A conjecture regarding the primes and π

Shreyansh Jaiswal Atomic Energy Central School - 6 Mumbai, India

15 September 2024

Abstract

In this article we introduce a new function:

$$f\left(\phi\right) = \sum_{p}^{\infty} \left(\frac{1}{\phi} + \frac{1}{e} + \sum_{P}^{\infty} \frac{1}{e^{P}}\right)^{p}$$

Where, p and P represent the prime numbers, both starting from 2 We also conjecture that:

$$f(\pi) = \sum_p^{\infty} \left(\frac{1}{\pi} + \frac{1}{e} + \sum_P^{\infty} \frac{1}{e^P}\right)^p = \pi$$

We also rigorously show that

$$3.85 > f(\pi) > 3.1240$$

1 Introduction

The function:

$$f\left(\phi\right) = \sum_{p}^{\infty} \left(\frac{1}{\phi} + \frac{1}{e} + \sum_{P}^{\infty} \frac{1}{e^{P}}\right)^{p}$$

was produced mainly by curious analysis. Still, the conjecture, if true, hints towards an hidden connection between π and the primes.

2 Proving the absolute convergence of $f(\pi)$

For proving the convergence of the function $f(\phi)$ at $\phi = \pi$, we first look at the series:

$$\sum_{P}^{\infty} \frac{1}{e^{P}}$$

Using the simple comparision test, we first look at the series:

$$\sum_{n=1}^{\infty} \frac{1}{e^n}$$

if this series is convergent, then:

$$\sum_{P}^{\infty} \frac{1}{e^{P}}$$

is also convergent, due to simple observations that there are n for which:

$$\frac{1}{e^P}<\frac{1}{e^n}$$

as for each prime p_k , there is one n such that $p_k > n > p_{k-1}$. From there, it's easy to prove that the $\frac{1}{e^n}$ series is convergent due to concept of geometric series. From there we also derive loose upper bounds for $\frac{1}{e^p}$ as < 0.58. For,

$$f(\pi) = \sum_{p}^{\infty} \left(\frac{1}{\pi} + \frac{1}{e} + \sum_{P}^{\infty} \frac{1}{e^{P}} \right)^{p}$$

and let's define:

$$A:=\frac{1}{\pi}+\frac{1}{e}+\sum_{P}^{\infty}\frac{1}{e^{P}}$$

We can compute A's values for some primes, and from there we see that it converges rather quickly and also that A < 1: Also, this single value below the table solidifies the claim that A < 1.

Number of primes used	A
10	0.87898
1,000	0.8789805171
10,000	0.8789805171

Table 1: Number of primes vs A

$$1/e^{10000} \approx 1.13 \cdot 10^{-4343}$$

. From these facts, we can also assert:

$$\lim_{n \to \infty} A^p = 0 \tag{1}$$

using:

Proposition: For 0 < A < 1 and b > 1, it holds that $A^b < A < 1$.

So, now we move on to proving the fact that:

$$f(\pi) = \sum_{p}^{\infty} \left(\frac{1}{\pi} + \frac{1}{e} + \sum_{P}^{\infty} \frac{1}{e^{P}} \right)^{p} = \sum_{p}^{\infty} A^{p}$$

is absolutely convergent. We use Cauchy's root test. Using the proposition, and the root test, we have to prove that:

$$(A_n^p)^{\frac{1}{n}} \le \alpha < 1$$

We now use the Prime Number Theorem's statement that the nth prime (P_n) satisfies:

$$P_n \sim n \cdot ln(n)$$

thus,

$$\left(A_n^p\right)^{\frac{1}{n}} \approx A^{\ln(n)}$$

and thus by the fact that ln(n) > 1 for n > 0 we successfully establish the existence, of α . Thus, we now know for certain that $f(\pi)$ is convergent.

3 Empirical analysis of $f(\pi)$

We've taken the upper limit for the number of primes as 300.(in the figure) This upper limit is also very good for understanding about the general idea of $f(\pi)$ as this series converges rather quickly.

We also present a table with elaborate data:

No. of Primes Used	$f(\pi)$	$\pi - f(\pi)$
2	1.420669964	1.720922689589793
10	3.083712747	0.057879906589793
20	3.124018511	0.017574142589793
30	3.124179985	0.017412668589793
60	3.124180155	0.017412498589793
100	3.1241801561402285895	0.017412497449564
300	3.124180156140228589441358	0.017412497449564
1000	3.124180156140228589441358	0.017412497449564
10000	3.12418015614022858944135909589	0.017412497449564

Table 2: Table of data with $\pi - f(\pi)$ values.

Figure 1: Convergence of expression $f(\pi)$ with a horizontal line at $y = \pi$.

For reference, the 10,000th term of this series E, would be around:

$$\approx 0.8789805171^{10000} \approx 0$$

But still, giving a definite closed form convergence of $f(\pi)$ with just empirical data is not feasible. But, empirical data, still supports the notion of the conjecture.

4 Bounds for the value of $f(\pi)$

It's easy to say, that a strong lower bound for $f(\pi)$ is:

$$f(\pi) > 3.1240$$

based on our empirical data. So, we'll focus on upper bounds. Take the relation:

$$\sum_{n=1}^{\infty} A^{(2n+1)} > \sum_{p}^{\infty} A^{p}$$

And based on the geometric series formula:

$$\frac{A^3}{1 - A^2} = \sum_{n=1}^{\infty} A^{(2n+1)} > \sum_{p=1}^{\infty} A^p$$

to get ourselves a rather "secure" bound. we can simply take A = 0.9, which gives us:

$$3.85 > \sum_{p}^{\infty} A^{p}$$

Hence, our final bounds are

$$3.85 > \sum_{n}^{\infty} A^{p} = f(\pi) > 3.1240$$

which ends the section.

5 Using Ramanujan's series for $\frac{1}{\pi}$

$$\frac{1}{\pi} = \frac{\sqrt{8}}{9801} \sum_{n=0}^{\infty} \frac{(4n)!}{(n!)^4} \frac{1103 + 26390n}{396^{4n}}$$

Using this brilliant series for $\frac{1}{\pi}$ originally given by Srinivasa Ramanujan, we aim to make our conjecture a bit more "non referential looking". This formula also increases the beauty of the supposed conjecture. Using the formula for $\frac{1}{\pi}$, we can rewrite our conjecture as:

$$\sum_{p}^{\infty} \left(\frac{\sqrt{8}}{9801} \sum_{n=0}^{\infty} \frac{(4n)!}{(n!)^4} \frac{1103 + 26390n}{396^{4n}} + \sum_{P}^{\infty} \frac{1}{e^P} + \frac{1}{e} \right)^p = \pi$$

6 Potential implication emerging from the conjecture's truth

If our conjecture was true, then this would lead to an interesting case of self reference regarding π . It would also hint towards a connection between primes and π . This connection is still very well evident between primes and π . For example, the Riemann Zeta function at positive even integers is evaluated as:

$$\zeta(2n) = (-1)^{n+1} \frac{(2\pi)^{2n}}{2(2n)!} B_{2n}$$

And the zeta function is related to the primes by the Euler product formula:

The Euler product formula expresses the Riemann zeta function $\zeta(s)$ for $\Re(s) > 1$ as an infinite product over all primes:

$$\zeta(s) = \prod_{p = \text{ prime}} \frac{1}{1 - p^{-s}}.$$

This shows the deep connection between the zeta function and prime numbers, where each prime p contributes a factor $\frac{1}{1-p^{-s}}$, encoding the distribution of primes. Even if the conjecture could be false, we still have the fact that:

$$f(\pi) \approx \pi$$

Which is beautiful by itself.

7 Conclusion

In this paper, we introduced a new conjecture connecting the primes and π through the function $f(\phi)$. We rigorously proved the absolute convergence of $f(\pi)$, provided empirical data supporting the bounds $3.85 > f(\pi) > 3.1240$, and established that this function rapidly converges with increasing primes. The conjecture suggests an intriguing relationship between π and the distribution of primes, further evidenced by its empirical behavior and convergence properties.

While we have not yet provided a formal closed-form solution for $f(\pi)$, the numerical results strongly support our conjecture. If proven true, this conjecture could deepen our understanding of the hidden connections between primes and fundamental constants like π . This work opens the door for further exploration into these relationships and highlights the importance of prime numbers in understanding the structure of mathematical constants.

References

[1] Chieh-Lei Wong, On the Elegance of Ramanujan's Series for π , arXiv:2104.12412 [math.NT], 2021.