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Abstract. Does the doubling cube make backgammon more skillful?
And is the answer the same in both money and match play? This paper
presents GNUbg rollouts between unequally skilled players which show
that use of the doubling cube favors the better player only in match play.
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1. Introduction

Luck is arguably the most common thing that backgammon players complain about.  The doubling 
cube, a rather recent invention compared to the long history of backgammon, introduces a new element 
of skill and has therefore been touted as a way to reduce luck. But is this actually true and if so, is it  
true  in  both  money  and  match  play?  To  answer  this  question  we  used  GNUbg  rollouts  between 
unequally skilled players which show that use of the doubling cube does indeed favor the better player 
but only in match play. We also examine the implications of these data on the ELO system.

2. Money Play

We will compare 4 types of money games:

• cubeful games with the Jacoby rule in effect (cubeful games),
• cubeless games with gammons and backgammons (cubeless games),
• cubeless games with backgammons counting as gammons (Portes games) and
• cubeless games without backgammons or gammons (DMP games).

In order to compare the skill in these formats we need 2 things for each one:

• the equity E of the better player and
• the expected value V of a game (assuming optimal play from both sides).

By equity we mean the expected difference in points per game (PPG) and by expected value of a game 
we mean the average PPG of the winner. The reason we need that second number is because players  
will bet less money per point in a game where more points are at stake, which means that each point 
would be worth less. Therefore, the equity of the better player has to be adjusted by the expected value 
of the game before comparing different formats.

2.1. Expected Value of Money Games

We already have a very good estimate for the expected value of cubeless money games. Tom Keith has  
rolled out every opening roll 46,656 times using GNUbg 2ply and reported a gammon rate of 27.62% 
and a backgammon rate of 1.22% [1]. For cubeful games, GNUbg 1ply Normal was used to roll out 
174,960 games. From these data we get the following results:

V DMP = 1 ppg
V Portes = 1+0.2762  =  1.2762 ppg
V cubeless = 1+0.2762+0.0122  =  1.2884 ppg
V cubeful = 2.4494 ppg  [SE=0.0041 ppg ]
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2.2. Equity of the Better Player

Here 349,920 games were rolled out for each format with GNUbg playing one side at 1ply Normal 
and the other at 0ply. Of course half the games were played with the better player going first. These  
games were rolled out without Variance Reduction (VR). Because of the way VR works it  would 
actually skew the results instead of making them more accurate. VR works by subtracting the sum of 
the equity differences between 2 consecutive plies from the final result. This is often interpreted as  
canceling out the estimated luck but it's equivalent to think about it as using subsequent evaluations to  
estimate the error in previous ones. However, that error is precisely what we want to measure, not 
adjust for it! Below are the results. Check Table 5 for the outcome probabilities of cubeless games.

EDMP = 0.0284 ppg  [SE=0.0017 ppg]
EPortes = 0.0303 ppg  [SE=0.0023 ppg ]
Ecubeless = 0.0307 ppg  [SE=0.0023 ppg ]
Ecubeful = 0.0592 ppg  [SE=0.0049 ppg]

2.3. Comparing Formats

If we assume that the amount of money that players are willing to risk in a single game is constant, it  
follows that the amount they’re willing to bet per point must be inversely proportional to the points at 
stake. Therefore, we can normalize the equity of the better player by dividing it with the expected value 
of the game. These normalized equities can be used as a measure of skill.

Table 1. Comparison of Various Money Game Formats

Format E(ppg) V(ppg) E/V

DMP 0.0284 1.0000 0.0284

Portes 0.0303 1.2762 0.0237

Cubeless 0.0307 1.2884 0.0238

Cubeful 0.0592 2.4494 0.0242

As you can see almost all formats are virtually indistinguishable from each other in terms of skill with  
the exception of DMP which turns out to be the most favorable format for the better  player.  One 
possible explanation is that DMP strategy leads to games with more difficult decisions. As for cubeful  
play, the opportunity for skill wasted when the game ends with a pass could be cancelling out the added 
skill from cube decisions.
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3. Match Play

We will compare 3 types of matches:

• cubeful matches with the Crawford rule in effect (cubeful matches),
• cubeless matches with backgammons counting as gammons (Portes matches) and
• cubeless matches without backgammons or gammons (DMP matches).

Because the results from cubeless matches with backgammons counting where nearly identical to the 
results  from Portes  matches,  only  the  latter  which  were  slightly  better  are  presented.  In  order  to 
compare the skill in these formats we again need 2 things for each one:

• the probability of the better player winning an N-point match and
• the relative duration of an N-point match compared to DMP (assuming equal players).

The reason we need the expected duration is because the only way to compare different formats is to  
compare matches of equivalent length, either in terms of duration or skill.

3.1. Defining Skill in Match Play

An obvious  way to  define  the  skill  S  of  a  match  relative  to  a  DMP game is  as  the  ratio  of  the  
corresponding expectations of the better player:

S= 2 P−1
2 W−1

(1)

where P, W are the probabilities of the better player winning the match or a DMP game respectively.  
The problem with this definition is that the larger the skill difference of the players is the smaller the 
corresponding skill values will be. While it’s obviously true that the advantage better players have at  
longer matches grows slower the better they are, what we’re interested in is the opportunity for skill  
inherent in a match, which ideally should be independent of the skill difference.

Another way of defining skill would be using the ELO system according to which the probability of the 
better player winning a match is

P= 1

1+10
−
|ΔR|

C

where R is a player’s rating and C is a constant (usually 2000 in backgammon) that determines the 
width of the distribution. The longer the match length is the larger the absolute value of the ELO 
difference gets. Since using different ratings for different match lengths would be impractical, the ELO 
difference at DMP is multiplied by a factor depending on the match length. This factor can be defined 
as the skill of that particular match length.
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The ELO formula then becomes

P(N )= 1

1+10
−

|ΔR|
C

S( N)
(2)

where N is the length of the match and S is a skill function. Unfortunately, things aren’t that simple.  
This time the skill values increase with the absolute value of the ELO difference. This happens because  
as we will see in Chapter 3.5 the skill is related to the expected duration of a match and therefore better  
players can extract more skill by winning having played fewer games on average. The ELO formula for  
the better player in cases where the skill function isn't constant with respect to the skill difference can 
be generalized as follows:

P(N , W )= 1

1+10
−

|ΔR|
C

S(N ,W )

where W is the probability of the better player winning a single DMP game.
Solving this formula for S(N,W) we get the generalized skill function:

S(N , W )=− C
|ΔR|

⋅log( 1
P(N , W )

−1)

If we define DMP games to contain 1 unit of skill we have:

S(1 , W )=1  ⇔  − C
|ΔR|

= 1

log (
1

P(1 , W )
−1)

= 1

log (
1
W

−1)
 ⇒

S(N , W )=
log ( 1

P(N , W )
−1)

log( 1
W

−1)
(3)

Since we’re interested in the opportunity for skill inherent in a match, that is to say the minimum 
opportunity for skill it gives to the better player regardless of their skill difference, we can define the 
skill  of  an  N-point  match  to  be  the  limit  of  S(N,W)  as  W →1/2.  Note  that  because  the  linear 
approximation of ln (1/ x−1) at x=1/2 is −4(x−1 /2) this definition is equivalent to a limit definition 
using equation (1) which would represent the maximum gain of playing a longer match over a DMP 
game. If we now find the win probabilities of unequal players that are closely matched, we can plug 
them in equation (3) and calculate the corresponding skill values at different match lengths.
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3.2. Expected Duration of Matches

The expected duration D[M,N] of cubeless matches can be calculated recursively from any away score 
-M-N using the following formula:

D [ M , N ]=T+(1−G)
D [ M−1 , N ]+D [ M , N−1]

2
+G

D [M−2, N ]+D [M , N−2]
2

(4)

where T is the average duration of a game and G is the gammon rate at that particular score. Since the 
gammon rate isn't very score-sensitive, we can use the same as in money games for every score farther 
than 1-away. For 1-away scores we can extract a gammon rate of 29.05% from Kazaross' XG2 Match 
Equity Table (MET) at -1-2C [2]. For DMP matches we simply set G=0.

As for the average duration, unfortunately neither XG nor GNUbg provide the number of decisions at 
the end of a rollout. However, they do report the duration of the rollout which could be an even better 
measure of time as it also takes into account the relative difficulty of decisions – easy decisions are not  
sent to higher plies for further analysis. Being our unit of measurement, we obviously have  T=1 for 
DMP games. For cubeless games we used XG 2ply to get T=0.867 by dividing the time it takes to roll 
out 1,080 cubeless games with the time it takes to roll out 1,080 DMP games. These rollouts were 
performed without VR because even the small amount of time it adds to the results has nothing to do  
with the actual time it takes to complete a game. The following 2 tables show the expected duration of  
Portes and DMP matches. Note that because we make no assumptions about DMP matches their results 
are perfectly accurate.

Table 2. Duration of Portes Matches up to 7 points

Length 1 2 3 4 5 6 7

Duration 1 1.75 2.85 3.94 5.08 6.24 7.42

Table 3. Duration of DMP Matches up to 5 points

Length 1 2 3 4 5

Duration 1 2.5 4.12 5.81 7.54

Similarly to how we construct an equity table, we can use the total number of decisions to estimate the 
average duration of  a  game at  each score and construct  a  duration table.  In  his  video about  time  
management [3] Joseph Heled presents 2 cubeful duration tables based on data from his research on the  
ELO system,  one  for  the  15-point  match  and another  one  for  the  13-point  match.  The  reason he 
presents 2 tables is because he uses the match length as his unit of measurement – a score of -N-N 
corresponds to 100% of an N-point match.
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These tables can be converted so that they show the expected number of games remaining (measured in  
DMP games) instead. Also, we can take their average after we convert them and thus gain back some of 
the accuracy lost from rounding percentages to integer values.

Table 4. Duration of Cubeful Matches up to 13 points

Length 1 2 3 4 5 6 7 8 9 10 11 12 13

Duration 1 1 1.92 2.15 2.92 3.27 3.96 4.39 5.04 5.46 6.04 6.54 7.2

If we compare Table 4 with Tables 2 & 3 we see 2 patterns emerge:

• An N-point Portes match takes about as much time as a cubeful match of length 2N-1.
• An N-point DMP match takes at least as much time as a cubeful match of length 3N-2.

3.3. Skill in Cubeless Matches

In his video about cubeless gammon rates [4] Joseph Heled uses a constant win rate for the better 
player and a constant gammon rate for each player to calculate the Match Winning Chances (MWC) of 
the  better  player  at  different  scores  and  thus  obtain  the  skill  values  at  different  match  lengths. 
Unfortunately that's not the proper way to compute a MET because the win and gammon rates vary  
depending on the score. This effect is not very significant when both players are farther than 1-away 
but it can't be ignored at scores where the gammon values are very different than for money. As such, I 
decided to roll out all 1-away scores in a 2-point match using the same settings as for money games.

Table 5. Outcome Probabilities (of 1ply vs 0ply)

Score L BG L Gammon Win W Gammon W BG

-1-1 0.5142

-1-2 0.1308 0.5148

-2-1 0.5131 0.1467

Unlimited 0.0059 0.1317 0.5100 0.1420 0.0063

The MWC of player A from any away score -M-N in a cubeless match can be calculated recursively  
using the following formula:

PA [M ,N ]=(wA−gA)⋅PA [ M−1 , N ]+g A⋅PA [M −2 ,N ]+(wB−gB)⋅PA[ M , N−1]+gB⋅PA[ M , N−2] (5)
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where w,g are the outcome probabilities. For Portes matches we can use the outcome probabilities of 
the -1-2 scores for farther 1-away scores and the money game probabilities for all remaining scores. 
For DMP matches we simply set  gA=gB=0. The resulting skill values are shown in the following 2 
tables along with Heled’s results for comparison. Unsurprisingly, the naive construction of a MET 
using the money game probabilities for every score exaggerates the skill. As for DMP matches, their 
skill values are perfectly accurate like their duration.

Table 6. Skill in Portes Matches up to 7 points

Length 1 2 3 4 5 6 7

Heled 1.00 1.35 1.66 1.93 2.17 2.39 2.60

Zoidis 1.00 1.31 1.57 1.76 1.93 2.09 2.24

Table 7. Skill in DMP Matches up to 5 points

Length 1 2 3 4 5

Skill 1.00 1.50 1.88 2.19 2.46

3.4. Skill in Cubeful Matches

In order to find the skill in an N-point cubeful match all we have to do is look at the function used to  
adjust for different length matches. That function is  S(N )=√N  [5]. Easy, right? Wrong! The ELO 
formula has a huge problem that many players had noticed long before I did. Specifically better players 
win less often than predicted by the formula. The problem is not with the system itself which is well 
researched,  but  rather  with  the  skill  function  used  in  backgammon which  was  chosen  on  general 
grounds rather than actual evidence [6]. In order to find the true values of this function we need a MET 
for unequal players. Tom Keith has computed such a MET mathematically using a constant win rate of 
51% for the better player and a constant gammon rate of 25% for both players [7]. Joseph Heled used 
bot self-play instead [6,8]. As you can see in the following table, both approaches are essentially in  
complete agreement and not even close to the square root hypothesis.

Table 8A. Skill in Cubeful Backgammon Matches up to 13 points

Length 1 2 3 4 5 6 7 8 9 10 11 12 13

Keith 1.00 1.00 1.24 1.23 1.44 1.50 1.62 1.67 1.77 1.84 1.92 – –

Heled 1.00 1.00 1.24 1.26 1.45 1.50 1.63 1.67 1.78 1.83 1.92 1.97 2.05
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However, along with the match equity method, Tom Keith proposed another method for measuring skill 
which doesn’t agree with the previous ones, the “Rolls” method [7]. According to this method the skill  
in an N-point match is defined as the square root of the ratio of rolls in contact positions of an N-point 
match to contact position rolls at DMP. Initially I dismissed this method as merely a better guess than 
the square root of the match length until I noticed that the skill values of odd match lengths are very 
close to Heled’s exaggerated skill values for Portes matches. Naturally I had to investigate further, so I 
rolled out the entire 13-point match – the resulting MET can be found in the Appendix – using the same 
settings as for money games. This time though, only  38,880 trials  were performed per score, which 
should be enough for the big picture. Remarkably the results are almost in complete agreement with the 
“Rolls” method! Still Heled’s data seem to have the advantage of theoretical validation, right? Actually, 
it  turns out that Keith’s assumption of the gammon rate being the same for both players might be 
incorrect. According to Heled’s own research [4] not only does the better player have a higher gammon  
rate but the gammon rates are related to the win rate through the following equation:

W A=
0.5−GB

1−GB−GA
(6)

where G is the relative gammon rate, not the total gammons. This equation fits very well with our own 
data from money games. If we keep the 51% win rate for player A and the 25% gammon rate for player  
B, we can solve for the approximately  26% gammon rate of the better player. Using the method 
described by Tom Keith [9] with these values and a backgammon rate of 1% for both players, we can 
compute a 13-point MET and extract the skill values from the MWC. All these results are shown in the 
following table along with the “Rolls” method and the square root hypothesis for comparison.

Table 8B. Skill in Cubeful Backgammon Matches up to 13 points

Length 1 2 3 4 5 6 7 8 9 10 11 12 13

√ Length 1.00 1.41 1.73 2.00 2.24 2.45 2.65 2.83 3.00 3.16 3.32 3.46 3.61

“Rolls” 1.00 – 1.33 – 1.63 – 1.89 – 2.16 – 2.34 – –

Zoidis Math 1.00 1.00 1.31 1.37 1.59 1.67 1.80 1.87 1.99 2.06 2.16 2.23 2.31

Zoidis GNU 1.00 1.00 1.34 1.47 1.62 1.82 1.95 2.04 2.19 2.29 2.39 2.48 2.60

This time the theoretical approach is much closer to the GNUbg rollouts.  The reason they end up 
diverging is because of the unrealistic assumption of perfectly efficient doubling required to compute a 
MET mathematically. In fact, the skill values of odd length matches are much closer to the skill values 
of Portes matches. How can we explain Heled’s results though? Unfortunately he didn’t go into a lot of 
details about his methodology but I suspect that the choice of players is the culprit. For example, using  
noise to obtain a weaker player than 0ply leads to nonsensical results (like longer matches containing 
less skill than shorter ones) because of the unnatural (random) mistakes it makes.
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If we compare the correct skill values, cubeful matches dominate DMP matches which in turn dominate 
Portes matches (of length greater than 2). We say that one format dominates another if matches of the 
former type are shorter in duration and contain more skill than matches of the latter type. For example,  
the 6-point Portes match has a skill value of 2.13 and lasts about 6.24 games whereas both the 4-point 
DMP match and the 9-point cubeful match have a skill value of 2.19 but last only 5.81 and 5.04 games 
respectively. For short matches though the skill values of equivalent lengths are much closer and so we 
must plot them against the duration to see what’s going on. Essentially, we want a graph of the function 
S∘D−1 for the various formats,  where S and D are the skill  and expected duration functions with 
respect to the match length. Since the square of this function is close to being a straight line – for 
reasons that will become apparent in the next chapter – we actually plotted the squares of the skill 
values to get a better picture.

3.5. The ELO System

It would be useful to have explicit formulas, even approximate, for the skill functions of the various 
formats to use in the ELO system. For DMP matches in particular we can actually find exact formulas  
for both the skill and the expected duration which can be shown to be related. Check the Appendix for 
derivations of the following 2 formulas:

S(N )=(2 N
N )2 N

22 N (7)
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D(N )=2 N−S (N) (8)

This relationship might seem unexpected at first but it actually makes perfect sense. Assuming luck was 
evenly distributed, the difference in points at the end of a match represents how much better a player 
the winner is and can thus be used as a measure of skill. Now simply observe that if the difference in  
points at the end of an N-point match is S, the duration of the match would be

D=N+(N−S)=2N−S

Similar relationships between skill and expected duration exist for all types of backgammon matches. 
Specifically, the sum of the duration and skill functions seems to always be a linear function of the 
match length. Since by definition D(1)=S(1)=1 the line is of the following form:

D(N )+S (N )=B⋅N−B+2

B is approximately equal to  1.26 in Portes matches and 0.64 in cubeful matches.  Furthermore, the 
skill values can be fitted with a square root function of the following form:

S(N )=√ A⋅N−A+1

Since by definition S(1)=1 this  formula also has only one degree of  freedom, namely A which is 
approximately equal to 0.68 in Portes matches and 0.46 in cubeful matches. For reference, we also 
fitted  the  skill  values  of  DMP matches  and  got  A≈1.27 which  of  course  agrees  with  the  √4 /π  
coefficient of N we get when we apply Stirling’s approximation to (7).  This comeback of the square 
root is not a coincidence. As we noted above, skill can be represented by the difference in points at the  
end of a match. In a DMP match that difference corresponds to the distance from the origin in a random 
walk and since the average distance form the origin is proportional to the square root of the number of 
steps, it shouldn't be surprising that the square root makes an appearance. After all, this is precisely the 
reason why it was chosen in the first place. Approximate formulas for all formats examined are shown 
in the following table.

Table 9. Useful Approximations for the ELO System

Format S(N ) D(N )+S (N )

DMP √1.27 N−0.27 2 N

Portes √0.68 N+0.32 1.26 N+0.74

Cubeful √0.46 N+0.54 0.64 N+1.36
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Since everyone uses PR as a rating system it would be useful to have an equivalence between PR and 
ELO. PR is defined as the ratio of the equity lost over the number of decisions, multiplied by 500. In 
DMP games this ratio is further multiplied by 1.5 based on XG simulations [10]. In order to find the 
relationship between PR and ELO we therefore need one more thing, the number of decisions in a 
DMP game. Our data shows that each player has on average 21.6 decisions per game. Thus, a skill 
difference of 1 PR corresponds to a total error of 0.0288 ppg in a DMP game or a win rate of 51.44% 
for the better player which is approximately equivalent to 50 ELO. It would also be useful to have an 
equivalence between ELO and PPG in cubeful games. From Chapter 2.2 we know that the 0.0592 ppg 
edge of 1ply over 0ply in cubeful games corresponds to a 51.42% win rate at DMP which in turn 
corresponds to a skill difference of approximately 49.35 ELO. The reason we couldn’t use the edge of  
1ply over 0ply to calculate the corresponding PR in cubeful games is because the total error in cubeful 
games is normalized depending on the value of the cube and is therefore always less than the total cost.  
Since there is a roughly linear relation between PPG and ELO and consequently between PR and ELO 
(see Chapter 3.1) we can scale up these figures and arrive at the following equivalence:

1 PR  =  0.06 ppg  = 50 ELO

According to the XG manual [10] a skill difference of 1 PR is approximately equivalent to 33 ELO 
using the current system. This relation can be used to confirm our skill values in cubeful matches. 
Suppose 2 players with a skill difference of 1 PR play an N-point match. In order for 2 ELO systems 
with different skill functions to produce the same win probabilities for N>1 we must have:

(2)  ⇒  ΔR1⋅S1(N )=ΔR2⋅S2(N )  ⇔  
ΔR1

ΔR2

=
S2(N )
S1(N )

Indeed, for large N we have:

33
50

=
ΔR1

ΔR2

≈lim
N →∞

S2(N )
S1(N )

= lim
N →∞

√0.46 N+0.54
√N

=√ lim
N→∞

0.46 N+0.54
N

=√0.46

4. Conclusion

We examined various formats using GNUbg rollouts between unequally skilled players in an effort to 
find out which one favors the better player most. Use of the doubling cube does indeed favor the better  
player but only in match play. It turns out that the most skillful form of money play is DMP. This is the  
exact opposite of what I expected to find. While it is true  that the weaker player could try through 
aggressive doubling to shorten the duration of a match and thus the number of decisions, the stronger 
player could make similar and arguably more precise adjustments.
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A.1. Unequal Skill Cubeful MET

PC -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13

PC 51.35 52.58 69.93 71.21 82.67 83.64 89.83 90.52 94.07 94.52 96.53 96.83

-1 51.35 69.93 76.33 83.13 85.37 90.11 91.57 94.27 95.05 96.66 97.12 98.05 98.31

-2 50.12 33.40 51.35 61.68 69.09 76.44 81.85 85.91 89.12 91.51 93.52 94.94 96.14 96.97

-3 33.40 26.37 41.91 51.81 59.57 67.12 73.57 78.41 82.78 85.97 88.97 91.08 93.01 94.41

-4 32.12 19.62 34.61 44.28 51.98 59.87 66.58 72.25 76.97 81.04 84.50 87.33 89.75 91.65

-5 20.08 17.15 27.44 36.78 44.39 52.18 59.22 65.18 70.56 75.14 79.23 82.68 85.63 88.15

-6 19.11 12.05 21.38 30.41 37.66 45.62 52.45 58.86 64.36 69.55 74.12 77.99 81.46 84.38

-7 12.33 10.31 17.10 25.35 31.96 39.55 46.18 52.63 58.31 63.72 68.66 72.94 76.79 80.21

-8 11.64 7.33 13.51 20.89 27.09 34.23 40.62 47.08 52.75 58.35 63.36 67.97 72.19 75.92

-9 7.53 6.33 10.83 17.40 22.85 29.45 35.45 41.74 47.36 52.96 58.12 62.91 67.35 71.48

-10 7.08 4.46 8.46 14.11 19.10 25.12 30.85 36.85 42.32 47.93 53.09 58.07 62.59 66.87

-11 4.59 3.87 6.79 11.68 16.06 21.52 26.67 32.36 37.67 43.09 48.30 53.23 57.92 62.32

-12 4.29 2.72 5.32 9.45 13.36 18.24 22.99 28.30 33.37 38.68 43.64 48.69 53.34 57.89

-13 2.36 4.27 7.77 11.14 15.50 19.80 24.62 29.48 34.43 39.41 44.24 48.93 53.51

This table may be used in matches between players with a skill difference of approximately 47 ELO or 
0.94 PR. It was constructed recursively, that is each score was rolled out using the portion of the table  
already rolled out instead of a standard MET. This was done so that both sides would be aware of their  
skill difference, which is more realistic than the alternative. For consistency, the data from Table 5 were 
not used. The equity at -2-2 was set the same as DMP on theoretical grounds. The same was done for  
the equities at -1-3PC and -3-1PC which were set the same as -1-2C and -2-1C respectively. At the 
moment only GNUbg can make use of unequal skill tables.
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A.2. The DMP Skill Formula

S(N )= lim
W →1/2

S (N , W )= lim
W →1/2

log( 1
P(N , W )

−1)

log( 1
W

−1)

Since an N-point cubeless DMP match is equivalent to a best of 2N-1 match, we can use the binomial 
distribution to calculate the probability of the better player winning:

P(N , W )= ∑
K=N

2 N −1

(2 N−1
K )W K (1−W )2N −1−K

Using L’ Hopital’s rule we get

S(N )= lim
W →1/2

(1−W )⋅W
[1−P(N , W )]⋅P(N , W ) ∑K=N

2 N −1

(2 N−1
K )⋅W K−1⋅(1−W )2 N−2−K⋅[K−(2 N−1)⋅W ]

Since P(N , 1/2)=1/2 we have

∑
K=N

2 N −1

(2 N−1
K )=P(N , 1/2)⋅22 N−1=22 N−2 and our limit becomes

S(N )=23−2 N⋅∑
K =N

2 N −1

(2 N−1
K )⋅K−2 N−1

22 N −2 ∑
K =N

2 N−1

(2 N−1
K )  ⇔

S(N )=(2N−1)⋅23−2N⋅∑
K =N

2 N−1

(2 N−2
K−1 )−(2 N−1)

Let A= ∑
K=N

2 N−1

(2 N−2
K−1 )= ∑

K =N −1

2N −2

(2N−2
K )=∑

K=0

N−1

(2 N−2
K ) ⇒  

2 A=∑
K=0

N−1

(2 N−2
K )+ ∑

K =N−1

2 N−2

(2 N−2
K )=(2 N−2

N−1 )+ ∑
K =0

2N −2

(2N−2
K )=(2 N

N ) N
2⋅(2 N−1)

+22 N −2  ⇒

S(N )=(2 N
N )2 N

22 N
   ■
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A.3. The DMP Duration Formula

Since an N-point cubeless DMP match will end after a minimum of N games and a maximum of 2N-1 
games, the expected duration can be expressed as:

D(N )= ∑
K =N

2 N−1

K⋅P(K )

where P(K) is the probability of the match lasting exactly K games. In order for the match to end after 
K  games,  the  winner  of  game  K  must  win  N-1  of  the  first  K-1  games.  There  are  C(K-1,N-1)  
combinations in which this happens. Assuming both players are equally likely to win a single game, the 
probability of each combination is 21−K  and thus we have:

D(N )= ∑
K =N

2 N−1

K⋅(K−1
N−1)⋅21−K=N ∑

K =N

2N−1

(K
N )⋅21−K  ⇔

D(N )=N ∑
K=0

N−1

(K+N
N )21−K −N=N⋅21−2 N ∑

K=0

N−1

(N+K
N )⋅2N −K  ⇔

D(N )=N⋅21−2 N {∑
K=0

N

(N+K
N )⋅2N −K−(2 N

N )}
To simplify our calculations let's consider a best of 2N+1 match, equivalent to an (N+1)-point match. 
Let K be the score of the loser of the match. The game that decides the match is preceded by exactly N 
games won by the winner and K games won by the loser. These N+K games can occur in any order.  
Now imagine that the maximum of 2N+1 games are played even if the winner's already decided. Thus,  
there remain N-K games which can go either way. By symmetry, assuming both players are equally 
likely to win, the total number of sequences of 2N+1 games is equal to twice the total number of  
sequences that decide the outcome in the (N+K+1)-st game. Therefore, we have:

2∑
K =0

N

(N+K
K )⋅2N−K=22 N+1  ⇔  ∑

K =0

N

(N+K
N )⋅2N−K=22 N  ⇒

D(N )=2 N⋅{1−(2 N
N )⋅2−2 N} ⇔

D(N )=2 N−S (N)   ■
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