New Dirichlet series expansion with recursive coefficient formula

Andrej Liptaj^{*} Institute of Physics, Bratislava, Slovak Academy of Sciences

October 9, 2024

Abstract

Assuming the Dirichlet series of q(x) is known, we derive a recursive formula for the Dirichlet-series coefficients of $\sqrt{q^2(x) + \alpha}$, $\alpha \in \mathbb{C}$.

Keywords: Dirichlet series, approximation. MSC classification: 11M41,41A58

Motivation, method and results

If two Dirichlet-series representable functions f and g satisfy g = 1/f then an elementary recurrent relation exists between their coefficients (2). Searching for similar relations, we derive a recurrent formula for a different dependence, namely $g = \sqrt{f^2(x) + \alpha}, \alpha \in \mathbb{C}$.

In what follows we present formal manipulations of general Dirichlet series and assume the existence of a common domain of convergence for all of them.

Let q(x) be a function of a complex variable with known Dirichlet series Q(x) whose coefficients are represented by the arithmetic function¹ q_n . We search for two functions a(x) and b(x) such that

$$b(x) = 1/a(x), \quad b(x) = \omega a(x) + q(x), \quad \omega \in \mathbb{C} \setminus \{0\}.$$
(1)

The first equation implies that the arithmetic functions a_n and b_n are inverse with respect to the Dirichlet convolution and b_n can be computed from a_n using the well-known recursive formula

$$b_1 = \frac{1}{a_1}, \quad b_{n>1} = -\frac{1}{a_1} \sum_{d=1, d|n}^{n-1} a_{\frac{n}{d}} b_d, \quad a_1, b_1 \neq 0.$$
 (2)

^{*}andrej.liptaj@savba.sk, ORC iD 0000-0001-5898-6608.

¹We use the index notation to differentiate between the function of a complex variable and an arithmetic function. The symbol q_n denotes, depending on the context, the function itself or its value at n.

With q_n known, conditions (1) imply two unique solutions for (a_n, b_n) . Indeed, one substitutes $b_n = \omega a_n + q_n$ to the left-hand side (LHS) of the second equation in (2), separates the first (i.e. d = 1) term of the sum on the right-hand side (RHS), and solves for a_n . One gets the recursive formula

$$a_{1} = \frac{\pm \sqrt{q_{1}^{2} + 4\omega} - q_{1}}{2\omega},$$

$$a_{n>1} = -\frac{a_{1}}{1 + \omega a_{1}^{2}} \left[q_{n}a_{1} + \sum_{d=2, d|n}^{n-1} a_{\frac{n}{d}} \left(\omega a_{d} + q_{d} \right) \right].$$
 (3)

Let us emphasize that this result gives us the coefficients of the Dirichlet series $A(x) = \sum_{n} a_n/n^x$ of the function a(x). We are also able to get the analytic form of a(x). One replaces b(x) on the LHS of the first equation in (1) by the second equation and gets $a^2(x) + a(x)q(x) - 1 = 0$. The solution is

$$a(x) = \frac{\pm\sqrt{q^2(x) + 4\omega} - q(x)}{2\omega} = \sum_{n=1}^{\infty} \frac{a_n}{n^x},$$
(4)

which represents our main result: we have a new function a(x) expressed analytically through q(x) and also expressed through its Dirichlet series. The sign in (4) needs to be adjusted accordingly to the sign of a_1 in (3). The result can be further modified

$$\pm\sqrt{q^2\left(x\right)+4\omega} = \sum_{n=1}^{\infty} \frac{2\omega a_n + q_n}{n^x},\tag{5}$$

where q_n are known by assumption and a_n are given by (3).

One can notice that by considering $q \equiv q_2(x) = \pm \sqrt{q_1^2(x) + 4\kappa}$ in (5), one gets the Dirichlet series for $\pm \sqrt{q_1^2(x) + 4\theta}$, $\theta = \kappa + \omega$. Thus, if one denotes by \mathcal{I} the set of all functions of a complex argument which can be represented by the Dirichlet series in a given domain and by \mathcal{F} the relation

$$\begin{aligned} \mathcal{F} : & \mathcal{I} \times \mathbb{C} \longrightarrow \mathcal{I}, \\ & (q\left(x\right), \alpha) \longrightarrow \pm \sqrt{q^2\left(x\right) + \alpha}, \end{aligned}$$

then an algebraic structure appears

$$\mathcal{F}\left(\mathcal{F}\left(q,\alpha\right),\beta\right)=\mathcal{F}\left(q,\alpha+\beta\right).$$

By consequence, a modification of the coefficient formula (3) expressed in terms of $u_n \equiv 2\omega a_n + q_n$ (see (5)) also respects this structure, which might not be seen at the first glance.