation:

log10 Ṅc = δ̄ −0.5(2+β (τ))ML . (30)

Referring back to Figure 5, at times τ when the density of localized states is approx-
imately constant so that β (τ) = 0, the Gutenberg-Richter b-value is the physically
reasonable value 1.0 ([18,20]).

If it is now supposed that rather than being proportional to localization length, the
decay time of localized states is proportional to:

|ω −ωc(τ)|2/3, (31)

assuming critical slowing down of acoustic waves propagating across localized elastic
states with osciallation frequency ω ≈ ωc(τ), it follows that relation (26) is replaced
with relation:

Ṅc ∝ |ω −ωc(τ)|5/3+β (τ), (32)

and the Gutenberg-Richter b-value in equation (30) is approximately 0.83. Similarly,
if the critical slowing down exponent in expression (31) is replaced with a value
between 0 and 1, the Gutenberg-Richter b-value attains a value between 0.5 and 1.0.
Therefore, if the density of localized acoustic states ρ(ω) in Figure 5 is roughly
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[h]

Fig. 6 Phase diagram of 2D Coulomb gas with renormalization group flow indicated by arrows and KT
critical points identified by circle tangencies [10].

constant except for a neighborhood of ω = ωc(τ) where ρ(ω) ∝ (ω −ωc(τ))
β (τ),

and the critical slowing down exponent decreases from 1 to a value between 0 and
1 as ω approaches ωc(τ) from above, it follows that the deviation from Gutenberg-
Richter statistics shown in Figure 1 is accounted for by a correspondence between
localized acoustic states near the mobility edge and seismic activation earthquakes.

Having provided initial evidence that Wigner surmisde distributions are rele-
vant to accounting for deviation of earthquake occurrence statistics from Gutenberg-
Richter statistics during periods of seismic activation before a major earthquake, it
is now further conjectured, in preceding with previous statistical physics models of
seismic activation, that β (τ) can be regarded as a parameter in a τ-dependent 2D
Coulomb gas statistical physics model whose parameters at different values of τ are
related by renormalization group flow [10,3,9]. A phase diagram of a 2D Coulomb
gas with a renormalization group flow indicated by arrows is shown in Figure 6. In
this diagram, different vaues of the flow coordinate ‘t’ equate to β (τ) at different
values of τ in such a way that β (τ0) is the horizontal coordinate of a point of tan-
gency between two of the Ford circles. It should be noted that this phase diagram
corresponds to the M = 1 description of a more general 2D Coulomb gas statisti-
cal physics model defined by a field theory with M complex fields φ whose domain
of definition is a 2D complex plane, and whose amplitudes quantify the density of
eigenvalues of a differential operator at different complex frequencies [15].

To elaborate on this identification of a statistical physics model relevant to mod-
elling seismic activation, suppose that as a result of stress accumulation in the Earth’s
subsurface during seismic activation, the elastic potential function V (τ,x,y,z) de-
scriptive of a seismic region’s seismic velocity model oscillates around its average
value at each point in space at a set of characteristic frequencies Re(ω j) < ωc(τ),
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where each complex frequency ω j is an inverse scattering theory resonant frequency
[30]. Next, suppose random variation of the seismic region elastic velocity model dur-
ing activation can be approximated by attributing it to oscillation at a finite number
M of these eigenfrequencies ω j. With this supposition, the M τ-dependent complex
eigenfrequencies of the shear stress eigenfunctions define a torus of real dimension
2M identified by a point in a Siegel moduli space M , and τ-dependence of the com-
plex frequencies is determined by motion of a point in the moduli space. It is this
motion which is described by the renormalization group flow of a 2D Coulomb gas
model near its critical point, assuming the model has M fields φ j and coefficients co-
ordinating points of M [10,41,13]. In passing, the possibility that correlation func-
tions of the statistical field theory satisfying differential equations of order N describe
bound states of shear stress nucleation in the Earth’s subsurface before the moment
of earthquake rupture is noted [40].

4 Discussion

Previous work has identified predicting the time of occurrence of major earthquakes
as a possible application of statistical physics models of seismic activation, but this
application has not yet been realized [6]. In more recent times, earthquake early warn-
ing algorithms such as FinDer and Virtual Seismologist have been developed which
can in principle use previous earthquake occurrence statistics as input, and most re-
cently, artificial intelligence algorithms such as QuakeGPT have been developed for
predicting the occurrence of major earthquakes using seismic event records created
with stochastic simulators as training data [5,33]. Therefore, a practical applied sci-
ence goal for the statistical physics model presented in this article appears to be im-
proving the predictive performance of one or more of these existing earthquake early
warning algorithms by appropriately modifying their earthquake occurrence statisti-
cal inputs, acknowledging that preliminary tests of the model’s validity against real
seismic data must be passed before achieving this application objective can be con-
sidered a realistic possibility.

From a geophysical testing point of view, if it is true that the growth of unstable
stress modes within the Earth during seismic activation are determined by statistical
physics renormalization group flow mathematics, and, as a result, a nonlinear dynam-
ical system of phase space dimension N characterizes the nucleation of shear stress
in a seismic region preceding a major earthquake, a geophysical signal processing
technique known as singular spectrum analysis should apply to determine this phase
space dimension [7]. Therefore, it is suggested that coda wave interferometry mea-
surements of relative changes in seismic surface wave and/or body wave velocity be
performed between pairs of seismic stations in a seismic region over a duration of
time during which seismic activation is known to have occurred, and used as input to
a time domain multichannel singular spectrum analysis algorithm [26]. The number
of channels of this algorithm would equate to the number of station pairs, and the
number of singular values output by the algorithm in different time windows pre-
ceding occurrence of a major earthquake should provide some indication of a finite
value for N if the statistical physics model of seismic activation is correct in princi-
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ple. With reference to previous geophysical application of singular spectrum analysis,
performed in the frequency domain, the signal processing algorithm suggested here is
different in that it should be carried out in the time domain τ rather than the frequency
domain [34].

In conclusion, work towards improving current earthquake early warning sys-
tems can proceed in two directions. Firstly, as an initial check on whether or not the
statistical physics modelling approach presented here could be of practical utility,
work can be done to determine whether or not changes of the Earth’s elastic veloc-
ity model preceding major earthquakes, as determined by coda wave interferometry,
can be processed to extract an integer identifiable as the phase space dimension of a
nonlinear dynamical system. Secondly, work can be done to elaborate upon the sta-
tistical physics mathematical model of seismic activation presented in this article to
determine other tests of its scientific validity and potential for practical application.
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