New Dirichlet series expansion with recursive coefficient formula

Andrej Liptaj[∗]

Institute of Physics, Bratislava, Slovak Academy of Sciences

October 9, 2024

Abstract

Assuming the Dirichlet series of $q(x)$ is known, we derive a recursive formula for the Dirichlet-series coefficients of $\sqrt{q^2(x) + \alpha}$, $\alpha \in \mathbb{C}$.

Keywords: Dirichlet series, approximation. MSC classification: 11M41,41A58

Motivation, method and results

If two Dirichlet-series representable functions f and g satisfy $g = 1/f$ then an elementary recurrent relation exists between their coefficients (2). Searching for similar relations, we derive a recurrent formula for a different dependence, namely $g = \sqrt{f^2(x) + \alpha}, \, \alpha \in \mathbb{C}.$

In what follows we present formal manipulations of general Dirichlet series and assume the existence of a common domain of convergence for all of them.

Let $q(x)$ be a function of a complex variable with known Dirichlet series $Q(x)$ whose coefficients are represented by the arithmetic function¹ q_n . We search for two functions $a(x)$ and $b(x)$ such that

$$
b(x) = 1/a(x), \quad b(x) = \omega a(x) + q(x), \quad \omega \in \mathbb{C} \backslash \{0\}.
$$
 (1)

The first equation implies that the arithmetic functions a_n and b_n are inverse with respect to the Dirichlet convolution and b_n can be computed from a_n using the well-known recursive formula

$$
b_1 = \frac{1}{a_1}, \quad b_{n>1} = -\frac{1}{a_1} \sum_{d=1, d|n}^{n-1} a_{\frac{n}{d}} b_d, \quad a_1, b_1 \neq 0. \tag{2}
$$

[∗]andrej.liptaj@savba.sk, ORC iD 0000-0001-5898-6608.

¹We use the index notation to differentiate between the function of a complex variable and an arithmetic function. The symbol q_n denotes, depending on the context, the function itself or its value at n.

With q_n known, conditions (1) imply two unique solutions for (a_n, b_n) . Indeed, one substitutes $b_n = \omega a_n + q_n$ to the left-hand side (LHS) of the second equation in (2), separates the first (i.e. $d = 1$) term of the sum on the right-hand side (RHS) , and solves for a_n . One gets the recursive formula

$$
a_1 = \frac{\pm\sqrt{q_1^2 + 4\omega} - q_1}{2\omega},
$$

$$
a_{n>1} = -\frac{a_1}{1 + \omega a_1^2} \left[q_n a_1 + \sum_{d=2, d|n}^{n-1} a_{\frac{n}{d}} (\omega a_d + q_d) \right].
$$
 (3)

Let us emphasize that this result gives us the coefficients of the Dirichlet series $A(x) = \sum_n a_n/n^x$ of the function $a(x)$. We are also able to get the analytic form of $a(x)$. One replaces $b(x)$ on the LHS of the first equation in (1) by the second equation and gets $a^2(x) + a(x) q(x) - 1 = 0$. The solution is

$$
a(x) = \frac{\pm\sqrt{q^2(x) + 4\omega} - q(x)}{2\omega} = \sum_{n=1}^{\infty} \frac{a_n}{n^x},
$$
 (4)

which represents our main result: we have a new function $a(x)$ expressed analytically through $q(x)$ and also expressed through its Dirichlet series. The sign in (4) needs to be adjusted accordingly to the sign of a_1 in (3). The result can be further modified

$$
\pm\sqrt{q^2(x)+4\omega} = \sum_{n=1}^{\infty} \frac{2\omega a_n + q_n}{n^x},\tag{5}
$$

where q_n are known by assumption and a_n are given by (3).

One can notice that by considering $q \equiv q_2(x) = \pm \sqrt{q_1^2(x) + 4\kappa}$ in (5), one gets the Dirichlet series for $\pm \sqrt{q_1^2(x) + 4\theta}$, $\theta = \kappa + \omega$. Thus, if one denotes by I the set of all functions of a complex argument which can be represented by the Dirichlet series in a given domain and by $\mathcal F$ the relation

$$
\mathcal{F} : \mathcal{I} \times \mathbb{C} \longrightarrow \mathcal{I},
$$

$$
(q(x), \alpha) \longrightarrow \pm \sqrt{q^2(x) + \alpha},
$$

then an algebraic structure appears

$$
\mathcal{F}(\mathcal{F}(q,\alpha),\beta)=\mathcal{F}(q,\alpha+\beta).
$$

By consequence, a modification of the coefficient formula (3) expressed in terms of $u_n \equiv 2\omega a_n + q_n$ (see (5)) also respects this structure, which might not be seen at the first glance.