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Abstract

In this paper, we will show in a Gaussian context what to do to obtain a causal
relationship between an output variable and three input variables without obtaining
any correlation between the output variable and the input variables. In a context of
Gaussian signals, this paper will show the following situation: Causation without
correlations for the Gaussian signals.
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1 Introduction

In this paper, we will show for Gaussian signals what to do to obtain the causality
without correlations. We will place ourselves in the situation where we have three
input variables X1X2X3 and one output variable X4. This method contains two parts:

1. Projection of a positive non-semi-definite matrix onto the subspace of positive
semi-definite matrices (surface of the cone of positive semi-definite matrices
SDP). This surface corresponds to the geometric domain containing the deter-
ministic causation relationships. Concerning this projection, I advise you to
read the paper "Computing Nearest correlation matrix: A problem from finance"
by Nicholas Higham [4] page 9. From the paper [5] page 3, we can deduce
that when we are onto the surface of the cone of the SDP matrices, we have
a quadratic form KX,Ω.K−1

Ω2 .KΩX = 1 which implies Var(X − E[X∣Ω]) = 0 and
which means that we have the causal relationship X = E[X∣Ω].

2. The second part concerns the inference of data from the library (mvtnorm) to
be downloaded to the R software. I then expose, from a matrix projected on the
SDP cone, a situation where we have a deterministic causation between the input
variables X1X2X3 and the output variable X4 without having any correlations
between the input variables X1X2X3 and the output variable X4.

In this paper, we will explain the method which makes it possible to obtain a causal
relationship without correlations. The paper ends with a simulation with the R software
in order to expose the situation: causation without correlation for Gaussian signals.
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2 Causal relationship obtained from a correlation ma-
trix

We will consider three input signals (variables) X1,X2,X3 and one output signal X4 (the
response) below.

We will show below the steps to follow to obtain a causal relationship between the
output X4 and the inputs X1,X2,X3 without having any correlations between the inputs
and the output.

Method

1. Choose a symmetric matrix M located outside the positive semi-definite matrix
cone with mii = 1 and −1 < mi j < 1.

The rows and columns correspond to the variables in order at X1,X2,X3,X4.

The last row and column X4 of the matrix M have a small value. In our example
we chose the following matrix:

M =

⎛

⎜
⎜
⎜

⎝

1.00 −0.61 0.60 0.01
−0.61 1.00 0.65 0.02
0.60 0.65 1.00 0.03
0.01 0.02 0.03 1.00

⎞

⎟
⎟
⎟

⎠

2. We will now choose a weight vector of diagonal elements: (10,20,30,40) to
build the matrix A.

A =

⎛

⎜
⎜
⎜

⎝

10 0 0 0
0 20 0 0
0 0 30 0
0 0 0 40

⎞

⎟
⎟
⎟

⎠

⎛

⎜
⎜
⎜

⎝

1.00 −0.61 0.60 0.01
−0.61 1.00 0.65 0.02
0.60 0.65 1.00 0.03
0.01 0.02 0.03 1.00

⎞

⎟
⎟
⎟

⎠

⎛

⎜
⎜
⎜

⎝

10 0 0 0
0 20 0 0
0 0 30 0
0 0 0 40

⎞

⎟
⎟
⎟

⎠

A =

⎛

⎜
⎜
⎜

⎝

100 −122 180 4
−122 400 390 16
180 390 900 36
4 16 36 1600

⎞

⎟
⎟
⎟

⎠

Note that the eigenvalues are as follows: λ⃗ = (1603.25899,1120.04254,336.70282,−60.00435).
So this symmetric matrix is not positive semi-definite. We now arrive at the stage
where we must obtain a variance-covariance matrix which means a positive semi-
definite symmetric matrix A+.

3. We use now the projection A+ = PS (A) onto the cone of semi definite positive
matrices of Nicholas Higham paper [4] page 9 to obtain a singular semi-definite
positive matrix: A+ = Q.diag(max(λi,0)).QT and PS (A) = W−1/2

((W1/2.A.W1/2
)+).W−1/2.

We will use as weight matrix W like the identity matrix I.

3



4. Now we will choose a random mean vector µ⃗ = (10,20,30,40), and use the
rmvnorm() function to infer 1000 data with a fixed mean vector µ⃗ and a fixed
variance covariance matrix A+: Data = rmvnorm(1000, µ⃗,A+). On the boundary
of the cone of positive semi-definite matrices, the matrix A+ is singular and there-
fore has the quadratic form for the correlations matrix K = diag−1

(A+).A+.diag−1
(A+)

equal to :

KX4,(X1X2X3).K
−1
(X1X2X3)2 .K(X1X2X3),X4 = 1

, using the paper [5]:

X4 = E[X4∣X1X2X3] = β14.X1 + β24X2 + β34.X3 + β4

In the R code in the appendix, we will test E[.] and X4[.] to see if the values are the
same. As this will be the case, we will be able to say that the causal relationship will
be perfect and this without the presence of correlations between the inputs X1 X2 X3
and the output X4.

In what follows, we will represent, from R software (see appendix), the input signals
X1X2X3 and the output signal X4.
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3 Input signals X1X2X3 and output signal X4

Below we will represent the signals at the input X1X2X3 and the output signal X4:
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Figure 1: input signal X1
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Figure 2: input signal X2
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Figure 3: Input signal X3
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Figure 4: Output signal X4
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4 Conclusion

In this paper, we have shown the method to use to obtain a situation where we have
the causation without correlations for the Gaussian signals. From an example where
we have three signals at the input and one output signal, we have shown that the inputs
could be uncorrelated with the output while having a causal relationship between the
inputs signals and the output signal. The signals at the input therefore predicted all the
output values without being correlated with the output.
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A Simulation from R software

> M=diag(4)

> M[1,2]=-0.61

> M[2,1]=-0.61

> M[1,3]=0.6

> M[3,1]=0.6

> M[1,4]=0.01

> M[4,1]=0.01

> M[2,3]=0.65

> M[3,2]=0.65

> M[2,4]=0.02

> M[4,2]=0.02

> M[3,4]=0.03

> M[4,3]=0.03

> library(mvtnorm)

> P=diag(4)

> diag(P)=c(10,20,30,40)

> M=P%*%M%*%P

> Q=eigen(M)[[2]]

> M1=diag(4)

> diag(M1)=eigen(M)[[1]]

> M1[4,4]=0

> Aplus=Q%*%M1%*%t(Q)

> D=rmvnorm(1000,c(10,20,30,40),Aplus)

> X1=D[,1]

> X2=D[,2]

> X3=D[,3]

> X4=D[,4]

> MV=var(D)

> tV=MV[1:3,4]

> B=tV%*%solve(MV[1:3,1:3])
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> C=mean(X4)-B[1]*mean(X1)-B[2]*mean(X2)-B[3]*mean(X3)

> E=B[1]*X1+B[2]*X2+B[3]*X3+C

> E[1]

[1] 56.73746

> X4[1]

[1] 56.73746

> E[14]

[1] 7.352529

> X4[14]

[1] 7.352529

> E[105]

[1] -3.265968

> X4[105]

[1] -3.265968

etc

> cor(D)

X1 1.000000000 -0.44096948 0.4579423 -0.001413494

X2 -0.440969482 1.00000000 0.5959369 0.009629230

X3 0.457942308 0.59593688 1.0000000 0.011557804

X4 -0.001413494 0.00962923 0.0115578 1.000000000

Note that there are no correlations between the output X4 and the inputs X1, X2X3:

KX4,(X1,X2,X3) = (−0.001413494,0.00962923,0.0115578)

, however the signals X1,X2,X3 predicted all the values of signal X4.

In this situation, there are no correlations but there is definitely a causal relationship:

X4 = E[X4∣X1X2X3] = β14.X1 + β24X2 + β34.X3 + β4

X4 = −891,6246.X1 − 576,9075.X2 + 401,5839.X3 + 8446.877
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