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Abstract. Cournot’s principle states that a typical event (i.e., an event with
probability very close to 1) occurs nearly certainly in a single trial of an ex-
periment. This principle has been considered by various authors as the only
connection between mathematical probability and the real world of experi-
ments.

To make the logical structure of the principle clearer, in this paper a refor-
mulation of the principle is proposed. This reformulation is based on the fol-
lowing three elements: (1) The explicit definition of the empirical property of
practical certainty, (2) the clear separation between probability measure and
experiment, including the remark that typicality is a mathematical property
defined by the probability measure while practical certainty is an empirical
property defined by the experiment, and (3) the explicit formulation of the
product rule for independent trials.

The novel formulation then states that a probability measure P governs an
experiment E if the events that are typical according to Pn are practically
certain according to En for all n ≥ 1, where Pn is the n-fold product of P
and En is the experiment whose trials are composed of n trials of E.

The novel formulation highlights the possible existence of two ambiguities
in the principle, namely: (i) that different probability measures govern the
same experiment and (ii) that the same probability measure governs different
experiments. In this paper the first ambiguity is rigorously disproved, while
the second is disproved provided that a suitable property characterizing the
empirical equivalence of experiments is assumed.

Key words and phrases: Cournot’s principle, Typicality, Practical certainty,
Interpretation of probability.

1. INTRODUCTION

Cournot’s principle states that a typical event (i.e., an
event with probability very close to 1) singled out in ad-
vance occurs nearly certainly in a single trial of an exper-
iment.

This principle was first formulated by Jacob Bernoulli
in his Ars Conjectandi (1713) to derive the correspon-
dence between the probability and the relative frequency
of an event. However, Augustin Cournot seems to have
been the first to say explicitly (1843) that the whole em-
pirical meaning of classical probability derives from this
principle. In the first half of the 20th century Borel, Lévy,
and Kolmogorov all subscribed to Cournot’s principle.
See [7] for an extensive presentation of Cournot’s prin-
ciple and of its history.

In more recent years the principle has been mentioned
in various papers by Goldstein et al. about the role of typ-
icality in statistical and Bohmian mechanics [3, 4, 1, 2, 5].
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To make the logical structure of the principle clearer,
in this paper a reformulation of the principle is proposed.
This reformulation is based on the following three ele-
ments: (1) The explicit definition of the empirical prop-
erty of practical certainty, (2) the clear separation between
probability measure and experiment, and (3) the explicit
formulation of the product rule for independent trials. Let
us explain.

(1) Practical certainty. Usually we say that an event
that occurs nearly certainly in a single trial of an ex-
periment is practically certain1 (Bernoulli called these
events morally certain). The idea is to explicitly recog-
nize practical certainty as an objective empirical property
of some events of an experiment. An operational defini-
tion of practical certainty is therefore proposed in this pa-
per, and some of its properties are identified.

1The term “almost certain” is also used in everyday language. We
prefer not to use this term here because in mathematical probability it
has a different meaning and this may generate some confusion.
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Given the definition of practical certainty Cournot’s
principle can be reformulated as follows:

A typical event is practically certain.

(2) Separation between probability and experiment.
Cournot’s principle has been formulated in the context of
classical probability. According to this approach a proba-
bility measure is naturally associated with an experiment,
namely, classical probability, which is the ratio between
favorable and possible outcomes. The situation is differ-
ent in the modern measure-theoretic approach to probabil-
ity, in which probability spaces and experiments are sep-
arate entities that must be related in some way, e.g., by
Cournot’s principle. This separation helps to clarify the
different nature of typicality and practical certainty: the
former is a mathematical property defined by the prob-
ability measure while the latter is an empirical property
defined by the experiment.

To implement the separation between probability space
and experiment in Cournot’s principle let us reformulate
it as follows. Let P and E be a probability measure and
an experiment with the same event space, respectively.
Typical events are defined by P while practically certain
events are defined by E. Let T (P ) and C(E) denote the
classes of typical and of practically certain events, respec-
tively. These classes are vaguely defined but, for simplic-
ity, in this introductory section they are considered as ex-
actly defined; the problem of vagueness is properly taken
into consideration in the main part of the paper.

Cournot’s principle can then be formulated as follows:

A probability measure P governs an experi-
ment E if T (P )⊆ C(E).

The verb “governs” may be replaced for example by “is a
probabilistic model of”, “represents”, etc.

(3) Product rule for independent trials. The above for-
mulation is not yet sufficient, for the following reason. We
know that the classical probability of a sequence of events
in a sequence of independent trials is the product of their
probabilities. In the context of measure-theoretic proba-
bility this fact must be explicitly stated. This can be done
by declaring that P governs E if Pn governs En for all
n≥ 1, where Pn is the n-fold product of P and En is the
experiment whose trials are composed of n trials of E.
In other words, the condition T (P ) ⊆ C(E) must be ex-
tended to the condition T (n)(P )⊆ C(n)(E) for all n≥ 1,
where T (n)(P ) and C(n)(E) denote the classes of typi-
cal events defined by Pn and of practically certain events
defined by En, respectively.

The extended condition is arguably an idealization (see
for example the discussion in [7], at the end of pag. 91).
Nevertheless, it is adopted in this paper because it allows
us to highlight the logical structure of Cournot’s principle
and to deduce some rigorous results. Moreover, its study

is certainly a prerequisite for a possible future study of
more realistic cases.

A compact notation is obtained by introducing the
classes

T̄ (P ) := ∪∞
n=1T (n)(P ) and C̄(E) := ∪∞

n=1C(n)(E).

With this notation the novel version of the principle,
which is the definitive one2, is the following:

COURNOT’S PRINCIPLE. A probability measure P
governs an experiment E if

(1) T̄ (P )⊆ C̄(E).

This formulation of Cournot’s principle highlights the
possible existence of two ambiguities in the principle.
The first ambiguity, which we call probabilistic ambigu-
ity, arises if there are two (or more) different probabil-
ity measures governing the same experiment. In formal
terms, this happens if

(2) T̄ (P1)∪ T̄ (P2)⊆ C̄(E)

for two different probability measures P1 and P2.
The second possible ambiguity, which we call experi-

mental ambiguity, arises if there are two (or more) empir-
ically distinguishable experiments governed by the same
probability measure. In formal terms, this happens if

(3) T̄ (P )⊆ C̄(E1)∩ C̄(E2)

for two empirically distinguishable experiments E1 and
E2.

In this paper, it is proven that probabilistic ambiguity
does not occur because one can prove the implication

(4) T̄ (P1)∪ T̄ (P2)⊆ C̄(E)⇒ P1 = P2.

Moreover, by assuming that a suitable condition char-
acterizes the empirical equivalence of two experiments,
one can also prove the implication

(5) T̄ (P )⊆ C̄(E1)∩ C̄(E2)⇒E1 ∼E2,

where E1 ∼ E2 means that E1 and E2 are empirically
equivalent (indistinguishable). This implication excludes
experimental ambiguity.

The remainder of this paper is organized as follows.
In Section 2 some purely mathematical notions are de-
veloped. In Section 3 the novel formulation of Cournot’s
principle is developed into the details and the announced
results are proven. Section 4 concludes the paper.

2This formulation is, however, a simplified version of the complete
formulation presented in Section 3, because here the problem of vague-
ness has been ignored.
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2. MATHEMATICS FOR COURNOT’S PRINCIPLE

In this section some mathematical notions are devel-
oped. They are utilized in the next section to reformulate
Cournot’s principle and to prove the announced results.

2.1 Preliminary notions

The notions of sample space and event space (the σ-
algebra of the events) are well known. Let Ω and A de-
note these two entities, respectively. The symbol An de-
notes the event space of Ωn generated by the measurable
rectangles of Ωn.

Let us define the extended event space as

(6) Ā := ∪∞
n=1An.

Generic events of Ā are denoted by A,B, . . ., while the
notation A(n),B(n), . . . is adopted to specify that the
events belong to An. If C̄ ⊆ Ā, let us call components
of C̄ the classes of the type C(n) := C̄ ∩ An.

To help keep the notions clear, sets of events are called
classes and sets of classes are called superclasses.

Probability measures and probability spaces are also
well-known notions. The symbols P,P1, and P2 always
denote probability measures on the event space A. The
symbol Pn denotes the usual n-fold product of P , i.e.,
the unique probability measure on An such that Pn(A1×
· · · ×An) = P (A1) · · ·P (An) for all A1, . . . ,An ∈A.

Let us define the extended probability P̄ : Ā→ [0,1] as

(7) P̄ (A(n)) := Pn(A(n)),

and the class

(8) T̄ (P, δ) := {A ∈ Ā : P̄ (A)≥ δ},
where δ ∈ [0,1].

Let us now define a type of events that is used often in
the following. For A ∈ Ā, I interval of [0,1], and k ∈N+,
let us define the event S(A,I, k) ∈ Ā as follows:

S(A(n), I, k) :=(9){
(ω

(n)
1 , . . . , ω

(n)
k ) ∈Ωn×k :

1

k

k∑
i=1

χA(n)(ω
(n)
i ) ∈ I

}
,

where ω
(n)
i ∈ Ωn and χA(n) is the characteristic func-

tion of A(n). In other words, the event S(A(n), I, k) con-
tains all the elements (ω

(n)
1 , . . . , ω

(n)
k ) ∈ Ωn×k for which

the relative frequency of A(n) ∈ An in the sequence
(ω

(n)
1 , . . . , ω

(n)
k ) belongs to I .

The set S(A,I, k) is measurable and, if I1 and I2
are disjoint, then the events S(A,I1, k) and S(A,I2, k)
are disjoint. To see this, it is sufficient to note that
S(A(n), I, k) is the inverse image of I under the An×k-
measurable function

(10) fA(n)(ω
(n)
1 , . . . , ω

(n)
k ) :=

1

k

k∑
i=1

χA(n)(ω
(n)
i )

from Ωn×k to R.
In the next subsection the following two limits are used:

(11) lim
k→∞

P̄ [S(A, [σ,1], k)] =

{
1 if σ < P̄ (A),

0 if σ > P̄ (A),

(12) lim
k→∞

P̄ [S(A, [0, σ), k)] =

{
0 if σ < P̄ (A),

1 if σ > P̄ (A).

where σ ∈ (0,1]. These limits easily follow from Bernoulli’s
theorem (i.e., the weak law of large number; see for ex-
ample [6]).

If C̄ ⊆ Ā, we use the notation

S(A,I, k) ∈d C̄

to represent the fact that S(A,I, k) ∈ C̄ definitively, i.e.,
for any k greater than a suitable k0. For example, accord-
ing to limit (11), S(A, [σ,1], k) ∈d T̄ (P, δ) for δ < 1 and
σ < P̄ (A).

The last notation: the expression δ ≈ 1 means

1− ϵ≤ δ ≤ 1

for some ϵ≪ 1.

2.2 Novel notions

In this subsection some mathematical notions specifi-
cally related to Cournot’s principle are introduced.

The first notion is that of C-class, which represents the
structure of the classes of typical and practically certain
events:

DEFINITION (C-class). A class C̄ ⊆ Ā is said to be a
C-class if, for all n ≥ 1, the component C(n) := C̄ ∩ An

satisfies the following properties:

(a) Ωn ∈ C(n);
(b) if A(n) ∈ C(n) and A(n) ⊆B(n), then B(n) ∈ C(n);
(c) C(n) does not contain two disjoint events.

Two examples of C-class are: T̄ (P, δ) for δ > 1
2 and the

trivial C-class {Ω,Ω2,Ω3, . . .}.
Hereafter, the symbols C̄, C̄1, and C̄2 denote C-classes

contained in Ā.

The second notion is that of C-measure, which is used
to define an equivalence relation between C-classes. In
this paper this measure is used only as a mathematical
tool. However, see the end of this subsection for a discus-
sion about a possible interpretation of the C-measure.

DEFINITION (C-measure). The C-measure generated
by a C-class C̄ is the set function M̄C̄ : Ā → [0,1] defined
as follows:

(13) M̄C̄(A) := sup{σ ∈ [0,1] : S(A, [σ,1], k) ∈d C̄}.
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Sometime the subscript C̄ of M̄C̄ is omitted if this does
not create ambiguity.

We note that M̄C̄ does not depend of any finite set
of components of C̄. Unlike a probability measure, the
C-measure is not necessarily additive (see Example 1).
However, the C-measure M̄ generated by a generic C-
class C̄ satisfies the following properties:

PROPOSITION 1. For all n≥ 1 we have:

(a) M̄(∅(n)) = 0;
(b) M̄(Ωn) = 1;
(c) M̄(A(n))≤ M̄(B(n)) if A(n) ⊆B(n).

PROOF. (a) S(∅(n), [0,1], k) = Ωn×k ∈ C̄ and
S(∅(n), [σ,1], k) = ∅(n×k) ̸∈ C̄ for σ ∈ (0,1], which im-
plies M̄(∅(n)) = 0.

(b) S(Ωn, [σ,1], k) = Ωn×k ∈ C̄ for all σ ∈ [0,1], which
implies M̄(Ωn) = 1.

(c) A(n) ⊆B(n) implies

S(A(n), [σ,1], k)⊆ S(B(n), [σ,1], k),

so that

S(A(n), [σ,1], k) ∈d C̄ ⇒ S(B(n), [σ,1], k) ∈d C̄,

which implies M̄(A(n))≤ M̄(B(n)).

Let us give two examples of C-measures.

EXAMPLE 1. Let C̄ := {Ω,Ω2,Ω3, . . .} be the trivial
C-class. Then:

(14) M̄C̄(A
(n)) =

{
0 for A(n) ̸=Ωn,

1 for A(n) =Ωn.

PROOF. If A(n) ̸=Ωn, we have:

S(A(n), [0,1], k) = Ωn×k,

S(A(n), [σ,1], k) ̸=Ωn×k for σ ∈ (0,1],

S(Ωn, [σ,1], k) = Ωn×k for σ ∈ [0,1],

from which equation (14) easily follows.

EXAMPLE 2. Let δ ∈ (12 ,1). Then the C-measure
generated by T̄ (P, δ) is P̄ .

PROOF. Let M̄ denote the C-measure generated by
T̄ (P, δ), and let A ∈ Ā. If σ < P̄ (A), then S(A, [σ,1], k) ∈d

T̄ (P, δ) due to limit (11), so that M̄(A)≥ P̄ (A). On the
contrary, if σ > P̄ (A), then S(A, [σ,1], k) ̸∈d T̄ (P, δ), so
that M̄(A)≤ P̄ (A). In conclusion, M̄(A) = P̄ (A).

The C-measure allows us to define the following equiv-
alence relation:

DEFINITION. We say that two C-classes C̄1, C̄2 are
(asymptotically) equivalent if M̄C̄1

= M̄C̄2
. In this case we

write

(15) C̄1 ∼ C̄2.

The equivalence relation ∼ induces a partition in the
superclass of the C-classes contained in Ā. We call equiv-
alence superclasses the elements of this partition.

All the results relative to Cournot’s principle presented
in the next section are based on the following theorem:

THEOREM 1. Let δ ∈ (12 ,1). Then:

(16) T̄ (P, δ)⊆ C̄ ⇒ T̄ (P, δ)∼ C̄.

PROOF. Let M̄ denote the C-measure generated by C̄.
Since P̄ is the C-measure generated by T̄ (P, δ) (see Ex-
ample 2) we have to prove that M̄ = P̄ .

The inequality P̄ (A) ≤ M̄(A) follows trivially from
the fact that S(A, [σ,1], k) ∈d T̄ (P, δ)⇒ S(A, [σ,1], k) ∈d

C̄ (because T̄ (P, δ)⊆ C̄).
Let us prove now that M̄(A)≤ P̄ (A), or equivalently,

that M̄(A) > P̄ (A) leads to a contradiction. Let us as-
sume therefore the latter inequality, and let σ belong to
the interval (P̄ (A), M̄(A)). From the definition of M̄ it
follows that S(A, [σ,1], k) ∈d C̄, while from limit (12) it
follows that S(A, [0, σ), k) ∈d T̄ (P, δ)⊆ C̄. This implies
that both disjoint events S(A, [0, σ), k) and S(A, [σ,1], k)
belong to C̄ for k large enough, which is impossible be-
cause C̄ is a C-class.

This theorem has many corollaries, for example:

COROLLARY 1. Let δ, δ1, δ1 ∈ (12 ,1). Then:

(a) T̄ (P1, δ1)∪ T̄ (P2, δ2)⊆ C̄ ⇒ P1 = P2;
(b) T̄ (P, δ)⊆ C̄1 ∩ C̄2 ⇒ C̄1 ∼ C̄2.

These and other corollaries can be easily proved by us-
ing the transitive property of ∼ and by considering that
the C-measure generated by T̄ (P, δ) is P̄ .

REMARK. As previously mentioned, in this paper the
C-measure is considered only as a mathematical tool.
However, with some adjustment, it could be arguably in-
terpreted as a measure of certainty, something like the
non-probabilistic typicality measure evoked by Goldstein
[4]. Let us explain.

In Subsection 3.4 a practically certain event is defined
as an event whose long-run relative frequency is close
to 1. Suppose that a suitable C-class C̄ represents the
class of practically certain events of some experiment,
and that M̄C̄(A) ≈ 1 for some event A. This means that
S(A, [σ,1], k) ∈d C̄ for some σ ≈ 1, i.e., S(A, [σ,1], k) is
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practically certain for k large enough. As a consequence
(nearly certainly) the long-run relative frequency of A is
close to 1, and therefore, A is practically certain as well.
In other words, M̄C̄(A) measures the degree of certainty
of A.

However, the above interpretation has the following
drawback: even if A is practically certain because its
long-run relative frequency is close to 1, we have no guar-
antee that A ∈ C̄, as expected. In order to interpret M̄C̄ as
a measure of certainty it is necessary that C̄ and M̄C̄ sat-
isfy some further property that removes this drawback, for
example the following property:

M̄C̄(A)≥ inf{M̄C̄(B) :B ∈ C̄}⇒A ∈ C̄.

We note that the C-class T̄ (P, δ) and the associated C-
measure P̄ satisfy this property.

This subject is left for possible future research and is
not further considered in this paper.

3. COURNOT’S PRINCIPLE REVISITED

In this more conceptual section, the notions of typical
and practically certain events are introduced and the novel
formulation of Cournot’s principle is presented.

3.1 The problem of vagueness

Typical and practically certain events are vaguely de-
fined classes of events. Therefore, they must be managed
with some caution. For this purpose, we adopt the strategy
of representing a vague class with the vague superclass of
its instances. Let us explain.

Let V̄ denote a vague class of events of Ā. An instance
of V̄ is an exact class of events that can be considered
as an acceptable exact version of the vague class V̄ . A
vague class has many instances, and the superclass of the
instances, which we denote by V, is a vague superclass.

Representing a vague class V̄ by means of the vague su-
perclass V of its instances has basically two advantages:
(i) if V, however it is defined, is certainly contained in an
exact superclass whose elements satisfy a suitable prop-
erty, then certainly the elements of V satisfy that property,
so we can say that the vague class V̄ satisfies that property
as well. (ii) Cournot’s principle relates typical and practi-
cally certain events. By using superclasses, this relation
can be expressed as a relation between exact instances
of two vague superclasses rather than between two vague
classes, and the former approach is clearer than the latter
from a logical point of view.

This method is exemplified below by typical and prac-
tically certain events.

3.2 Typical events

Typicality is a vague property of the events that is de-
rived from a probability measure: An event A ∈A is said

to be typical according a probability measure P (or P -
typical) if

(17) P (A)≈ 1.

More generally, we say that A ∈ Ā is P̄ -typical if

(18) P̄ (A)≈ 1.

REMARK. We note that one of the corollaries of The-
orem 1 is:

(19) T̄ (P1, δ) = T̄ (P2, δ)⇒ P1 = P2

for any δ ∈ (12 ,1). This means that the P̄ -typical events
are sufficient to determine P .

Let T̄ (P ) denote the vague class of P̄ -typical events
and let T̄(P ) denote the vague superclass of its instances.
The superclass T̄(P ) can be better defined by introduc-
ing the notion of threshold: A threshold is a number δT
that can be conventionally chosen to properly discrimi-
nate between P̄ -typical (P̄ (A) ≥ δT ) and non-P̄ -typical
(P̄ (A) < δT ) events. Not any δ ≈ 1 can be chosen as a
threshold: While δT must certainly be close to 1, it can-
not be too close, because in this case some events that are
certainly typical would be defined as non-typical.

The superclass T̄(P ) can then be defined as follows:

(20) T̄(P ) := {T̄ (P, δT ) : δT is a threshold}.

This vague superclass is certainly contained in the exact
superclass {T̄ (P, δ) : δ ∈ (12 ,1)}. From this fact and from
Theorem 1 one easily deduces the following properties:

PROPOSITION 2.

(a) Every element of T̄(P ) is a C-class;
(b) T̄(P ) is contained in an equivalence superclass;
(c) P1 = P2 if and only if T̄(P1) and T̄(P2) are con-

tained in the same equivalence superclass.

The proof is omitted.

3.3 Experiments

The empirical notions of experiment and trial are well
known. Every experiment is associated with an event
space. The symbols E,E1, and E2 always denote exper-
iments with event space A. The symbol En denotes the
experiment with event space An whose trials are com-
posed of n trials of E.

We say that two experiments E1 and E2 are empirically
equivalent if they cannot be distinguished by observing
the outcomes they produce. In this case we write E1 ∼
E2.
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3.4 Practically certain events

As previously stated, we assume that some events of an
experiment may possess an empirical objective property
that we call practical certainty. This property depends
only on the structure of the experiment. Let us propose
the following operational definition:

DEFINITION (Practical certainty).

(a) Practical certainty is defined operationally as fol-
lows: We single out an event and then perform a
long sequence of trials; the event is practically cer-
tain if and only if its relative frequency in the se-
quence is very close to 1.

(b) Like any experimental procedure, the above pro-
cedure may sometimes produce the wrong result.
However, this does not prevent us from considering
practical certainty as an objective property of some
events.

(c) A natural consequence of the above definition is
that if we single out a practically certain event and
then perform a single trial of the experiment, the
event occurs nearly certainly in the trial.

It is easy to recognize that the class of practically cer-
tain events of an experiment satisfies the same properties
as the components of a C-class, namely:

(a) The sample space is practically certain;
(b) if A is practically certain and A ⊆ B, then B is

practically certain;
(c) two disjoint events cannot both be practically cer-

tain.

Let us justify for example (c): We single out two dis-
joint events A and B and then perform a long sequence of
trials. If A is practically certain, its relative frequency is
close to 1; this implies that the relative frequency of B is
not close to 1, and therefore, B is not practically certain.
Properties (a) and (b) can be justified even more easily.

However, the reasoning for deducing these properties
from the definition of practical certainty is not sufficiently
rigorous to be presented as a formal proposition, and
therefore, we formulate it as a postulate.

We say that an event A(n) ∈ Ā is Ē-practically certain
if it is a practically certain event of the experiment En. Let
C̄(E) denote the vague class of the Ē-practically certain
events and let

(21) C̄(E)

denote the vague superclass of its instances. According to
what was said above, we postulate that:

POSTULATE 1.

(a) Every element of C̄(E) is a C-class.

The above property corresponds to property (a) of
Proposition 2 relative to typical events. A version of prop-
erties (b) and (c) of that proposition can also be formu-
lated for practically certain events. Since these properties
are less self-evident than property (a), we prefer to formu-
late them as conjectures:

CONJECTURE 1.

(b) C̄(E) is contained in an equivalence superclass;
(c) E1 ∼ E2 if and only if C̄(E1) and C̄(E2) are con-

tained in the same equivalence superclass.

Property (b) implies that a C-measure can be associated
with an experiment. In the next subsection it is shown that
if E is governed by a probability measure this property
can be deduced rather than conjectured.

Property (c) can be considered in some way as the
mathematical definition of the empirical equivalence of
two experiments. It is used in the next subsection to prove
the non-existence of experimental ambiguity.

It is possible that a better understanding of the struc-
ture and interpretation of the C-measure will allow us to
reformulate Conjecture 1 as a postulate.

3.5 Cournot’s principle revisited

The revised version of Cournot’s principle that we pro-
pose is the following:

COURNOT’S PRINCIPLE. A probability measure P
governs an experiment E if for any instance C̄ ∈ C̄(E)
there is an instance T̄ ∈ T̄(P ) such that

(22) T̄ ⊆ C̄.

The following proposition contains the results an-
nounced in the Introduction.

PROPOSITION 3.

(a) If P governs E, then T̄(P ) and C̄(E) are contained
in the same equivalence superclass;

(b) if P1 and P2 govern the same experiment E, then
P1 = P2;

(c) if P governs two experiments E1 and E2, then
E1 ∼E2.

PROOF. (a) Let C̄1 and C̄2 be two instances of C̄(E).
According to the hypothesis, there are two instances
T̄1, T̄2 ∈ T̄(P ) such that T̄1 ⊆ C̄1 and T̄2 ⊆ C̄2. From The-
orem 1 it follows that C̄1 ∼ T̄1 ∼ T̄2 ∼ C̄2.

(b) Let C̄ ∈ C̄(E). According to the hypothesis, there
are T̄1 ∈ T̄(P1) and T̄2 ∈ T̄(P2) such that T̄1 ∪ T̄2 ⊆ C̄.
This implies T̄1 ∼ T̄2, and therefore, P1 = P2.

(c) Let C̄1 ∈ C̄(E1) and C̄2 ∈ C̄(E2). According to the
hypothesis, there are T̄1, T̄2 ∈ T̄(P ) such that T̄1 ⊆ C̄1 and
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T̄2 ⊆ C̄2. This implies C̄1 ∼ C̄2, and therefore C̄(E1) and
C̄(E2) belong to the same equivalence superclass. From
Conjecture 1c it follows that E1 ∼E2.

We note that property (a) implies Conjecture 1b, and the
C-measure generated by C̄(E) is exactly P̄ . Properties (b)
and (c) exclude probabilistic and experimental ambiguity,
respectively. Finally, we point out that properties (a) and
(b) follow from Postulate 1, while property (c) follows
from Conjecture 1c.

4. CONCLUSION

Let us recall the main motivations for the reformula-
tion of Cournot’s principle proposed in this paper: (1) In
its original formulation, the principle evokes the empiri-
cal property of practical certainty without really defining
it. In this paper, this property has been explicitly recog-
nized, operationally defined, and some of its properties
identified. (2) According to the modern measure-theoretic
approach to probability, in the novel formulation, a prob-
ability measure and an experiment are recognized as sep-
arated entities that are related by Cournot’s principle.

The novel formulation makes the logical structure of
the principle clearer and emphasizes the possible exis-
tence of two ambiguities, namely: (1) that different prob-
ability measures govern the same experiment, and (2) that
the same probability measure governs different experi-
ments. The first ambiguity is excluded in any case, while
the second is excluded provided that a suitable condition
characterizing the empirical equivalence of two experi-
ments is assumed.

In this paper, some novel mathematical notions have
been introduced, most notably the notion of C-measure.
This set function has been considered here as a simple
mathematical tool, but it is possible that further research
will allow us to interpret it as a non-additive measure of
the degree of certainty of the events.
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