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Abstract

Algorithms by stochastic methods to partial differential equations of the fourth order involving biharmonic
operators are stated. The author considered a construction of the solution of a partial differential equation
using a certain probability space and stochastic process. There are two algorithms for the fourth-order partial
differential equations by stochastic methods. The first one is the method using signed measures. This is a method
which constructs a signed measure by a solution using the Fourier transform and obtains a coordinate mapping
process. The second method uses iterated Brownian motion. The latter is treated in this paper. The definition of
iterated Brownian motion was modified to investigate the properties of its distribution. The author also defined
an iterated random walk corresponding to discretization of that, and showed that it converges to an iterated
Brownian motion in law to the iterated Brownian motion, and obtained its order.In the conventional method,
the partial differential equation of the fourth order corresponding to iterated Brownian motion, the Laplacian of
the boundary condition arises in the remainder term. In other words, if the boundary condition is harmonic, the
representation of the partial differential equation involving the biharmonic operator is possible.By focusing on
the distribution of the iterated Brownian motion, the representation of the partial differential equation including
the biharmonic operator is possible when the boundary condition is biharmonic.



1 Introduction

1.1 Stochastic Approach to Partial Differential Equations

Given a solution u(t, ) : [0,T] x RV — R of a certain partial differential equation, along with the initial condition
u(0,2) = ug(z), (Vz € RY), we consider representing the solution in terms of the expectation value using a certain
probability space (2, F, P) and a stochastic process X : [0,00) x  — RY defined on this space, as follows:

u(t,z) = Eug(X(t +z))) (Vt>0,,z € RY).

Let (92, F, Ftt > 0, P) be a filtered probability space, and let B be a d-dimensional Brownian motion defined
on (Q,F,Ftt >0, P). Consider Vg, -+, Vy € Cg°(RY,RY) and define the second-order linear differential operator
L= % k= 1de?+‘/(). We denote X as a stochastic process on (2, F) that satisfies the following Stratonovich-type
stochastic differential equation:

d
dX; =Y Va(Xe) 0 dBy + Vo(Xy),dt,  Xo=0.

a=1

If a function f : RN — R satisfies appropriate conditions, setting v(t,z) = E(f(X(t) + z)), (vt > 0,,2 € RV),
we find that v : [0,00) x R? — R satisfies the following heat equation [fTaniguchi_SDE|:

0
Ev(t,x) = Lo(t,x) v(0,x) = f(x). (1.1)

As demonstrated above, partial differential equations determined by second-order linear operators derived from
the coefficient functions of stochastic differential equations can have solutions represented by the expectation value.
In this paper, we focus on boundary value problems of fourth-order partial differential equations involving the
biharmonic operator AZ.

1.2 Motivation of the Iterated Brownian Motion

There is a fundamental relationship between the Brownian motion and the Laplacian operator. In equation (IT),
consider the special case where Vy = 0 and V,, = 1(a = 1,--- ,d). Under suitable conditions on f, this equation
reduces to the following basic heat equation:

1
—u(t,z) = =Av(t, x).
Soult,7) = 5 Au(t,2)
The motivation for the iterated Brownian motion (i.B.m.) is to analyze the relationship between the biharmonic
operator and a stochastic process whose time parameter is itself driven by another independent Brownian motion.
This concept was first introduced by Funaki [6], and the properties of the sample paths of the iterated Brownian

motion were further studied by Burdzy, Krzysztof [[]. In this paper, we refer to the iterated Brownian motion as
the i.B.m.

1.3 Funaki’s Method

In Funaki [5], the following approach is employed. Let B and w be independent Brownian motions, and define

— . |B® (t > 0)
B = {ﬁB(—t) (t <0).

For a real-valued function g that can be extended to an entire function, let g : C — C denote its extension. If
g satisfies specific growth conditions, setting u(t,z) = E(§(x + B(w(t)))) (Vt € R, z € R), the function u satisfies



the following heat equation:

9wt z) = éAQu(t,x) (vt € R\ {0}, Vz € R)
u(0,z) = g(z) (Vz € R).

Here, note that g : R — R is a harmonic function. Moreover, the growth conditions imposed on ¢ require that

[Pl )] exp{=h(laf + [y2)}, | 52 (. y) | exp{=h(lz]? + [y)}, and |52 F(z, )| exp{~h(|a[> + [y[)} are bounded
on C for any h > 0.
Generally, the following is stated. Let A be an elliptic differential operator on R? of the following form:

d
A= 42 ) g axj + Zb (1.2)

i,j=1 i=1

where a;;, b; € Cp(R?) (Vi, 7). For x € R%, let o(x) = (045(x)), (ai;) = o(z)o ' (z), oo(z) = (bi(x),- -+ ,ba(x))". Let
X7 be a diffusion process with A as its infinitesimal generator:

d
dX7(t) = on(X"(t)) dB¥ () + oo (X" (t) dt  (t > 0).
k=1

Given p > 0 and ¢ € R, the objective is to construct a probability process on R? using the diffusion process X%,
which solves

Ot ) = (042 + qAyu(t, ),

along with the initial condition w(0,-) = ug(+).

Definition 1.1 (Setting the Boundary Condition). Let D be a set of functions f : R? — R satisfying the following
conditions. There exists n € N and a function f:R? x R® — R such that:

o f(x,0)=f(z) (VzeR),
e There exists a second-order linear differential operator A on R™ of the same form as (2) such that:

(As + A flz,y) =0 ((z,y) e R xR").

o |F@p)lexp{=h(al® + [y}, |52 Fla )| expi=h(lal> + [y*)}, and |52 Fla,)| exp{=h(lal* + |yl*)} are
bounded on R x R™ for any h > 0.

Let {Xt}tzo be an n-dimensional diffusion process starting from Xy = 0 € R™ with A as its infinitesimal
generator.

Definition 1.2 (Extension of the Diffusion Process). Let {X;(%)}icr cere be a family of random variables in
R? x R™ defined as follows:

() = (X¢(2),0) (t=>0)
k (z,X_,) (t<0).

Let {w;}s>0 be a one-dimensional Brownian motion independent of X. Define Y (t) = /2pw; + qt (t > 0).

Theorem 1.3 (Theorem 3 of Funaki, 1979 [6]). For each f € D, let u(t,z) = E(f(Xy,(z))) (t > 0,2 € R?). Then,
the following holds:

{gtu(t,x) = (pA2 + qA)u(t,z) (t >0,z € RY)
u(0,z) = f(z) (z € RY).



1.4 Contents of This Paper

Let Z denote the iterated Brownian motion, and for f € Cp°(RY) and for each t > 0, z € RY, define v(t,z) =
E(f(Z(t)+ x)). We have obtained the following representation of the solution for the partial differential equation:

(gt —~ ;AQ) v(t, x) = ;A\/*’;%) (t>0,z€R)
v(0,z) = f(x) (z € RY).

For each t > 0, z € RY, define v/(¢,z) = v(t,z) — \%v(ct, x). We have shown that if the boundary condition
f:R% = R is a biharmonic function, then the following equation holds:
gv’(t,m) = lsz’(t,m) (t>0, xR,
ot 8
Furthermore, we discretize the iterated Brownian motion using a random walk and demonstrate that, under

certain conditions, the weak approximation error with respect to the step number n is O (ﬁ)

2 Fundamentals

In this section, we summarize the fundamental results in stochastic analysis that are relevant to this paper. All the
results are referenced from Karatzas, Ioannis and Shreve, Steven [6].

Definition 2.1. Let d € N and p be a probability measure on (R?, B(RY)). Consider a filtered probability space
(Q, F,{Fi}i>0, P). A stochastic process B : [0,00) x Q — R? is called a d-dimensional standard Brownian motion
with initial distribution p if it satisfies the following conditions:

e For P-almost every w, B(-,w) : [0,00) — R? is continuous.

e P(ByeTl) = pu) for any T € B(R?).

o For (0 < s <t, the increment B, — By is independent of Fs, and follows a normal distribution with

mean 0 and covariance matriz (t — s)1q.

If there exists an x € RY such that P(By = z) = 1, then B is called a d-dimensional standard Brownian motion
starting from x.

There are multiple measurable spaces and probability measures that can be used to construct a Brownian motion,
but we introduce the following framework in this paper. Define C[0,00) = {f : [0,00) — R | f is continuous}. By
introducing the following distance, C[0, c0) becomes a complete separable metric space:

plewn,2) = i 3o (s b0 - a0l 1))

Let B(C|0,0)) denote the Borel o-algebra generated by the distance p on C[0, c0).
Let ¢ > 0 and {&}5°, be a sequence of independent and identically distributed square-integrable random
variables satisfying F(£1) = 0 and E(£%) = 0% < co. Define the sequence of random variables {S}72, as follows:

k

Sy =0, Sk:Z§m.

m=1

Let {Y (¢)}+>0 be a stochastic process defined by

Y(t)= Sy + = [t)hE+1 (t>0),



where |t] denotes the greatest integer less than or equal to t.
For each n > 1, define a stochastic process {X (™ (t)};>0 by

1
ov/n

and treat {X(™}2 | as a sequence of random variables taking values in C[0,00). For each n € N, let P, denote
the distribution of the random variable X (™). Under this setup, the following result holds.

XM () = Y(nt) (t>0),

Theorem 2.2. The sequence of measures {15”};’1":1 converges weakly to a probability measure P,. On the probability
space (C0,00), B(C[0,0)), Py), define a stochastic process W : [0,00) x C[0,00) — R by

W(t,w) =w(t) (Vt>0,we C0,0)).

Then, {W(t)}t>0 is a one-dimensional standard Brownian motion starting from the origin on the filtered probability
space (C[0,00), B(C[0,00)), {F" }i>0, Ps).

3 On Iterated Brownian Motion

The study of sample paths of iterated Brownian motion (i.B.m.) has been primarily conducted by Burdzy, Krzysztof
[@], [2]. In order to drive the time parameter of a Brownian motion by another independent Brownian motion, it is
necessary to define Brownian motion for negative times.

Definition 3.1. Let X1 = {X1(t)}1>0 and Xo = {Xa(t)}i>0 be independent d-dimensional standard Brownian
motions starting from the origin on a probability space (1, F1, P1). For each (t,w1) € R x Q1, define a stochastic
process X : R x Q1 — R? as follows:

Xi(t,wi)  ift=0

X(twr) = {Xg(t, wi) ift<0.

In this context, we refer to X as a **two-sided Brownian motion™*,

In [@] and [2], iterated Brownian motion is defined as a stochastic process B'(B?) on a probability space (2, F, P),
where B! is a two-sided Brownian motion and B? is a standard Brownian motion, both defined on (Q, F, P).
In this paper, we focus on the distribution of iterated Brownian motion and define it as follows:

Definition 3.2. Let X be a two-sided Brownian motion on (Qq1,F1, P1) as defined in Definition @3. Let Y =
{Y(t)}+>0 be a standard one-dimensional Brownian motion starting from the origin on the probability space (2, Fa, Pa).
Define  := Oy X Qq, F := F1 X Fa, and P := Py x Py. For each t € [0,00) and w = (w1,ws2) € Q, define a stochastic
process Z = {Z(t) }+>0 : [0,00) x @ — R? by

Z(t, w) = X(Y(t, wg), wl).

We call Z a **d-dimensional iterated Brownian motion starting from the origin**. For x € R?, the process Z + x
is referred to as a **d-dimensional iterated Brownian motion starting from x **.

For each d € N, (£1,&) € (0,00) x RY, we define pg(&1,&:) € R as follows:

pa(61,&2) = L exp (— §2|2> (3.1)
’ (2m&,) 26

In particular, for d = 1, we denote it as p(£1,&2) = p1(&1,&2) = \/2;? exp (—%) Throughout this paper, we will

use the above notation without declaration.



Lemma 3.3. Let f : R? — R be a bounded continuous function. We define F : R — R as follows:

o = Ve F@)palluly)dy - (u#0)
) {f(O) (u=0)

Then, F': R — R is a bounded continuous function.

(3.2)

Proof. From the boundedness of f, there exists a constant C' > 0 such that for each y € R?, the following holds:

fw)l<C
When u # 0, we have:
F(u)] < / @) lpaljul, v) dy < / C pallul,y) dy = C
Rd R

Thus, we conclude that F': R — R is bounded.
Let ug € R be arbitrary, and consider a sequence of real numbers {u, }°; such that:

lim u,, = ug
n—oo

For each n > 1, it is important to note that:
F(u,) = E(f(X1(|unl)))
E((f(X1(Jua]))?) < C?

Consequently, the sequence {f(X1(Junl))}s2; is uniformly integrable. Additionally, from the continuity of the
sample function X; and the continuity of f, we obtain:

Tim E(f(Xa(ua)) = B (X (Juol))
Therefore, we can conclude that:

T Fluy) = lim B/ (Xa(funl))) = B (X (fuo))) = Fluo)
O
Proposition 3.4. Lett > 0. Assume that f : R — R is Borel measurable and satisfies the following conditions:
e For Py-almost surely wy € Qa, we have B (|f(X (Y (t,w2)))]) < oo.
e The mapping Qg 3 we — BN (|f(X1(Y (t,w2)))|) € R is integrable.
Then, it holds that E(|f(Z(t))|) < oo, and we have the following relation:

£z = [ ([ 10wl ay) vt du

where E denotes the integral over the probability space (2, F, P).

Proof. Fix an arbitrary ¢ > 0.

0Py(ws) / FXY (1), 01))] P (w1)

Qo

- /Y e / Y () 1)) APy en) + /Y 0Py (wn) / SOV (2) 1)) APy )

(t)<0

=/ E (f(X1(]Y (t,w2)]))) dPy(w2)

- / B (| £ (Jul)) palt, w) du < oo



Thus, by Fubini’s theorem, we obtain:

E(f(Z(t) = ; dPy(w2) A FX(Y (¢, w2), wi)) dPy(wr)

:/]REQI(|f(X1(‘U|))Dp(t7u)du

-/ ( | fwaliul.y dy) p(t,u) du

Corollary 3.5. Assume that f : R® — R satisfies the conditions of Proposition B4. For any x € R%, the following
relation holds:

O

2z + o) = [ ([ o ds) e,

Proposition 3.6. For any ¢ > 0, the iterative Brownian motion Z = {Z(t)}>o and the process {¢™% Z(ct) >0
have the same distribution. In other words, for f € Cy(R), the following holds:

B2y =& (1 (G ze))

Proof. Let ¢ > 0. Due to the invariance of the distribution under scaling transformations of Brownian motion, the
following holds for each g € Cp(R) and o > 0:

/Rg(y)p(t,y) dy = /Rg (%) p(at,y) dy (3.3)

Noting Lemma BZ3, we obtain:

From (B3), for u € R\ {0}, it holds that:

o (Y) av= [ () pltul s

o
MH‘ <

Combining these results, we get:

F)p(lul,y) dy) p(t,u) du

/
[ s (ﬁ@ dy> plet,u) du
/.

(y) pllul ) dy ) piet. ) d

Next, we establish the following based on Theorem 1.1 from DeBlassie, R. Dante [8].



Theorem 3.7. Let f € C°(RY). For each t >0 and x € R?, define

o) = [ ([ 1+ ottt nity) o) du

Then, the function u : [0,00) x R? — R satisfies the following for each t > 0 and x € R:

g 1 1Af(z)
9 A2 ulta) = = 3.4
(at : )uw) Nt (3.4)
u(0,2) = (). (3.5)
Proof. We demonstrate the case for d = 1. The case for d > 2 has been proven in [B], but we will approach the case
d =1 in a similar manner. Let ' := (0, 00) x R. For any ¢ € C5°(§Y'), we will show:

// (u(t,x) (;Az + gt) o(t, ) + % ) %/J;%)qb(t,xv i di — 0.
Define

I ::/ u(t, z)A¢(t, x) du dt,
0

I ::/ u(t,x) = o(t, x) dx dt,
QI at

_ [ Af=)
I := // Jont o(t, ) dz dt.

Then we have:

9 A
/, (u(t,m) (;N + m) 6(t,7) + % - \/J;%)Wx)) dar dt = é[l I+ %13. (3.6)

Noticing that

ult, x) = E2((Z(t) + 2)) = / ( / Fy + 2)p(ul, ) dy) p(t, u) du

= [ ([ sty o)y} e,

I :2/,/OOO/Rf(y)p(u,y—x)p(t7u)A2d>(t,x) dy du dx dt
2/000 /OOO/R/Rf(y)p(u,yx)p(t,u)A2¢(t,:L')dmdydudt.

we find that:

Now, for each (y,t,u) € R x [0,00) x [0,00), we have:

/ F)p(u,y — x)p(t,u) A%p(t, ) da
) (3.7)

R\B.(y)



Thus, it follows that:

There exists a constant K > 0 such that for any (¢,z) € (0,00) x R, the following holds:

‘/Ooo/RlBe(x)(Z/)Jc(fy)p(u,y—x)p(t,u)A2¢)(t,a:) dy du| < K|A(t,2)].

Therefore, by Fatou’s lemma, we obtain:

i< [ [ m [ [ 1m0y - op(t 0 A%6( ) dy dudsda.
&0 R Jo o Jr

cl0
For each (¢,z) € (0,00) X R and (u,y) € (0,00) x R, we have:
Le. [ fW)lp(u, y — 2)p(t, u) < Kop(u,y — x)p(t; ),
/R/Rkn(u,y —2)p(t,u)| dy du < oo.

By the dominated convergence theorem, we conclude that:

lim /R /R 1, (0 |F )Py — 2)p(t, w) dy du = 0.

el0
Thus, we have:

lim J; = 0. (3.8)
el0

For each (u,t,z) € (0,00) x (0,00) x R, the following holds:

/ " by — 2)A%(t, @) de
y+e

- [pw,y—x) (ai)gas(t,x)r

y+e
0

= —p(u, —¢) <8m>3 (t, x)

. a\°
—/+ %p(uay—f) (8:5) ¢(t,z) dx
y+e

d > < 9\
- [ty —msow |+ [T () py - so s
+ - Ap(u,y — 2)Ad(t, ) dx.
r=y+e y+e

rT=Yy-+e

+ 9y — 2)Ad(t2)

— —p(u,—¢) (i)gw»@ Oz

T=y-+€
Similarly, we obtain:

y—e
+ Ap(u,y — x)Ad(t, z) dx.

T=y—¢ —0o0

gy Ade)

/y_ep(u, y —x)A%p(t, ) de = p(u,e) <86x>3 o(t, )

— 00




Therefore, for any (u,t,y) € (0,00) X (0,00) x R, the following holds:

/ plu,y — 2)A24(t, x) dx
R\ Bc(y)

— p(u,) <— (£)3¢<t,m>

0

0

3
r=y+e i (%) ¢(t7x) :c=y—6>

0
- %p(uv Yy— $)A¢(t, JJ)

Tr=y+e

+ / Ap(u,y — ) AP(t, x) dz
R\B.(y)

T2 = /R/o /0 /RlR\BE(y)(x)f(y)p(U,y—x)p(t,u)A2¢(t,$) dx dudt dy

= N Dof(y)p(tw)p(u,e) (2 3¢(t,x) (2 3¢(t,x)
/]R/O /0 <8x — Oz

- / / h / " () p(u. o (A«ﬁ(m +Ag(t,7)

r=y+e€

[ Attt sty - 2)86t.a) de dudtdy
R JO 0 R\Be(y)
=:Js—Js+ J5

> du dt dy

T=y—e¢

0
Ap(u,y —x) = 2%;0(% y—x)

Additionally, we have:
/ (t,u)=—p(u,y — x) dz = [p(t,u)p(u,y — z)] —/ (u,y —x)=—p(t,u) du
0 b, 9up Y P, u)plu,y 0 0 plu,y 9 4R

Cu
= [ Fptuy - ot du
0

10



From this, it follows that:

Jy = / / / /]R o TP WAy — ) A0 ) d iy
—2// / /R\B " up(u y — x)Ad(t, x) dx dudt dy
:2// /]R\B " / fyA¢t,xpt,u){%p(u,y—x)dudacdtdy
—2// / /R\B y)Ap(t, x)p(t,u );Lp(u,y—x)dxdudtdy
:2/R/O /O /R\Be(y) () Ad( t,x)p(t,u)%p(u,y—x)dxdudtdy

For any (u,t,y) € (0,00) x (0,00) x R, the following holds:

" sottoptuy - nds = [ Zotwapuy-o0] - [ Loy
0 N 0 vee y—e
= geotn)| _ ptwd = [ongptuy =]+ [ o nssny o
€ y=e
= gotn)] _nn9 =ty = fpm + [ ot mdn(y -y

Similarly, we have:

0

/ A(t,2)p(uy —a)de = —-o(t,a)|  -plu—e) = Gty + ) -p(u.€) + / ot 2)Ap(u,y — 7) da
y+e y+e

m—y+e>

Sl — O+ oty )+ [ ol Apuy - o) ds

R\B.(y)

z_y+e>

Sty - roty )z [ ofta)pluy - a)de

rT=Yy-+e€

We can state the following:

[ adttoptuy - o do=pu.) <§¢<t, )
R\B.(y) x

T=y—e€

0

T=y—e¢

= p(u.) (aiaxu )

for all (u,t,y) € (0,00) x (0,00) x R

Now, consider:

J5_2// / /R\B(y DALt 2ot u) Ep(u,y — ) dordsdt dy
=2 [ [7 [" St (iqs(t,w) e

- /R/o /0 PPt (6(ty =€) + 6(t.y + €)) dudt dy
oo Jo%) u a
i /]R /o /0 /R\Be(y) 2 Wp(t, et 2) 5 -p(u,y — z) dr dudt dy

=:2Js — 2J7 +4Jg

) du dt dy

r=y+e€

11



Next, we will demonstrate that lim.jo Js = 0. From the assumptions on ¢, there exist constants M; > 0 and
My > /3 such that:

M, P P
J6—/ / / ;u)p(u, €) <a$¢(t,x) - il ) du dt dy
T=Y—¢€ Tr=y-+e€
Given the conditions on f and ¢, there exists a constant K > 0 such that:
My 9
/ / / Dp(t, w)p(u, €) | 5-o(t,z) D o(t, x) . du dt dy

M,
< 2M1K/ / p(u, €) du dt

Mo
:2M1K/ / ;‘p(t w)p(u, €) dudt+2M1K/ / p(t, w)p(u, €) du dt.
0 0

0 p(t,u) 1 s u?\ u? -3t
= = ——t 2exp|— |- .
at t V2 2t 2t

From this, we obtain the following estimate:

/1 /OO Ep(t,w)p(u, €) du dt

// p(t, u)p uedudt+// p(u, €) dudt

// u2p< >P(u,e)dudt+/ /\/gu mexp(—u;)p(u,e)dudt
L () el )

/ \/ﬂexp —— du+/ ﬁexp( 2>du<oo

Thus, by the Dominated Convergence Theorem, we conclude:

Note that:

lim J@ =0

i . (3.9)
Similarly, we have:

161&1 Js = 0. (3.10)
And,

161&1 J7 = 0. (3.11)

For each (t,z,y) € (0,00) x R x R, the following holds:
/Oou (t u)E (u,y — x)du
. b, aup Y
S 9
— fupt.wp(uy— ol = [ (pt0) + 0 goptn) ) pluy - o) du
0

- [ <'pr<t7 0 = plt.0)) iy — )

12



Now consider:

A
_ /R /0 /O /R\Be(y)f(y)cﬁ(t

- [ N / N / o Fwo2)
13$J8=244m4m4f<y)¢<tx

The following holds:

On the other hand, we have:

[ w22 [ ([ ot
[ L /f
=)L

L e
Z/H@/Om/om/ﬂ@f(y)p(“y

- /Q/ u(t,x)%(b(t,x) dx dt = —

Thus, we conclude that:

lim Jg =
1o

For each t > 0, the following holds:

/ F)Ad(t,2)
R

0
e [f(y)axqﬁ(t,

= - L;lyf(y B(t y+e]

- [
/R F)doft, )|

Thus, for each ¢ > 0, we conclude that:

[ <&Mx

Similarly, we have:

+ Ag(t, x)
T=y-+e€

L)

x)

,u)p(t, x) (,%p(u, y — ) dx dudt dy

u? 1
x) < - ) p(t,w)p(u,y — x) de dudt dy

2t

%p(t, w)p(u,y — x) dz du dt dy.

—p(t,u)p(u,y — x) de dudt dy.

Y —2)p (Lu)du) a—(b(t x)dxdt
9¢

)5 (t,z) dy du dz dt

p(u,y — x)p(t, )%(t,x)dydudmdt

- d . 0
- yJ - [ W) N

T

o(t,y —e)d

o(t,y + €) dy.

dyf/Ayf

o(t,y—e)d

dy = / Ay F () (6(ty — &) + S(t.y + ) dy.

13

x)p(t,u) %p(t, u) - ¢(t, x) dt dy du dx

)p(t,u) %p(t, u) - o(t, z) dt dy du dx.

(3.12)



Now, we have:

o 20’ 202
e 1 e e
= —= ) plt, — d
6/0 ( v)p(’Qv)p(%’e) Y
N T b (t,—) e~V
NG pt, 5o )v2e " dv

Thus, we conclude:

el0

where we have set I'(a) = [[“t* te™"dt (a>0).
Now consider:
oo oo 6
n= | / [ #wwtt.w s (Aw, D+ A ) ) dudt dy
R JO 0 u T=y+e T=Yy—€

+ Ag(t, x)

/ (/ fly <A¢t (t, 2) . m_“) dy> . (/OOO < p(t, wp(u ) du) it
= [ ([ aro s+ o+ oty-aya) - ([ ot an) a

Thus, we conclude:

leiﬁ)lj4 :/0 16%1 (/ Af(y) (o(t,y +¢e)+ o(t,y —€)) dy> : </000 ip(t,u)p(u,e) du) dt
/ F/Af b(t,y) dy dt (3.13)

—2/ /Af o(t, ) dx dt = 21;.

L =2/14+2J,=2J1+2J3 —2J,+ 2J5
=2J1+2J3—2Jy +4Jg — 4J7 + 8Jg
= liﬁ)l(lh +2J3 —2Jy +4Js — 4J7 + 8Jg)

We have:

= 13&)1(2:]3 +4Js —4J7) — 413 — 81, (from (BR), (B13))
= —4I3 — 81, (from (BTM), (B4), (BIM)).
O

Proposition 3.8. Let T > 0. For P-almost surely w € (1, the function Z( w) : [0,T] = R is locally Hélder

continuous of order = —¢€ for any € € (0, i) Specifically, for any e € (0, ) there exists a § > 0 such that the
following holds:

P weN sup 7|Z(t) — Z(S)|

O<s—t<t(w) [t— S|%7E
s,t€[0,T]

<é =1.
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Proof. Fix arbitrary T'> 0 and € € (0, %) There exist constants d1,d2 > 0 satisfying the following:

3@ Q; SR, s.t.

X(t - X
P w1 € Ny sup Xt w1) li(s,wl)\ <& =1,
0<s—t<h® (w;) [t —s[27¢
s, teR
Yt wy) — Y
P2 wo € QQ sup | ( WQ) lf3,W2)| S 52 =1.
0<s—t<h® (wy) |t —s[z7¢
s,t€[0,T)
0. — [ X (t,w1) =X (s,w1)] 0. — [Y (t,w2) =Y (s,w2)]
Define €y = {w1 e SUPG st h M) (4y) “ile < 51} and Oy = {UJQ € Qo SUPG st < b (ug) # < b9
s,tER s,t€[0,T)

Now, fix an arbitrary w = (w1, ws) € Q1 x Qa. Let f(u) = X (u,w;) and g(t) = Y (t,ws). For each ¢ € [0, 7], define
h(t) := f(g(t)). In this case, if 0 < s — t < h(?)(wy), then the following holds:

l76
lg(t) — g(s)| < daft —s[27
Thus, there exists £(w) > 0 such that if 0 < s — ¢t < £(w), then

l9(t) = g(s)] < A (wy).

Then,
[(8) = h(s)] = £ (9(t)) = F(g(s))] < Bulg(t) — g(s)] 510
< 6,07t — 53797,
O
Proposition 3.9. Let Z be a one-dimensional iterated Brownian motion. For any n > 1, the following holds:
B(Z(t)* 1) =0,
E(Z({#t)"™) = (4n — D! - (2n — D)I1",
2
E(Z({#)*™2) = (4n — 3)I1- (2n — 2)U "3, [ 2.
0
In particular, the following holds:
2 2t 4
E(Z(t)") = P E(Z(t)*) = 3t. (3.15)

Proof. Let n > 1.
E(Z(t)™) = / / Y p((ul, ) dy p(t, u) du

= /(4n — D) p(t,u) du
R

= (4n — D! - (2n — 1)1t

15



4n—2\ __ 4n—2 U U U
E(Z(t)""?) = / / Y 2p((ul, ) dy p(t,u) d

= /(4n — 3 ul> " p(t, u) du
R

2
= (dn =31 (2n — 2" 34/ 2
™

Corollary 3.10. Let f: R — R be a polynomial. Then, the equation (B2) holds.

Proposition 3.11. For each t > 0, the characteristic function of Z(t) is given by:

o0

b20(©) 1= B/ TH0) = 2exp (g6t [ ity

b
Proof.
E(eﬁEZ@))://eﬁﬁyp(\ulw)dyp(t,w du
RJR
52
:/efﬂu‘p(t,u)du
R

2

= / e_%"p(t, u) du
0

_, ! La) [ (=2 (ws Lezr)
_2.\/27_texp(8§t>/o exp(—Qt (u+2§ t))du

2 L e (15415) /(X> e < U2> du
p— - — X _ X RN —
Vart A8 ) Jie, TP\ T2

1 o0
= 2exp (§4t> / p(t,u) du.

8 %£2t

Theorem 3.12. For each f € C§°(R) and t > 0, the following holds:

BUZ0) - BU(Z0)] < 2t

_53 [P0,k :
where f4(y) = > h_o T —y" for ally € R and K > 0 is a constant.

Proof. For each y € R, the following holds:

f(4)(c) 4

Jde = ¢, € R such that f(y) = fa(y) + TR

Thus,

(4) K
£~ fatw)] < 2Peexl 2O Ka vy cm i m sup 190 < oo,

4! ceR

16
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Then,

B(F(2()) — Nl = ] [ 1560 = 5ntlul o) dptt. )
// ly|*p(|ul,y) dy p(t, w) du
(3.17)
4' 3u p(t,u) du
3K
< 3

O

In general, let B be a d-dimensional Brownian motion and let f : R — R be a harmonic function. By Ito’s
formula, we have E(f(B(t) + z)) = f(x), which means that the Brownian motion maps harmonic functions to
harmonic functions. The corresponding properties of iterated Brownian motion are shown next. The iterated
Brownian motion also maps harmonic functions to harmonic functions and biharmonic functions to biharmonic
functions.

Proposition 3.13. Let f : R? — R be a harmonic function. Then, for any x € R% and t > 0, the following holds:
E(f(Z(t) + x)) = [ ().
Proof. Let € R? and t > 0. By It6’s formula, for each u € R, the following holds:

Ju

F(ful) +2) = +Z / G D)X () + 5 [ ALK () ds

Thus,
E(f(X1(lul) + 2)) = f().

O

Proposition 3.14. Proof. Let f : R* — R be a biharmonic function. Then, for any x € R% and ¢t > 0, the following
holds:

E(f(2(t) +2)) = f(z) + \/gAf(w)

Proof. By 1td’s formula, for each u € R, the following holds:
|l |l
FXa(ful) + ) = +Z /

F(aD) aXa(e) + 5 [ AP () ds.

Thus,

|l
B (X (jul) +2)) = f(@) + 3B ( [ are +a) ds>

lul

:f<w>+§ [ B + ) as

= f(2) + Af( )|ul-

17



B0 +2) = [ B () + a)pien) du= [ {160+ Jar@lul bt du
= f(x \/> \/7Af
O
Theorem 3.15. Let ¢ > 0 and let f : R — R be a biharmonic function. Define
o(t,x) = E(f(Z(t) + x))
fort >0 and x € RY. For anyt >0 and v € RY, define
u(t,z) = v(t,x) — %v(ct,x).
Then the following holds:
%u(t x) = gAzu(t,x) (t>0, xR
u(0,z) = (1 - \}E> f(x) (zeRY.
Proof. For any t > 0 and z € RY, the following holds:
= - \%v(ct x)
i [A (0o
= )+ o f(@) NG fla) + o f(x)
1
: ( )
Ve
O

3.1 Relation to Funaki’s Method

If f:R? — R is biharmonic, it is possible to construct a solution to (Gt — %2) v = 0 using the method from
Theorem 3.15 with iterated Brownian motion. On the other hand, Funaki’s method requires a growth condition
on the function of the boundary condition. Considering the case when d = n = 1 in Funaki’s method, we adopt a
method to extend the Brownian motion B to the complex plane. For z € C, let f(z) = exp(z®) and restrict it to
real values as f : R — R (i.e., f(z) = exp(2?)). In this case, f does not satisfy the growth condition.

18



4 Discretization of Iterated Brownian Motion

In this paper, iterated Brownian motion is defined as the composition of a time-defined Brownian motion and a
space-defined Brownian motion. Discretization is performed on both the time and space sides using random walks.
First, we provide notation for the random walk on the spatial side.

Notation 4.1. Let (Ay,G1, Q1) be a probability space, and let the sequence of independent and identically distributed
random variables ((])ien j=1,... .a satisfy

; 1
Qi = +1) = 5.
For each j =1,--- ,d and m € N, the random walk on Ay is defined as

§(m.g) ZCZJ (Vj=1,---,d).
i=1

For each m € N, the d-dimensional random walk scaled on the probability space (A%, o(G{), Q}) is defined by

S (1) = \/Z (S(mJ)’ . S(m,d>) .

Next, we define notation for the time-defined random walk.

Notation 4.2. Let T > 0. Let (As, G2, Q2) be a probability space, and let {n;}32, be a sequence of independent and
identically distributed random variables on this space that satisfies:

1

Q2(77i = il) = 5

For each m € N, the scaled random walk on (Az,G1,Q2) is defined by

n =y
Let A= A9 x A3,G = 0(G{ x G2),Q = Qf x Q.

Definition 4.3. For each T > 0, define the random variable R(m.d) (T') on the probability space (A, G, Q) as follows,
and denote it as the iterated random walk:

RY™™(1,0) = STV (IR™(T, wh), o).
Here, w' = (w],wh) € A x As.

Corollary 4.4. The distribution of the iterated random walk is given by: For each b € UaeR(m>(T)(A2) Sc(lm)(|a|)(A‘li),

QR M == Y QAR™(T) = a)Q{(S™(Jal) = b).

a€R(M™) (T)(A)

Theorem 4.5. Let f € Cy(R) and T > 0. As n,m — oo,

|EQ(f(Z(1)) — EA(F(RT™™(T)))| — 0.
Proof.

B (s ) = [ 5 (S8 (RO e)) aeteh aued

(m) / ds 1 ,
/{R(m)(T)_k} /A‘ff(sd (|k'|awl)) dQl(Wl)ng(MQ).

kER(M (T)(As)

19



Since #R(™(T)(Az) < oo, the following holds:

Ve > 0,IN{™ € N such that Vk € R (T)(As), Yws € {R™(T) = k}, ¥n > N™

[ (517 ) a@eh) = [ T @pati ) dy

= <6
2

Thus, for each m > 1, the following holds:

\EW@&“"%T») — [ S 1RO b)) dy st
As JR

< > [ 7 (587 k) @it = [ Fna BT do| da(e)
KER(M) (T)(A) Y 1R (T)=k} |/ AT
< > / €dQa(wh) = <
kR (T)(Ay) * (R (T)=k}
By equation (B2), we define F' as follows:
| [ 1RO @ @il dya@utes) = B4 (PR D).
Thus, there exists Ny € N such that for each m > Nj, the following holds:
€
| [ rnrO @ drdQues) — [ [ ranly €l dydpaen)| < 5
2 R 2 R
In other words,
€
[ [ iR @l dyaeus) - )| < 5
Therefore, for each m > Ny and n > Nl(m), the following holds:
B0 - BAGET @) < | [ [ @pIRD D)) dydQa(es) - E(f(Z(t)))‘
HEAGRT @) = [ [ RO T ) drdQa ()
_eL e 2
2Ty~ ¢

O

Proposition 4.6. Let f : RY — R be bounded, twice differentiable, and assume that f' and f" are also bounded.
Define F : R — R as follows:

Flu) = {fR ppally)dy(u#0)
£(0) (u=0)

In this case, F has a bounded derivative on R\ {0} and is Lipschitz continuous on R.

Proof. We will demonstrate this for the case d = 1. Note that for any u € R, F(u) = F(

—u) holds. For any a > 0,
the following condition is satisfied:

/ 67”2|f(:c)\ dz < oo.
R
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Thus, by Problem 3.1 in [6], F' is differentiable on R\ {0} and the following holds:

/f pluly) dy = = /f ( ) p(luly)dy  (Yu#0).
W= [ ) (jy)zpw,y) dy

_ [ﬂy)aayp(u,y)} = + JE

y=—o0

Since sup, e | (1)), supyca | ()], supyex £ (3)] < oo, it follows that
0 1 Yy y?

@p(u7y) - \/ﬁ (_’LL> €xp <_ 2 ’
9 ’ (u,y) = flerj R y?

ay) PO\ ) Vama P\ T 2u)

demonstrating that F” is bounded on R\ {0}. Let Ly = 3 sup,cg | f”(y)| < oo. For each u # 0, we will show that

[F'(u) = F(O)] < Laful.
Assuming u # 0, by Taylor’s theorem, for any y € R, there exists ¢,

€ (0,y) such that

F) - 1) = £y + Ty
Thus,

F(u) - F(0) = / (F@) — FO)p(Jul, y) dy

- /IR (f’(o)y+ f//(;y)yQ) p(lul,y) dy

1
= §/Rf"(cy)y2p(IUI,y) dy
Thus, the following holds:

sup, g |/”(y)] sup,cg [/ (y)]
P(0) = F(0)] < SR 2l ) dy = SR
Let Ly = sup, e o3 [F”(u)| < co. For any uy,uz € R\ {0}, we will show that
[F(u1) = Fug)| < La|uy — ugl.

Assuming uy,ug € R\ {0} and |uy| < |ug|, F is continuous on [|u1], |uz|] and differentiable on (Ju1], |uz|). By the
Mean Value Theorem, there exists d = d(u1,u2) € (Jui|, |uz|) such that

F(luz|) = F(lu1]) = F'(d)(Juz| — |ual).
Thus,

|F(u1) = Fug)| = [F(luzl) = F(lua])| < [F"(d)| |Juz| = Jua|] < La|uy — ual.
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The iterated random walk converges to the true value of the iterated Brownian motion in the order of f%.

Theorem 4.7. Let f : R — R be bounded and twice differentiable, and assume that both f' and f” are also
bounded, satisfying:
lim f(z)=0.

|z] =00

Then for any real number K > 0 and t > 0, there exist constants M = M(t) > 0 and M’ = M'(t,K) > 0 such that
for any natural numbers n and m, the following holds:

E(f(Z(1) — BRI )] < % + % + %

Proof. Let t > 0 and K > 0 be arbitrary. We have:
BU®) = [ [ 1@walial ) dyp(e. du
= / F(u)p(t,u) du
R

= E(F(X1(1)))-

By assumption, since F' : R — R is Lipschitz continuous, there exists a constant M = M (t) > 0 such that for any
n € N, the following holds:

[E(f(2(t) = BAFER™ (1)) = |E(F(X1(1)) = EAF(R™(1)] < %
Additionally, note that:
EMFR™MM) = Y. FaQER™() =a).
a€RM (£)(A)

There exists a function fx : R¢ — R satisfying the following conditions:

o sup,cpa |f(2) — fr (@) < %

o fx :R% = R is Lipschitz continuous.

e The support of fx is bounded.
For each a € R (t)(A), let Fx(a) = E(fx(X1(|a|))). Now, we have:

EAFRO@G) ~ Y FelahQRV() = a)| <

a€R(™ (£)(A)Nsupp fi

Since R™(t)(A) Nsupp fx C supp fr, there exists a constant M’ = M’(t, K) > 0 such that for any n,m € N and
a € R™(t)(A), the following holds:

Fielal) = BAie(5™ )] < 2.
Also, for each a € R(™(t)(A), we have:
BAS(SS™ () — BAGSS (a))] < -

Thus, for each a € R(")(t) (A), the following holds:
/ + i
vm K’

|Fre(|al) = BAF(R™(#)))] <
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Consequently, we have:

S Fr(aDQRO() = a) - BAGES <t>>>‘ <(%) QR (1) = a)
a€R™ (t)(A)Nsupp fx a€R(™ (t)(A)Nsupp fr
< M’ 1
N + =
From the above, we obtain:
|E(f(Z(t)) — BA(F(RE™™ (1))
< |E(f(Z(1))) — BAFR™ (1))
+ [BAF(R™ (1)) — 3 Fx(|la))Q(R™(¢) = a)
a€ R (t)(A)Nsupp fx
+ > Fx(la)Q(R™(t) = a) — EA(f(Rém’”)(t)))|
a€R™M) (t)(A)Nsupp fx
< M 1 M’ 1
< ﬁ + ? + ﬁ + E
M M2
= % + \/m + ?

Example 4.8. Let d =1 and f(x) = 2. In this case, for each u € R,
F(u) = |ul.

Thus, F : R — R is Lipschitz continuous. Moreover, from equation (BI3),

For each a € R™ (t)(A), we have:
|F(a) = E(f(R™(la])))| = |la] = E(R™ (ja]))*)| = ||a| = |a] = 0.

Therefore,

E(fZ®) - >, QER™M()= G)EA(f(R(")(al)))‘
a€RM) (1)(A)
<K
ST
Example 4.9. Consider the case where f(x) = 2* (z € R). From equation (8I3), we have:
E(f(2(t) = E(Z(t))") = 3t.
F(u) = 3u* (Yu € R).

Letn > 1. Then,
B(F(R™ (1)) = SE((R™(¢))?) = 3t.
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Let the characteristic function of Y ;| & be ¢n. By the independence of {&}1,

¢n(v) =cos"v (v eER).
d 3 L
w@sn( ) = % (—TLCOS ’USIHU)
d2
== (n(n — 1) cos™ ?vsin® v — ncos” v)
v
d
= (—=n(n —1)(n — 2) cos" 2 vsin® v + (3n® — 2n) cos" ! vsinv)
v
=n(n—1)(n —2)(n —3)cos" *wsin? v — 2n(n — 1)(3n — 2) cos" 2 wsin® v + (3n* — 2n) cos™ v.

Therefore, for any a € R™ (t)(Q), the following holds:

n 4 4 Cl2
B((R™ ()" = % (Z&) = Zz L 6atv) =3 =
Fla) ~ EAGF(R®) (al))) = 22
EFRM0) - Y QER™(@) = ))EA(fR™(ja))|
a€R(M) (t)(A)
< > QERME =0 |Fa) - E(F(R™(Ja)))

<

<

acR(™) (t)(A)

DS

a€R(™) (t)(A)

a*Q(R™ (1) = a)

t
—

2

Example 4.10. Consider the case where f(x) = exp (—%) (x € R). In this case, f : R — R satisfies the

conditions of Theorem G1.

5 Future Challenges

The future challenges can be broadly classified into three points.

= [ [ oo (—lﬂ)pauw) dy p(t, w) du
- [ few (=3 (g +1) ") duptea

/ 2Jul
p(t, u)
V2rlu] | lul + "

-—=/ mexp< )du.

(4.1)

The first point is to extend the solutions to

fourth-order partial differential equations for which an expression is possible. This study demonstrated that when
the boundary condition f is a biharmonic function, a solution representation via iterative Brownian motion is
achievable for the equation (% — fAQ) u = 0. The goal is to relax the conditions on f to obtain a similar assertion.
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The second point is the construction of Ito’s formula for iterative Brownian motion. There is a possibility of
inferring a structure from Proposition BT4. In this paper, weak approximation via random walks for iterative
Brownian motion was obtained. There is a background that allows the construction of Ito’s formula for Brownian
motion as the limit of the discrete Ito formula for random walks in the case of standard Brownian motion [d].
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