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ABSTRACT: In this paper, we provide some useful lemmas for construction continued fraction based
on a given power series. Then we establish a new continued fraction approximation and bounds for the
psi function. Especially, we analytically determine all parameters of the continued fraction by

Bernoulli numbers.
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1. Introduction

The classical Euler gamma function  defined by

o0

I(x)= Itx_le_’dt, x>0, (1.1)
0
was first introduced by the Swiss mathematician Leonhard Euler (1707-1783) in his goal to generalize

the factorial to non-integer values.

The logarithmic derivative y (x) of the gamma function 77(x) given by

o

e or InZ"(x) =j] w(t)dt

w(x)=

is well-known as the psi(or digamma) function.

The following recurrence formula is well known for the psi function (see [1, p. 258]):

p ) =y ()4 (1.2)

The psi function is connected to the Euler-Mascheroni constant and harmonic numbers through the
well-known relation (see [1, p. 258, Eq. (6.3.2)]):

win+)=—y+H,, n , (1.3)

where

H, = i% (n )

k=1

is the n" harmonic number and ¥ is the Euler-Mascheroni constant defined by

y =limD, = 0.577215664- -,

n—>0

where
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n

1
D, :Zz—lnn. (1.4)

k=1

The constant ) is deeply related to the gamma function 77(x) thanks to the Weierstrass formula [1,
p. 255, Equation (6.1.3)] (see also [18, Chapter 1, Section 1.1]):

[(x)= %ﬁ{(l +%j ex/k} (1.5)

As you can see, the gamma function, psi function and Euler-Mascheroni constant are related to each other.

In the study of special functions, the remarkable trend is to find more accurate approximations and
bounds for them, so during the past several decades, many mathematicians and scientists have worked
on this subject. Up to now, many researchers have made great efforts in this area of establishing more
accurate approximations and bounds for the special functions and had lots of inspiring
results.[2-7,9,10,12,13]

Recently, some authors have focused on continued fractions in order to obtain new asymptotic formulas.

For example, on the one hand, Mortici [16] found Stieltjes’ continued fraction

F(x+1)z 2ﬁx(£j exp S E— , (1.6)
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Also Mortici [17] provided a new continued fraction approximation starting from the Nemes’ formula

as follows,
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On the other hand, Lu [14] provided a new continued fraction approximation based on the Burnside’s
formula as follows,
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Also Lu [19] found two asymptotic formulas
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In this paper, based on continued fractions, we provide a new continued fraction approximation and

continued fraction bounds for the psi function.
The rest of this paper is arranged as follows.

In Sect. 2, some useful lemmas are given. In Sect. 3, a new continued fraction approximation and

bounds for the psi function are provided. In the last section, the conclusions are given.

2. Lemmas
In this section, we present a main method to construct continued fraction based on a given power series

using Euler connection.

The Euler connection states the connection between series and continued fractions as follows.

Lemma 2.1.(The Euler connection [11, p.19, Eq. (1.7.1, 1.7.2)]) Let {¢;} be a sequence in \ {0}

and
fi=X¢, n o @.1)
k=0
Since f,#x, f #f ,,N , there exists a continued fraction &, +K(a,/b ) with n® approximant f,

for all n. This continued fraction is given by

¢ —c /e -c,/c,
Co+— —— S — . (2.2)
1 +1+c, /¢, +--+1+c, /c,  +-
The following lemma states our main method.
Lemma 2.2. Let {c,} beasequencein \{0}. Then forevery x#0,
i&_ 1 - a,.xz 1 a]xz n (2.3)
2% 2 2 =2 2 ’ '
im i= +b, !
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Proof. Assume that

Jo()# 0, fn(X)=i%, n , x=#0. (2.4)

The left-side of (2.3) is equal to  f,(x) (n ).

Since
Jox) o, f(x)# [, (x), N ,

using Lemma 2.1,
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The proof of Lemma 2.2 is complete.

Lemma 2.3. The psi function y has the asymptotic formulas as follows;

0

X ~lnx——— , X
V) 2x z2zx
1 “ B, (1/2) = B, (1-2"%)
x+—|~Inx—Y 22— =Inx+ 2’—,,
"”( 2) Z] 2 Z 2ix”

where B, (n 0

Z

=0

then the first few terms of B, are as follows.

X —> 0

{0}) denotes the Bernoulli numbers defined by the generating formula

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)



We can find the expressions above by differentiating expressions (3.14) and (5.4) in [8].

Lemma 2.4. (see [15]). For x>0,

lnx-l—Z:(1 2 l) 1//( j<lnx+i(l 2 l) n 0. (2.11)

3. Main results

In this section, we present a new continued fraction approximation and bounds for the psi function

using our main method and two remarks.

Theorem 3.1. We have a new continued fraction approximation for the psi function:
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According to (2.9) and (3.3),

2
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Thus, our new continued fraction approximation can be obtained.
Remark 3.1. As you can see, our new continued fraction approximation for the psi function is equal to
(2.9) but the expression is totally different.

From (2.7), we have another expression of (3.4) as follows:

2 2
l//(x+ljzlnx+ 4 - zlnx+L2 4 5 ; (3.5)
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For the convenience of readers, we rewrite.
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Theorem 3.2. For x>0,
2
2n 1 1 2n+1 ax
1nx+— x+—|<lnx+— n 3.7
I<1x +b, ( 2) x? 3 xT+b, ° (3-7)
where
a, :&, b, =0,
4
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Proof. Let
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i

From (3.8) and Lemma 2.2,
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From Lemma 2.4 and (3.9), it’s clear that
1 2n (1<x2 1 1 2n+1 Cl x
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Thus, our new continued fraction bounds for the psi function are obtained.
Remark 3.2. For the convenience of readers, we take 7 =2 and the following result are derived.
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4. Conclusion

As mentioned above, in our investigation, we present a main method to construct continued fraction
based on a given power series using Euler connection. Then we establish a new continued fraction
approximation and bounds for the psi function. Especially, we analytically determine all parameters of

the continued fraction by Bernoulli numbers.
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