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Theorem 0.1. Let N = 4 · 3n − 1 where n ≥ 0. Let Si = S3
i−1 − 3Si−1 with S0 = 6 . Then N is

prime iff Sn ≡ 0 (mod N) .

Proof. The sequence ⟨Si⟩ is a reccurence relation with a closed-form solution. Let ω = 3+
√
8

and ω̄ = 3−
√
8 . It then follows by induction that Si = ω3i + ω̄3i for all i :

S0 = ω30 + ω̄30 = (3 +
√
8) + (3−

√
8) = 6

Sn = S3
n−1 − 3Sn−1 =

=
(
ω3n−1

+ ω̄3n−1
)3

− 3
(
ω3n−1

+ ω̄3n−1
)
=

= ω3n + 3ω2·3n−1
ω̄3n−1

+ 3ω3n−1
ω̄2·3n−1

+ ω̄3n − 3ω3n−1 − 3ω̄3n−1
=

= ω3n + 3ω3n−1
(ωω̄)3

n−1
+ 3ω̄3n−1

(ωω̄)3
n−1

+ ω̄3n − 3ω3n−1 − 3ω̄3n−1
=

= ω3n + ω̄3n

The last step uses ωω̄ = (3 +
√
8)(3−

√
8) = 1 .

Necessity
If N is prime then Sn is divisible by 4 · 3n − 1 .

For n = 0 we have N = 3 and S0 = 6 , so N | S0, otherwise since 4 · 3n − 1 ≡ 11 (mod 12)

for odd n ≥ 1 it follows from properties of the Legendre symbol that
(

3
N

)
= 1 . This means that

3 is a quadratic residue modulo N . By Euler’s criterion, this is equivalent to 3
N−1

2 ≡ 1 (mod N)

. Since 4 · 3n − 1 ≡ 3 (mod 8) for odd n ≥ 1 it follows from properties of the Legendre symbol
that

(
2
N

)
= −1 . This means that 2 is a quadratic nonresidue modulo N . By Euler’s criterion,

this is equivalent to 2
N−1

2 ≡ −1 (mod N) .
Combining these two equivalence relations yields

72
N−1

2 =
(
2

N−1
2

)3 (
3

N−1
2

)2

≡ (−1)3(1)2 ≡ −1 (mod N)

Let σ = 3
√
8 and define X as the ring X = {a+b

√
8 | a, b ∈ ZN} . Then in the ring X , it follows

that
(12 + σ)N = 12N + 3N

(√
8
)N

=

= 12 + 3 · 8N−1
2 ·

√
8 =

= 12 + 3(−1)
√
8 =

1



= 12− σ ,
where the first equality uses the Binomial Theorem in a finite field, and the second equality uses
Fermat’s little theorem.

The value of σ was chosen so that ω =
(12 + σ)2

72
. This can be used to compute ω

N+1
2 in the ring

X as

ω
N+1

2 =
(12 + σ)N+1

72
N+1

2

=

=
(12 + σ)(12 + σ)N

72 · 72N−1
2

=

=
(12 + σ)(12− σ)

−72
=

= −1.
Next, multiply both sides of this equation by ω̄

N+1
4 and use ωω̄ = 1 which gives

ω
N+1

2 ω̄
N+1

4 = −ω̄
N+1

4

ω
N+1

4 + ω̄
N+1

4 = 0

ω
4·3n−1+1

4 + ω̄
4·3n−1+1

4 = 0

ω3n + ω̄3n = 0

Sn = 0

Since Sn is 0 in X it is also 0 modulo N .

Sufficiency
If Sn is divisible by 4 · 3n − 1 then 4 · 3n − 1 is prime.

For n = 0 we have N = 3 and S0 = 6 , so N | Sn and N is prime, otherwise consider the
sequences:
U0 = 0, U1 = 1, Un+1 = 6Un − Un−1

V0 = 2, V1 = 6, Vn+1 = 6Vn − Vn−1

The following equations can be proved by induction:
(1) : Vn = Un+1 − Un−1

(2) : Un =
(3 +

√
8)n − (3−

√
8)n√

32
(3) : Vn = (3 +

√
8)n + (3−

√
8)n

(4) : Um+n = UmUn+1 − Um−1Un

Now let p be a prime and e ≥ 1 . Suppose Un ≡ 0 (mod pe) . Then Un = bpe for some b . Let
Un+1 = a . By the recurrence relation and (4) , we have:
U2n = bpe (2a− 6bpe) ≡ 2aUn (mod pe+1)

U2n+1 = U2
n+1 − U2

n ≡ a2 (mod pe+1)

Similarly:
U3n = U2n+1Un − U2nUn−1 ≡ 3a2Un (mod pe+1)

U3n+1 = U2n+1Un+1 − U2nUn ≡ a3 (mod pe+1)

In general:
Ukn ≡ kak−1Un (mod pe+1)

Ukn+1 ≡ ak (mod pe+1)
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Taking k = p we get:
(5) : Un ≡ 0 (mod pe)⇝ Unp ≡ 0 (mod pe+1)

Expanding (3±
√
8)n by the Binomial Theorem we find that (2) and (3) give us:

Un =
∑
k

(
n

2k + 1

)
3n−2k−18k

Vn =
∑
k

(
n

2k

)
2 · 3n−2k8k

Let us set n = p where p is an odd prime. From Binomial Coefficient of Prime
(
p
k

)
is a multiple

of p except when k = 0 or k = p. We find that:
Up ≡ 8

p−1
2 (mod p)

Vp ≡ 6 (mod p)

If p ̸= 2 then by Fermat’s Little Theorem
8p−1 ≡ 1 (mod p)

Hence:(
8

p−1
2 − 1

)(
8

p−1
2 + 1

)
≡ 0 (mod p)

8
p−1
2 ≡ ±1 (mod p)

When Up ≡ −1 (mod p) we have:
Up+1 = 6Up − Up−1 = 6Up + Vp − Up+1 ≡ −Up+1 (mod p)

Hence:
Up+1 ≡ 0 (mod p)

When Up ≡ +1 (mod p) we have:
Up−1 = 6Up − Up+1 = 6Up − Vp − Up−1 ≡ −Up−1 (mod p)

Hence:
Up−1 ≡ 0 (mod p)

Thus we have shown that:
(6) : ∀p ∈ P : ∃ϵ(p) : Up+ϵ(p) ≡ 0 (mod p)

where ϵ(p) is an integer such that |ϵ(p)| ≤ 1 .
Now let N ∈ N
Let m ∈ N such that m(N) is the smallest positive integer such that:
Um(N) ≡ 0 (mod N)

Let a ≡ Um+1 (mod N)

Then a ⊥ N because gcd{Un, Un+1} = 1

Hence the sequence:
Um, Um+1, Um+2, . . . is congruent modulo N to aU0, aU1.aU2, . . .

Then we have:
(7) : Un ≡ 0 (mod N) ⇐⇒ n = km(N)

for some integer k.
(This number m(N) is called the rank of apparition of N in the sequence.)
We have the identity:
2Un+1 = 6Un + Vn

So any common factor of Un and Vn must divide Un and 2Un+1 .
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As Un ⊥ Un+1 ; this implies that gcd{Un, Vn} ≤ 2.
So Un and Vn have no odd factor in common.
So if Sn ≡ 0 (mod (4 · 3n − 1)):
U2·3n = U3nV3n ≡ 0 (mod (4 · 3n − 1))

U3n ̸≡ 0 (mod (4 · 3n − 1))

Now, if m = m(4 · 3n − 1) is the rank of apparition of 4 · 3n − 1 it mas be divisor of 2 · 3n but not
of 3n . So m = 2 · 3n .
Now we prove that N = 4 · 3n − 1 must therefore be prime.
Let the prime decomposition of N be pe11 . . . perr .
All primes pj are greater than 3 because N is odd and congruent to −1 modulo 3 .
From (5), (6), (7) we know that Ut ≡ 0 (mod 4 · 3n − 1) , where:
t = lcm{pe1−1

1 (p1 + ϵ1), . . . , p
er−1
r (pr + ϵr)}

where each ϵj = ±1 .
It follows that t is a multiple of m = 2 · 3n .

Let N0 =
r∏

j=1

p
ej−1
j (pj + ϵj) .

We have:

N0 ≤
r∏

j=1

p
ej−1
j

(
pj +

pj
5

)
=

(
6

5

)r

N

Also because pj + ϵj is even t ≤ N0

2r−1
because a factor of 2 is lost every time the LCM of two

even numbers is taken.
Combining these results, we have:

m ≤ t ≤ 2

(
3

5

)r

N ≤ 4

(
3

5

)r

N < 3m

Hence r ≤ 2 and t = m or t = 2m

Therefore e1 = 1 and er = 1

If N is not prime, we must have:
N = 4 · 3n − 1 =

(
2 · 3k + 1

) (
2 · 3l − 1

)
where

(
2 · 3k + 1

)
and

(
2 · 3l − 1

)
are prime.

When n is odd, that last factorization is obviously impossible, so N is prime.
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