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Abstract

Recently a group of physicists measured a negative ”group delay” for a pulse of light trans-
mitted in a cold cloud of Rubidium atoms [1]. In this paper we will study the propagation of
a wave packet incident on a dispersive and dissipative medium, determining the “transit time”
of the packet, which is the analogue of the group delay. We will show that if the phase of
the transmitted wave is decreasing in correspondence with the value of the wavenumber that
determines the peak value of the amplitude of the spectral density of the packet, the transit
time is negative.

1 Spectral Density. Dispersion Law

Let us consider the one-dimensional propagation of a wave packet [2]:

ψ (x, t) =

∫ +∞

−∞

A (k) ei(kx−ω(k)t)dk (1)

where k is the wavenumber related to the wavelength by k = 2π/λ. Let ψ0 (x) = ψ (x, 0) (initial
profile of the packet) with ψ0 ∈ L2 (R), by the Fourier integral theorem:

A (k) =
1

2π

∫ +∞

−∞

ψ0 (x) e
−ikxdx (2)

for which A (k) : R → C.

dA
def
= |A (k)| dk is the (infinitesimal) amplitude of the monochromatic components of wavenum-

ber belonging to the infinitesimal interval [k, k + dk]. Therefore

|A (k)| =
dA

dk

i.e. |A (k)| is the spectral density of the wave packet. We assume the real function |A(k)| extremely
peaked around a given1 k0 ∈ R. This implies that the dominant contribution to ψ (x, t) comes from
the monochromatic components with

k ∈ (k0 − δk, k0 + δk) ,
δk

|k0|
≪ 1. (3)

In (1) ω (k) is the pulsation of the single monochromatic component. We assume the real function
ω (k) analytic in R. This function expresses the dispersion law of the medium in which the packet
propagates.

2 Propagation velocity. Phase velocity and group velocity

Let us consider the scheme in Fig. 1 iin which a one-dimensional wave packet strikes the region
represented by the segment [0, δ] of the x-axis. Let us then set:

ψinc (x, t) =

∫ +∞

−∞

A (k) ei(kx−ω(k)t)dk (4)

1For example, |A(k)| can be a Gaussian centered at k0.
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Figure 1: A wave packet strikes the region [0, δ] of the x-axis.

Definition 1 We call the propagation speed of the monochromatic component A (k) ei(kx−ω(k)t) the
phase velocity of the wave packet:

vp (k) =
ω (k)

k
(5)

For the above, we assume |A(k)| extremely steep around a given k0. Since the dispersion law
ω (k) is by hypothesis analytic, we can develop this function in Taylor series with initial point k0. In
a neighborhood of the type (3) is permissible to truncate the expansion to first order:

ω (k) ≃ ω0 + vg (k − k0) (6)

where

ω0
def
= ω (k0) , vg

def
=

dω (k)

dk

∣

∣

∣

∣

k=k0

(7)

with vg having the dimensions of a velocity. Substituting in (4):

ψinc (x, t) =

∫ +∞

−∞

A (k) exp {kx− [ω0 + vg (k − k0)] t} dk

=

∫ +∞

−∞

A (k) exp (kx− ω0t− vgtk + vgtk0) dk

=

∫ +∞

−∞

A (k) eik(x−vgt)e−i(ω0−vgk0)tdk

= e−i(ω0−vgk0)t

∫ +∞

−∞

A (k) eik(x−vgt)dk

e−i(ω0−vgk0)t is an inessential phase factor, so

ψinc (x, t) =

∫ +∞

−∞

A (k) eik(x−vgt)dk (8)

This wave function tells us that the profile of the incident packet translates rigidly (i.e. without
deforming) and uniformly with velocity vg. This circumstance suggests:

Definition 2 We call group velocity of the wave packet (8) the quantity:

vg =
dω (k)

dk

∣

∣

∣

∣

k=k0

(9)
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In order for the propagation illustrated in fig. 1 to be sensible, must be vg > 0 i.e. i.e. the
function ω (k) must be increasing in ω0. In the opposite case, ω (k) decreasing in k0, the propagation
is regressive since vg < 0. There remains the case in which the dominant wave number k0 is the
critical point for ω (k) for which vg = 0. Since there is no propagation (packet cut-off) the wave
function ψinc (x, t) describes a standing wave.

The transmitted wave packet is:

ψtrasm (x, t) =

∫ +∞

−∞

B (k) exp [k (x− δ)− vgkt] dk (10)

Here we assume that the propagation medium [0, δ] sis dissipative. It follows that the output packet
is attenuated. We then define a (complex) transmission coefficient of a single monochromatic com-
ponent:

τ (k) =
B (k)

A (k)
=

|B (k)| eiφ2(k)

|A (k)| eiφ2(k)
=

|B (k)|

|A (k)|
eiφ(k),

where φ (k) = φ2 (k) − φ1 (k). Without loss of generality, we assume A(k) to be a real function.2

for which φ (k) is the phase of the complex amplitude B(k) or of the monochromatic component of
wavenumber k. So

ψtrasm (x, t) =

∫ +∞

−∞

A (k) |τ (k)| exp [k (x− δ)− vgkt+ φ (k)] dk (11)

We develop φ (k) in Taylor series with initial point k0. In a neighborhood of the type (3) is permissible
to truncate the expansion to first order:

φ (k) ≃ φ0 + Λ0 (k − k0) (12)

where

φ0
def
= φ (k0) , Λ0

def
=

dφ (k)

dk

∣

∣

∣

∣

k=k0

(13)

(11) becomes

ψtrasm (x, t) = eiβ0

∫ +∞

−∞

A (k) |τ (k)| eik[(x−δ)−vg(t−T )]dk (14)

where

T
def
=

Λ0

vg
=

dφ(k)
dk

∣

∣

∣

k=k0

dω(k)
dk

∣

∣

∣

k=k0

=
dφ (ω)

dω

∣

∣

∣

∣

ω=ω0

, β0 = φ0 + Λ0k0 (15)

So except for an inessential phase factor, the transmitted packet is:

ψtrasm (x, t) =

∫ +∞

−∞

A (k) |τ (k)| eik[(x−δ)−vg(t−T )]dk (16)

3 Conclusions

From (16)-(15) follows il tempo impiegato

T =
Λ0

vg
(17)

2This occurs if ψ0 (−x) ≡ ψ0 (x).
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On the other hand, the profile propagates uniformly with velocityvg, so the transit time in [0, δ] is
T = δ/vg. Comparing with (17)

dφ (k)

dk

∣

∣

∣

∣

k=k0

= δ (18)

which constrains the value of the derivative of the phase φ (k) of the transmitted wave at the point
k0 which is the relative maximum for the spectral density A(k). Follows that as the thickness d
increases, the slope of the curve φ = φ (k). Therefore, as d increases, the transmitted wave is further
out of phase (as well as attenuated). Alternatively, we can conjecture the existence of a dispersive
and dissipative medium such as to violate the (18). This forces us to assume as the transit time the
(17):

T =

dφ(k)
dk

∣

∣

∣

k=k0

vg
6= δ

In a medium characterized by a ω (k) such as to have an anomalous dispersion corresponding to a
reduction in the phase of the transmitted wave as the wave number k increases (and therefore as the
wavelength decreases), we necessarily have

dφ (k)

dk

∣

∣

∣

∣

k=k0

< 0 =⇒
vg>0

T =

dφ(k)
dk

∣

∣

∣

k=k0

vg
< 0 (19)
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