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Abstract Starting from earthquake fault dynamic equations, a correspondence be-
tween earthquake occurrence statistics in a seismic region before a major earthquake
and eigenvalue statistics of a differential operator whose bound state eigenfunctions
characterize the distribution of stress in the seismic region is derived. Modelling
these eigenvalue statistics with a 2D Coulomb Gas statistical physics model, pre-
viously reported deviation of seismic activation earthquake occurence statistics from
Gutenberg-Richter statistics in time intervals preceding the major earthquake is de-
rived. It is also explained how statistical physics modelling predicts a finite dimen-
sional nonlinear dynamic system describes real time velocity model evolution in the
region undergoing seismic activation, and how this prediction can be tested experi-
mentally.

Keywords seismic activation · statistical physics · geodynamics · signal processing

1 Introduction

An increase in the number of intermediate sized earthquakes (M > 3.5) in a seis-
mic region preceding the occurrence of a major earthquake (7 < M < 8), referred
to as seismic activation, has been observed to occur before many major earthquakes
[6]. For example, seismic activation was observed in a geographic region spanning
21◦N −26◦N ×119◦E −123◦E for a period of time between 1991 and 1999 preced-
ing the magnitude 7.6 Chi-Chi earthquake [11]. Figure 1 shows a schematic plot of
the cumulative distribution of earthquakes of different magnitudes in a region under-
going seismic activation in two different time intervals of equal duration preceding
occurrence of a major earthquake at time τ = τ0. In this figure, τ is a real time pa-
rameter, and τ0 is the characteristic time of major earthquake recurrence assuming
an earthquake of similar magnitude occurred in the same region at τ = 0 [31]. Im-
portantly, the cumulative distribution of earthquakes in a time interval of fixed width
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Fig. 1 Plot of the cumulative distribution of earthquakes of different magnitudes in a seismic zone in two
different time intervals of equal width preceding occurrence of a major earthquake at ∆τ = τ0 − τ = 0
[31].

increasingly deviates away from a Gutenberg-Richter linear log-magnitude plot as
the end of the time interval approaches τ0.

As a means of predicting the time τ = τ0 at which a major earthquake preceded
by seismic activation occurs, it has been hypothesized that the average seismic mo-
ment ⟨M⟩τ of earthquakes occuring in intervals of time (τ,τ +∆τ) preceding a major
earthquake obeys an inverse power of remaining time to failure law:

⟨M⟩τ ∝
1

(τ0 − τ)γ1
(1)

and that as a result, the cumulative Benioff strain C (τ), defined as:

C (τ) =
n(τ)

∑
i=1

M1/2
0,i , (2)

where M0,i is the seismic moment of the ith earthquake in the region starting from a
time τ = 0 preceding the major earthquake, and n(τ) is the number of earthquakes
occurring in the region up to time τ , satisfies:

C (τ) = a−b(τ0 − τ)γ2 , γ2 = 1− γ1/2. (3)

Notably, the exponent selection of 1/2 in equation (2) is not necessary to derive
formula (3) with a different arithmetic relation between γ1 and γ2, but appears to have
been commonly selected by previous researchers based on resulting predictions of
major earthquake occurrence time when formula (3) is fit to real seismic data [27].
It is also noted that when a fit to real seismic data is performed, a value γ2 ≈ 0.3 is
typical [6].

A mathematical model of seismic activation based on damage mechanics of earth-
quake faults has been put forth to derive equation (3) with a value γ2 = 1/3 [4]. In
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this derivation, the occurrence of seismic activation earthquakes progressively de-
creases the average shear modulus of unruptured fault material in the seismic region
where subsequent seismic activation earthquakes occur, and the result γ2 = 1/3 is
determined by a Boltzman kinetic type description of how ruptured faults of different
lengths at different positional locations propagate and join together [39].

In addition to the damage mechanics model of seismic activation, an empirical
model of seismic activation using statistical physics known as the Critical Point (CP)
model has been put forth to derive equation (3) with a value γ2 = 1/4 [31]. In this
derivation, the inverse power of remaining time to failure law:

⟨M⟩τ ∝
1

(τ0 − τ)3/2 (4)

is asserted based on identifying the mean rupture length L (τ) of earthquakes occur-
ing at time τ with the correlation length of a statistical physical system described by
Ginzburg-Landau mean field theory with a temperature parameter depending on τ ,
whereby:

L (τ) ∝
1

(τ0 − τ)1/2 , (5)

and relation (4) follows from assuming ⟨M⟩τ ∝ L (τ)3 when fault material shear
modulus is constant in the seismic activation region [32]. Importantly, previous work
has not explained why it is physically reasonable to describe statistics of seismic
activation with thermal equilibrium statistical physics formalism, or what predictions
other than time of major earthquake occurrence are possible with such models. There-
fore, the objective of this article is to advance the detailed mathematical description
of the correspondence between nonlinear differential equation modelling and statis-
tical physics modelling of seismic activation in a way that advances testing of model
predictions against real seismic measurements.

The outline of the article is as follows. Section 2 introduces a sine-Gordon equa-
tion modelling earthquake fault dynamics during seismic activation and explains how
inverse scattering theory of this equation implies a relation between statistics of earth-
quake occurrence during seismic activation and the eigenvalue statistics of a differen-
tial operator whose bound state eigenfunctions characterize the distribution of stress
in the seismic region. Section 3 uses this relation to model eigenvalue statistics with a
2D Coulomb Gas statistical physics model, and explains how this model accounts for
deviation of earthquake occurrence statistics from Gutenberg-Richter statistics during
seismic activation. Section 4 concludes by commenting on how the 2D Coulomb Gas
statistical physics model implies the phase space dimension of a nonlinear dynami-
cal system characterizing real time velocity model evolution in the seismic activation
region is finite, and how this implication can be tested against real seismic measure-
ments.
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2 Methods

2.1 1D Fault Dynamics Inverse Scattering Theory

In 1+1 spacetime dimensions, the differential equation:

A∂
2
τ U(τ,z)+B∂τU(τ,z)−C∂

2
z U(τ,z) =−sin(U(τ,z)/D). (6)

has been used to model migration of earthquake hypocentres along earthquake faults
in seismic regions over periods of time during which multiple earthquakes occur,
and is here put forth as a model of seismic activation [8]. In this equation, τ is real
time, z coordinates a direction of earthquake hypocenter migration along an earth-
quake fault, U(τ,z) is the local displacement of elastic material across the earthquake
fault, A∂ 2

τ U(τ,z) is the local inertial force acting on the fault material, B∂ 2
z U(τ,z)

is the local elastic restoring force acting on the fault material, and C∂τU(τ,z) and
sin(U(τ,z)/D) are local frictional force acting on the fault material attributed to pe-
riodic contact of the material with tectonic plates on either side of the fault. If the
earthquake fault material has constant height h and shear modulus µ along the fault,
a solution to equation (6) can be interpreted to describe propagation of shear stress
along the z-axis, which in this 1 dimensional model is identified with the both the
direction of hypocentre migration and the direction of all earthquake slip vectors.

Restricting focus to the case C = 0, with rescaling of τ , z, and U(τ,z), each of
the constants A, B, and D in equation (5) can be set to 1. With this rescaling, and
definition of the matrices:

M =

[
−iω − 1

2Uz(τ,z)
1
2Uz(τ,z) iω

]
, (7)

N =
i

4ω

[
cosU(τ,z) sinU(τ,z)
sinU(τ,z) −cosU(τ,z)

]
, (8)

for an arbitary complex number ω , the equation:

Mτ −Nz +MN −NM = 0, (9)

is equivalent to equation (5) [22]. Moreover, introduction of the matrix operator M
permits introduction of the associated seismic wave scattering problem:

∂

∂ z

[
Ψ1(τ,z)
Ψ2(τ,z)

]
= M

[
Ψ1(τ,z)
Ψ2(τ,z)

]
, (10)

in which, according to the inverse scattering method, τ is an auxillary parameter,
and oscillatory dependence e−iωt of the incoming and outgoing scattered waves on a
scattering time parameter t has been implicitly assumed in the definitions of M and
N.

Upon definition of scattering problem (10), the inverse scattering method pro-
ceeds by determining an infinite set of its left and right scattering (i.e. Jost) solutions
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Fig. 2 Schematic of diagram of inverse scattering method applied to solve the sine-Gordon equation [2].
Real time τ evolution of the scattering data determines a solution to the sine-Gordon equation upon appli-
cation of an inverse scattering transform.

Ψλ ,L(τ,z) and Ψλ ,R(τ,z), indexed in this case by complex wave numbers λ = ω , with
asymptotics [2]:

Ψλ ,L(τ,z) =
[

0
eiλ z

]
, z → ∞ (11)

Ψλ ,L(τ,z) =

L(λ ,τ)e−iλ z

T (λ )
eiλ z

T (λ )

 , z →−∞, (12)

and:

Ψλ ,R(τ,z) =
[

e−iλ z

0

]
, z →−∞ (13)

Ψλ ,R(τ,z) =

 e−iλ z

T (λ )
R(λ ,τ)eiλ z

T (λ )

 , z → ∞. (14)

Next, the effect of real time τ evolution of the Jost functions is calculated in terms of
τ-variation of the reflection coefficients R(λ ,τ) and a finite set of complex numbers
{c j} associated with complex wave numbers {λ j} of bound state solutions to lin-
ear system (10). Finally, the real time evolved sine-Gordon equation solution U(τ,z)
is determined by applying an inverse scattering transform to the real time evolved
scattering data as indicated in Figure 2. Note that according to 1D scattering the-
ory, scattering bound states are in correspondence with zeroes of the function T (λ ),
while resonant scattering states are in correspondence with zeros of the reflection co-
efficients R(λ ,τ) and L(λ ,τ) at fixed values of τ . Also note that in general the bound
and resonant state {λ j} values have non-zero imaginary components, and are located
symmetrically with respect to the imaginary axis in the complex λ -plane.

To clarify physical interpretation of the Jost functions used by the inverse scatter-
ing method, observe that for a potential function V (z) compactly supported along the
z-axis, the operator:

−B∂
2
z +V (z), (15)

has infinitely many resonant state eigenfunctions Ψ(z) satisfying the elastic wave
equation:

−B∂
2
z Ψ(z)+V (z)Ψ(z) = EΨ(z), (16)
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and finitely many bound state eigenfunctions Ψj(z) with negative real eigenvalues
E j = ω2

j < 0. Consequently, a solution Ψ̄(t,τ,z) to the linear seismic wave equation:

∂
2
t Ψ̄(t,τ,z)−B(τ)∂ 2

z Ψ̄(t,τ,z)+V (τ,z)Ψ̄(t,τ,z) = 0. (17)

in which the auxillary seismic wave scattering time parameter t is introduced, and τ

tracks parameter changes associated with seismic activation, has a resonant scattering
expansion of the form:

Ψ̄(t,τ,z) =
N

∑
j=1

et
√

−E j a jΨj,a(τ,z) + e−t
√

−E j b jΨj,b(τ,z) (18)

+ ∑
ω resonant

e−itω cωΨω(τ,z),

in which exponential growth and decay of the bound states determines the geometric
form of an elastic perturbation Ψ̄(t,τ,z) over time.

For example, if V (τ,z) is a potential well of depth V0 > 0 which is independent
of τ , nonzero for |z| ≤ L, and zero elsewhere, there exist finitely many bound state
eigenfunctions Ψj(z) which decay exponentially with increasing |z|:

Ψj(z) ∝ e−k j |z|, |z| → ∞ (19)

for a discrete set of spatial decay constants:

k j =
√
−E j/B, (20)

whose inverse values determine characteristic length scales at which unstable growth
of fault material displacement may occur across the earthquake fault. Figure 3 shows
a plot of resonant and bound state frequency locations for 3 situations in which
− 1

BV (z) is a square well potential of increasing width and fixed height.

2.2 3D Fault Dynamics to Statistical Physics

In 3 spatial dimensions, the previous discussion of inverse scattering in 1 spatial di-
mension can be generalized with reference to the theory of elastodynamic Green’s
functions [41]. More specifically, given an elastodynamic Green’s function on an
elastic 3D half space with spatially varying elastic impedance, the Fourier transform
of this Green’s function has poles at complex resonant frequencies ω =ω j identifying
elastodynamic resonant scattering states. Moreover, the residues {c j} of the Fourier
transformed Green’s function at the pole locations {ω j}, together with the pole lo-
cations, constitute a 3D generalization of inverse scattering data. Therefore, allowing
both the pole locations and associated residues to depend on τ , real time evolution of
3D scattering data is defined in such a way that it is necessarily in correspondence
with real time evolution of the elastic impedance of the half space.

Without addressing appropriate mathematical definition of differential operators
M and N for describing τ-dependent elastic scattering in a 3D half space and holo-
graphic real time evolution of 3D scattering data, it remains possible to conjecture
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Fig. 3 Plots of resonant frequency and bound state frequency locations for 3 square well potentials of
increasing width.

Fig. 4 Schematic illustration of seismic activation in a 2D geometry at four different times τ in which each
black line represents an earthquake fault along which rupture has occured, and each red line represents an
earthquake fault along which shear stress is increasing prior to rupture at τ = τ0.

how statistical properties of 3D scattering data descriptive of seismic activation de-
pend on τ by applying previous work on elastic scattering theory and statistical
physics models of seismic activation. To this end, Figure 4 illustrates a random frac-
ture network model of a seismic activation region at 4 different times τ , whereby
occurrence of seismic activation earthquakes and the major earthquake at time τ = τ0
introduce new randomly located fractures that change the scattering effect of the
network on incident elastic waves. Previous work has shown that when the fracture
lengths are distributed according to Gutenberg-Richter statistics, propagation of elas-
tic waves incident on the network is exponentially dampted at oscillation frequencie
ω greater than a mobility edge frequency ωc, with damping lengthscale proportional
to (ω − ωc)

−1 [23]. Therefore, it is now postulated that resonant states of the τ-
dependent 3D elastodynamic Green’s function have eigenfrequencies ω > ωc(τ), for
some τ-dependent mobility edge frequency ωc(τ), and that these resonant states are
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localized in 3D space with localization lengths L (ω;τ):

L (ω;τ) ∝ (ω −ωc(τ))
−1. (21)

equating to rupture lengths of earthquakes occurring during seismic activation. No-
tably, this postulate suggests identifying ω −ωc(τ) with the corner frequency of a
seismic activation earthquake occurring at time τ , since the accepted seismic moment
Ms scaling relation:

Ms ∝ L (ω0;τ0)
3, (22)

together with relation (21) implies the scaling relation:

ω −ωc(τ) ∝ M−1/3
s , (23)

that seismologists have observed in practice [1].
To quantify these statements with statistical mechanics formalism, it is now pos-

tulated that the statistical theory of energy levels applies to describe τ-dependent 3D
resonant scattering data [15]. More specifically, it is postulated that increasing the set
of fractures in a seismic activation region as τ → τ0 is analogous to increasing a dis-
order parameter W in a 3D disordered electronic model Hamiltonian from 0 to some
critical value Wc, whereby the normalized level spacing distribution of 3D elastic res-
onant scattering states with real frequency component less than the elastic mobility
edge ωc(τ) equates to the normalized level spacing distribution of non-localized elec-
tronic states [24]. In mathematical terms, this is the statement that the Wigner surmise
distribution:

Pβ (s) = c0

(
πs
2

)β

e−
1
4 β( πs

2 )
2−

(
c1s− β

4 πs
)
, (24)

with constants c0 and c1 determined by conditions:

∫
∞

0
Pβ (s)ds = 1 (25)∫

∞

0
sPβ (s)ds = 1, (26)

and a value of β between 0 and ∞ that depends on τ is the normalized level spacing
distribution of 3D elastic resonant scattering states below the elastic mobility edge.
Note that according to this postulate, the value β (τ) decreases monotonically to the
value β (τ0) as τ → τ0, since the normalized energy level spacings of non-localized
electronic states at a conduction band center varies from delta function (i.e. uniform
level spacing) to Poisson as the disorder parameter W is increased to Wc and the
boundaries between localized and non-localized electronic states (i.e. mobility edges)
on opposite sides of the band center converge together [16,36].
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Fig. 5 Density of states diagram for light localization in a dielectric material [20]. Shaded region indicates
frequencies associated with localized states.

3 Results

As initial evidence for the conjectured correspondence between seismic activation
earthquakes and 3D resonant scattering states, assume that during the time interval
(τ,τ +∆τ) the value of ωc(τ) is approximately constant, and that the density ρ(ω)
of localized resonant scattering states in a neighborhood of the elastic mobility edge
shown in Figure 5 satisfies:

ρ(ω) ∝ |ω −ωc(τ)|β (τ). (27)

Furthermore, assume that the decay time of each localized state is proportional to
its localization length L (ω;τ), interpreted as the mean free path of acoustic scat-
tering at frequency ωc(τ). Then, if localized states correspond to seismic activation
earthquakes with rupture length proportional to 1/(ω −ωc(τ)) occurring during the
time interval (τ,τ + ∆τ), the total number of earthquakes Ṅc with rupture length
L > L (ω;τ) occurring during the time interval satisfies:

Ṅc ∝ |ω −ωc(τ)|2+β (τ), (28)

from which it follows:

log10 Ṅc ≈ δ − (2+β (τ)) log10 L (ω;τ). (29)

Therefore, given the relation between earthquake seismic moment and Richter mag-
nitude:

ML = (log10(Ms)−9)/1.5, (30)
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and the seismic moment relation:

Ms ∝ L (ω;τ1)
3, (31)

equation (29) is equivalent to the Gutenberg-Richter relation:

log10 Ṅc = δ̄ −0.5(2+β (τ))ML . (32)

This equation implies that when the density of localized resonant states is approx-
imately constant so that β (τ) = 0, the Gutenberg-Richter b-value is the physically
reasonable value 1.0 ([18,20]).

If it is now supposed that rather than being proportional to localization length, the
decay time of localized states is proportional to:

|ω −ωc(τ)|2/3, (33)

assuming critical slowing down of elastic waves propagating across disordered elas-
tic material with osciallation frequency ω ≈ ωc(τ), it follows that relation (28) is
replaced with relation:

Ṅc ∝ |ω −ωc(τ)|5/3+β (τ), (34)

and the Gutenberg-Richter b-value in equation (32) is approximately 0.83. Similarly,
if the critical slowing down exponent in expression (33) is replaced with a value be-
tween 0 and 1, the Gutenberg-Richter b-value attains a value between 0.5 and 1.0.
Therefore, if the density of localized elastic states ρ(ω) in Figure 5 is roughly con-
stant except for a neighborhood of ω = ωc(τ) where ρ(ω) ∝ (ω −ωc(τ))

β (τ), and
the critical slowing down exponent decreases from 1 to a value between 0 and 1 as ω

approaches ωc(τ) from above, it follows that the deviation from Gutenberg-Richter
statistics shown in Figure 1 is accounted for by a correspondence between localized
elastic states near the elastic mobility edge and seismic activation earthquakes.

Having provided initial evidence that Wigner surmise distributions are relevant to
accounting for deviation of earthquake occurrence statistics from Gutenberg-Richter
statistics during seismic activation, it is now further conjectured, in accordance with
previous statistical physics models of seismic activation, that β (τ) can be regarded
as a parameter in a τ-dependent 2D Coulomb gas statistical physics model whose
parameters at different values of τ are related by renormalization group flow [10,3,9].
A phase diagram of a 2D Coulomb gas with a renormalization group flow indicated
by arrows is shown in Figure 6. In this diagram, different vaues of the flow coordinate
‘t’ equate to β (τ) at different values of τ in such a way that β (τ0) is the horizontal
coordinate of a point of tangency between two of the Ford circles. It should be noted
that this phase diagram corresponds to the M = 1 description of a more general 2D
Coulomb gas statistical physics model defined by a field theory with M complex
fields φ whose domain of definition is a 2D complex plane, and whose amplitudes
quantify the density of resonant scattering frequencies of a 3D differential operator
at different complex frequencies [42,13,40].
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[h]

Fig. 6 Phase diagram of 2D Coulomb gas with renormalization group flow indicated by arrows and KT
critical points identified by circle tangencies [10].

4 Discussion

Previous work has identified predicting the time of occurrence of major earthquakes
as a possible application of statistical physics models of seismic activation, but this
application has not yet been realized [6]. In more recent times, earthquake early warn-
ing algorithms such as FinDer and Virtual Seismologist have been developed which
can in principle use previous earthquake occurrence statistics as input, and most re-
cently, artificial intelligence algorithms such as QuakeGPT have been developed for
predicting the occurrence of major earthquakes using seismic event records created
with stochastic simulators as training data [5,33]. Therefore, a practical applied sci-
ence goal for the statistical physics model presented in this article appears to be im-
proving the predictive performance of one or more of these existing earthquake early
warning algorithms by appropriately modifying their earthquake occurrence statisti-
cal inputs, acknowledging that preliminary tests of the model’s validity against real
seismic data must be passed before achieving this application objective can be con-
sidered a realistic possibility.

From a geophysical testing point of view, if it is true that the growth of unstable
stress modes within the Earth during seismic activation are determined by statistical
physics renormalization group flow mathematics, and, as a result, a nonlinear dynam-
ical system of phase space dimension N characterizes the nucleation of shear stress
in a seismic region preceding a major earthquake, a geophysical signal processing
technique known as singular spectrum analysis should apply to determine this phase
space dimension [7]. Therefore, it is suggested that coda wave interferometry mea-
surements of relative changes in seismic surface wave and/or body wave velocity be
performed between pairs of seismic stations in a seismic region over a duration of
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time during which seismic activation is known to have occurred, and used as input to
a time domain multichannel singular spectrum analysis algorithm [26]. The number
of channels of this algorithm would equate to the number of station pairs, and the
number of singular values output by the algorithm in different time windows pre-
ceding occurrence of a major earthquake should provide some indication of a finite
value for N if the statistical physics model of seismic activation is correct in princi-
ple. With reference to previous geophysical application of singular spectrum analysis,
performed in the frequency domain, the signal processing algorithm suggested here is
different in that it should be carried out in the time domain τ rather than the frequency
domain [34].

In conclusion, work towards improving current earthquake early warning sys-
tems can proceed in two directions. Firstly, as an initial check on whether or not the
statistical physics modelling approach presented here could be of practical utility,
work can be done to determine whether or not changes of the Earth’s elastic veloc-
ity model preceding major earthquakes, as determined by coda wave interferometry,
can be processed to extract an integer identifiable as the phase space dimension of a
nonlinear dynamical system. Secondly, work can be done to elaborate upon the sta-
tistical physics mathematical model of seismic activation presented in this article to
determine other tests of its scientific validity and potential for practical application.
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