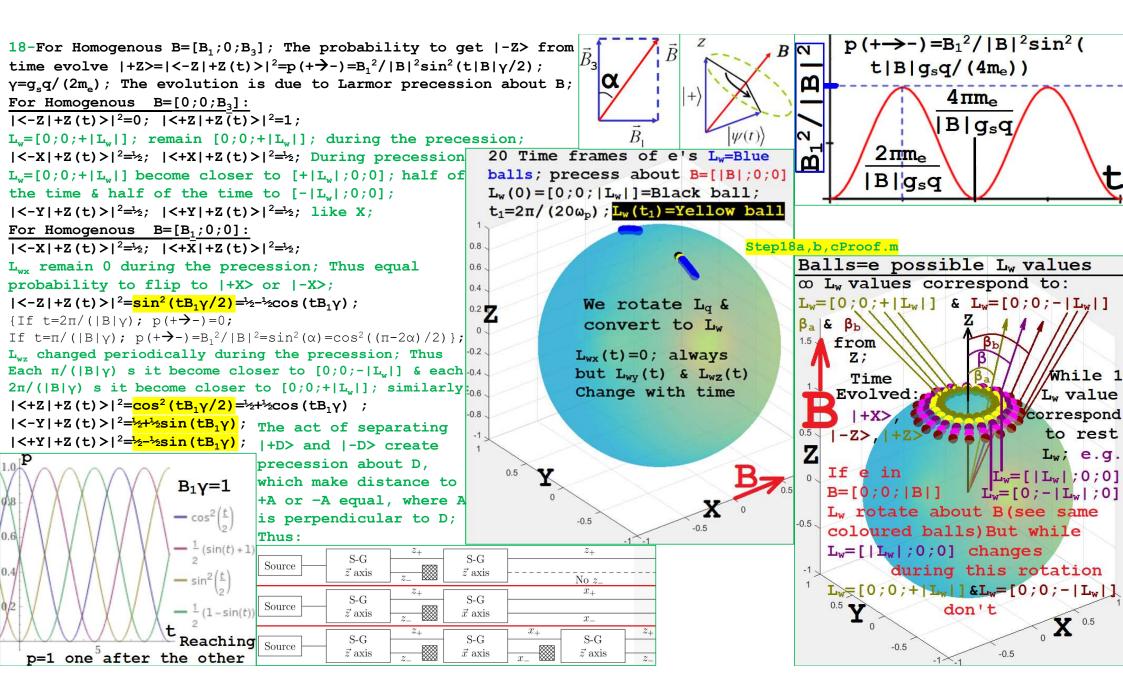
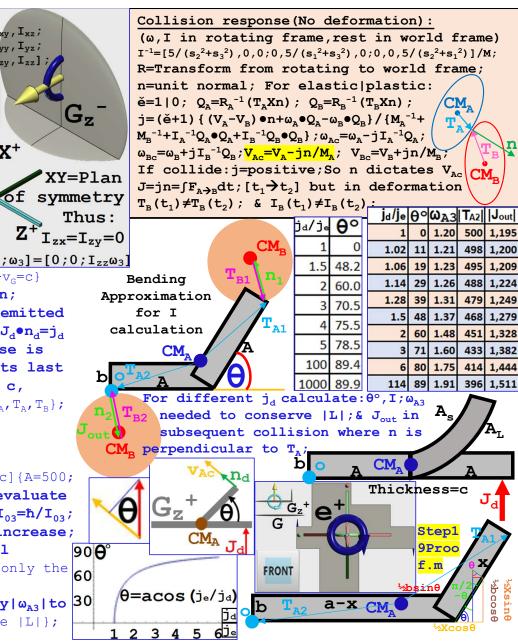
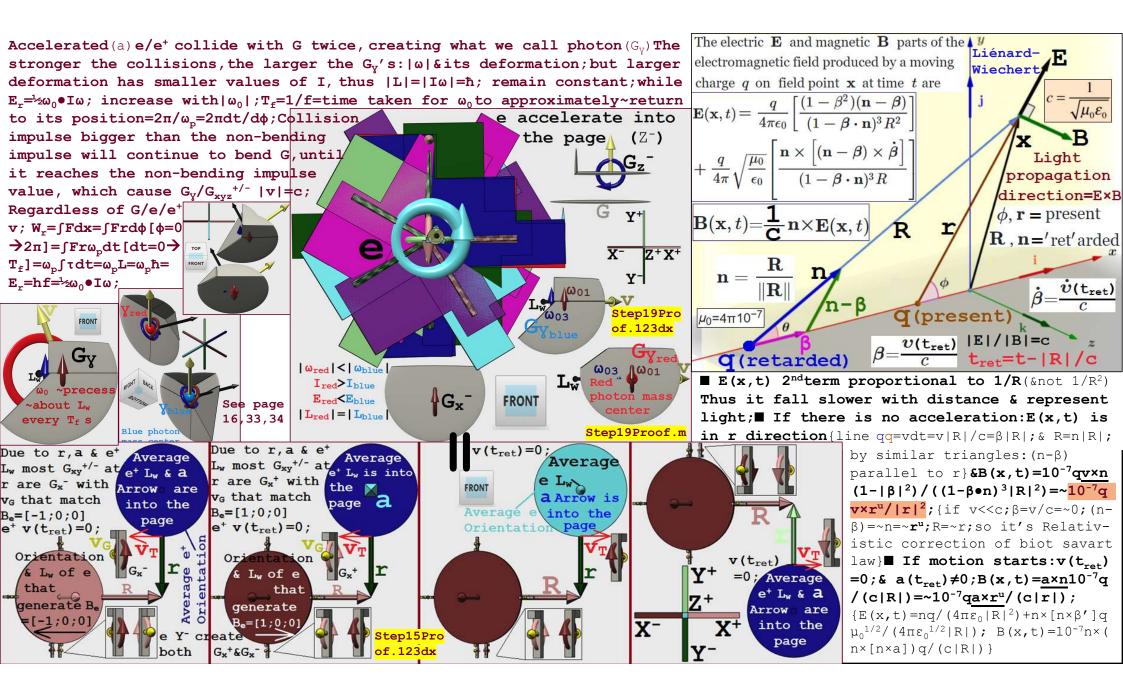
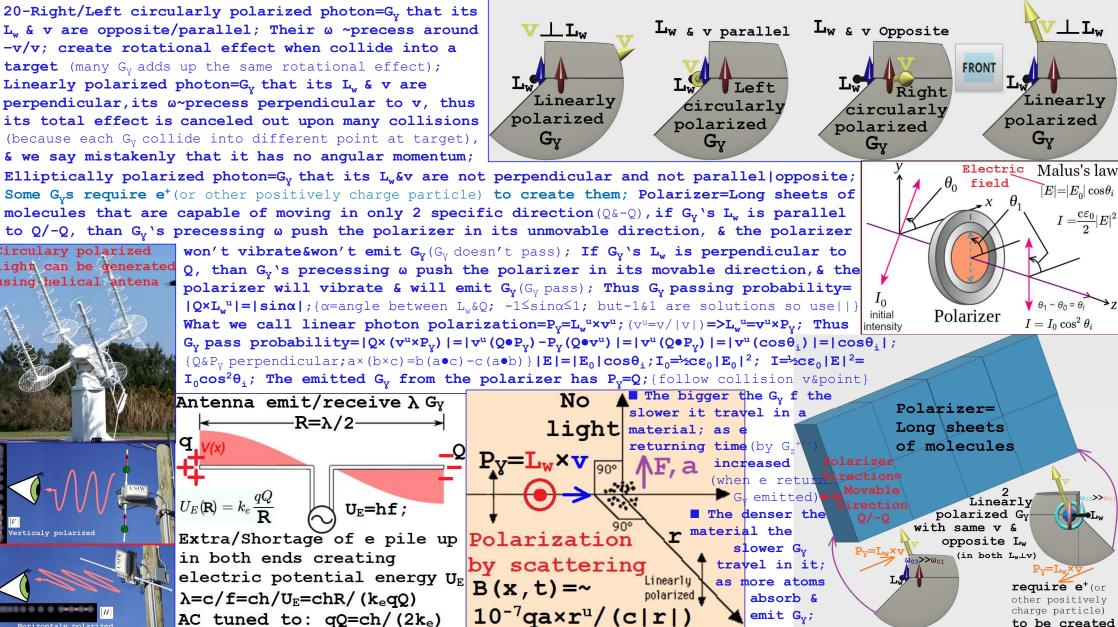

cluster(1= 2=~ 3/2) ωw & ωp if ω0: 3 0 0.57;-0.29;2.996] (Drawn longer) [0.43;0.21;3.004] 2.5 [0.43;0.21;3.004] (Drawn longer) [0.5;0.25;3] [0.5;0.25;3] [0.5;0.25;3]
$\begin{bmatrix} 0.5; 0.25; 3\\ 0.25; -0.5; 3\\ 1.5 \\ \hline 0.5; -0.25; 3\\ \hline 0.5; -0.25; 3\\ \hline 0.5; -0.25; 3\\ \hline 0.5; -0.25; 3\\ \hline 0.5; -0.25; -3\\ \hline 0.5 \\ 0.5 \\ \hline 0.5 \\ 0.5$
shorter) 0.90 0.45 0.000 -0.90 -0.45 0.90 0.48 -0.45 0.90 0.000 -0.90 -0.45 0.000 -0.90 -
0.5 Step14a 0.90 0.45 0.000 -0.90 -0.45 0.000 -0.80 -0.448 0.80 0.40 0.448 0.45 -0.90 0.000 0.90 -0.45 0.000 0.90 -0.45 0.000 0.90 -0.45 0.000 0.90 -0.45 0.000 0.90 -0.45 0.000 0.90 -0.45 0.000 0.90 -0.45 0.000 0.90 -0.45 0.000 0.90 -0.45 0.000 0.90 -0.45 0.000 0.90 -0.45 0.000 0.90 -0.45 0.000 0.90 -0.45 0.000 0.90 -0.45 0.000 0.90 -0.45 0.000 0.90 -0.45 0.00 0.90 -0.45 0.00 0.90 -0.45 0.00 0.90 -0.45 0.00 0.90 -0.45 0.00 0.90 -0.45 0.00 0.90 -0.45 0.00 0.90 -0.45 0.00 0.418 0.40 0.21 3.000 0.90 0.45 0.00 0.90 -0.45 0.00 0.90 0.45 0.00 0.
0.5 254k 127k -3M -254k -127k -3M -291k -145k 3.04M 216k 108k 3.05M 127k -254k 127k 3M -254k -127k 3M 254k -127k 3M 0.50
D.5 Decof.m ww1 ww2 ww3 ww1 ww3 ww1 ww3 ww1 ww3 w3
0.50 0.25 -3.000 -0.50 -0.25 -3.000 -0.57 -0.29 2.996 0.43 0.21 3.004 0.25 -0.50 3.000 -0.50 0.25 3.000 -0.50 -0.25 3.000 0.50 -0.25 3.000 -0.50 -0.25 3.000 0.50 -0.25 3.000 0.50 -0.25 3.000 0.50 -0.25 3.000 0.50 -0.25 3.000 0.50 -0.25 3.000 0.50 -0.25 3.000 0.50 -0.25 3.000 0.50 -0.25 3.000 0.50 -0.25 3.000 0.50 -0.25 3.000 0.50 -0.25 3.000 0.50 -0.25 3.000 0.50 -0.25 3.000 0.50 -0.25 3.000 0.50 0.25 3.000 0.50 0.25 3.000 0.50 0.25 3.000 0.50 0.25 3.000 0.50 0.25 3.000 0.50 0.25 3.000 0.50 0.25 3.000 0.50 0.53 0.53 0.53 0.53 0.50 3.018 0.21 <
0 0.53 0.08 -3.005 -0.53 -0.08 -3.005 -0.54 -0.44 -0.43 3.002 0.32 0.32 0.32 3.007 0.37 -0.38 3.005 0.38 0.37 3.005 -0.38 -0.37 3.005 0.53 -0.08 3.00 0.45 -0.07 -3.018 -0.45 0.07 -3.018 -0.24 -0.46 3.019 0.18 0.34 3.016 0.40 -0.21 3.018 0.21 0.40 3.018 -0.21 -0.40 3.018 0.45 0.07 3.00 0.29 -0.15 -3.034 -0.29 0.15 -3.034 -0.07 -0.37 3.040 0.05 0.28 3.028 0.32 -0.06 3.034 0.06 0.32 3.034 -0.06 -0.32 3.034 0.29 0.15 3.040 0.29 0.15 3.040 0.05 0.28 3.028 0.32 -0.06 3.034 0.06 0.32 3.034 -0.06 -0.32 3.034 0.29 0.15 3.040 0.29 0.15 3.040 0.05 0.28 3.028 0.32 -0.06 3.034 0.06 0.32 3.034 -0.06 -0.32 3.034 0.29 0.15 3.040 0.29 0.15 3.040 0.29 0.15 3.040 0.29 0.28 3.028 0.32 -0.06 3.034 0.06 0.32 3.034 0.29 0.15 3.040 0.29 0.15 3.040 0.29 0.15 3.040 0.28 3.028 0.32 -0.06 3.034 0.20 0.32 3.034 0.20 0.32 3.034 0.29 0.15 3.040 0.29 0.15 3.040 0.29 0.15 3.040 0.29 0.15 3.040 0.28 3.028 0.32 -0.06 3.034 0.20 0.32 3.034 0.29 0.15 3.040 0.29 0.15 3.040 0.29 0.15 3.040 0.28 3.028 0.32 -0.06 3.034 0.20 0.32 3.034 0.20 0.32 3.034 0.29 0.15 3.040 0.29 0.15 3.040 0.29 0.15 3.040 0.28 3.028 0.32 -0.06 3.034 0.20 0.32 3.034 0.20 0.32 3.034 0.29 0.15 3.040 0.29 0.15 3.040 0.28 3.028 0.32 -0.06 3.034 0.20 0.32 3.034 0.20 0.32 3.034 0.29 0.15 3.040 0.29 0.15 3.040 0.28 3.028 0.32 -0.06 3.034 0.20 0.32 3.034 0.20 0.32 3.034 0.29 0.15 3.040 0.29 0.15 3.040 0.29 0.15 3.040 0.28 3.028 0.32 -0.06 3.034 0.20 0.32 3.034 0.20 0.32 3.034 0.29 0.15 3.040 0.29 0.15 3.040 0.28 3.028 0.32 -0.06 3.034 0.20 0.28 3.034 0.20 0.28 3.028 0.32 -0.06 3.034 0.20 0.28 3.034 0.20 0.29 0.15 3.040 0.29 0.28 3.028 0.32 -0.06 3.034 0.20 0.28 3.034 0.20 0.28 3.028 0.32 3.034 0.20 0.28 3.034 0.29 0.15 3.040 0.28 3.028 0.32 3.034 0.20 0.28 3.034 0.20 0.28 3.028 0.32 3.034 0.20 0.28 3.034 0.29 0.15 3.040 0.28 3.040 0.28 3.028 0.32 3.034 0.20 0.28 3.034 0.29 0.15 3.040 0.28 3.040 0.28 3.040 0.28 3.040 0.28 3.040 0.28 3.040 0.28 3.040 0.28 3.040 0.28 3.040 0.28 3.040 0.28 3.040 0.28 3.040 0.28 3.040 0.28 3.040 0.28 3.040 0.28 3.040 0.28 3.040 0.28 3.040 0.28 3.040 0.2
0.45 -0.07 -3.018 -0.45 0.07 -3.018 -0.45 0.07 -3.018 -0.24 -0.46 3.019 0.18 0.34 3.016 0.40 -0.21 3.018 0.21 0.40 3.018 -0.21 -0.40 3.018 0.45 0.07 3.0 [-0.5;-0.25;-3]
[-0.5;-0.25;-3] 0.29 -0.15 -3.034 -0.29 0.15 -3.034 -0.29 0.15 -3.034 -0.07 -0.37 3.040 0.05 0.28 3.028 0.32 -0.06 3.034 0.06 0.32 3.034 -0.06 -0.32 3.034 0.29 0.15 3.047 0.02 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.12 -0.12 -3.047 -0.12 0.12 -3.047 0.02 -0.20 3.057 -0.02 0.15 3.038 0.17 0.02 3.047 -0.02 0.17 3.047 0.02 -0.17 3.047 0.12 0.12 0.12 3.047 0.12 0.12 0.12 3.047 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
[0.5;0.25;-3]// 0.02 0.17 -3.047 0.02 -0.17 -3.047 0.14 0.14 3.057 0.11 -0.10 3.038 -0.12 -0.12 3.047 0.12 -0.12 3.047 -0.12 0.12 3.047 -0.12 0.12 3.047 -0.12 0.12 3.047 -0.12 0.12 -0.12 3.047 -0.12 0.12 -0.12
0.06 0.32 -3.034 -0.06 -0.32 -3.034 -0.34 0.17 3.040 0.25 -0.13 3.028 -0.15 -0.29 3.034 0.29 -0.15 3.034 -0.29 0.15 3.034 0.06 -0.32 3.04 0.06 -0.32
0.21 0.40 -3.018 -0.21 -0.40 -3.018 -0.21 -0.40 -3.018 -0.51 0.08 3.019 0.38 -0.06 3.016 -0.07 -0.45 3.018 0.45 -0.07 3.018 -0.45 0.07 3.018 0.21 -0.40 3.0
$1.5 \qquad \qquad$
0.25 0.12 0.026 -0.25 -0.12 0.026 -0.25 -0.12 0.026 -0.28 -0.14 -0.034 0.21 0.11 -0.019 0.12 -0.25 -0.026 0.25 0.12 -0.026 -0.25 -0.12 -0.026 0.25 -0.021 0.27 0.05 -0.021 0.2
-2 0.19 -0.20 0.008 -0.19 0.20 0.008 0.05 -0.31 -0.010 -0.04 0.23 -0.006 0.27 0.04 -0.08 -0.04 0.27 -0.008 0.04 -0.27 -0.008 0.19 0.20 -0.0 0.04 -0.27 -0.008 -0.04 0.27 -0.008 0.22 -0.23 0.010 -0.17 0.17 0.006 0.20 0.19 0.008 -0.19 0.20 0.008 0.19 -0.20 0.008 0.04 0.27 -0.008 0
-0.4 -0.2 -0.04 0.27 -0.08 0.19 -0.20 -0.08 0.19 -0.20 -0.08 -0.09 0.01 0.04 -0.27 -0.04 0.08 -0.04 0.27 0.08 -0.04 0.27 0.08 -0.04 0.27 0.08 -0.04 0.27 0.08 -0.04 0.27 0.08 -0.04 0.27 -0.08 -0.04 0.04 -0.27 -0.08 -0.04 -0.27 -0.04 -0.27 -0.04 -0.04 -0.02 -0.04
0.13 0.25 0.021 -0.13 -0.25 0.021 -0.31 0.05 -0.027 0.23 -0.04 -0.015 -0.027 -0.021 0.27 -0.021 0.27 -0.021 -0.27 0.05 -0.021 0.13 -0.25 -0



 \blacksquare e&e⁺ with same B_u feel the same τ in external homogeneous B(B_b); but because they have opposite $L_{u,t}$ their L_{d} precess about B_{b} in **opposite direction** (B&-B) ; this is τ induced precession (Gyroscopic/ Larmor precession), in contrast to the τ free precession (nutation) that described in page 32; so $e\&e^+$ in B_h have both τ free& τ induced $1\Delta \phi \rightarrow 0$ ΔΦ $= tan \Delta \varphi$ $L \sin \theta$ precession; In quantum mechanics L_{α} is called S; L_{α} can precess at axis is released LsinO Precession and sin∆φ the same angle for infinite time; An interaction with another with horizontal nutation pattern COS AO ackward impuls particle is required in order to change the precession angle Electron's B µz& Sz opposition The precession angular $T = \Delta L / \Delta t$ { τ perpendicular to L_{α} (effective L_{ω}) at all times) **Total S&µ cannot be** velocity of a spinning Spin angular Direction of top is inversely proportional measured but for e: $S_{=\pm\hbar/2}$; (h=1.054571817646157*10⁻³⁴Js); $\mu_{=}=-1.76_{0859630234}$ momentum ∆s $L = I\omega$ precession to its spin speed. |S|sin 0 $135 \times 10^{11} S_{z} = \gamma S_{z} = S_{z} g_{s} q / (2m_{a}); [J/T] \mu = Sg_{s} q / (2m_{a}); In B_{b} = B = [0;0;B_{3}]; S precess$ Δt precession $\Delta \varphi$ ∆L=Arc about B with $\omega_{L} = -\gamma |B|$; $S_{xv} = S_{xv} (0) e^{-i \gamma |B|t}$; $\{S = S_{z} + S_{xv}; \tau = \mu \times B = \gamma S \times B = \gamma |B| [S_{v}; -1] = \gamma |B| [S_{v}; -1]$ $\omega_p = -$ - = angular radius*arc $|\tau| = \frac{|\mathbf{s}|\sin\theta\Delta\phi}{|\mathbf{r}|}$ Δt velocity *Radius $S_{x};0]=S'; S_{z}'=0;$ since $S'=\gamma S \times B$ =Perpendicular to $B;S'=S_{z}'+S_{xy}'=S_{xy}';$ we can $_mgrsin\Theta$ Δt ΔL τ $\omega_{p} =$ write $S_{xy}=S_x+iS_y$; So $S_{xy}'=S'=\gamma|B|(S_y-iS_x)=-i\gamma|B|S_{xy}$] If $|+n\rangle$ particle is $L \sin \theta$ $\Delta t L \sin \theta$ $|\omega_{Larmor}| = \frac{d\phi}{dt} = \frac{|\tau|}{|s|\sin\theta}$ $L\sin\theta$ in $B_{b}=B=[0;0;B_{3}]$; its quantum spin state change with time: $|\Psi(t)\rangle = [exp(-$ S in front $i(\varphi - B_3\gamma t)/2)\cos(\theta/2)$; exp($i(\varphi - B_3\gamma t)/2$)sin($\theta/2$)]; e/e⁺ L_g precess about µ in back $\omega_n =$ $\tau = \mu x B = \mu B \sin \theta$ align. B/-B every: $t_1 = |2\pi/(B_3\gamma)| = 2\pi/\omega_L; s$; but while L_{α} return to its value µ to B $\omega_{Larmor} = \frac{|\mu||B|}{|S|}$ after 1 precession circle $(t_1 s)$ the spin state return to its value g=gravity of $F_{b} = -\mu_{a} |\mu_{b}| 3g / |r|$ |S|g_s|q||B|_ Earth=9.8 m/s²; only after 2 precession $\tau_{b} = \mu_{a} \times \mu_{b} g / |\mathbf{r}|^{3}; \mathbf{T}_{b}$ lever arm = $r\sin\theta$ 2m_e|S| FRONT circles(2t₁ s);Thus torque = $\tau = mgr\sin\theta = \frac{\Delta L}{mgr}$ $\tau_a = 2\tau_b;$ |B|g_s|q| Arrow= $\mathbf{F}_{a} = -\mathbf{F}_{b}$ Arrow= $t_1 = n_T_T$; But in B&E L_w of e $B_u =$ $Arrow=L_w$ L_w of e $B_u=$ For Positron 20 Time frame of: Lga {arrows} & Lwa {balls Arrow=Lw X+ $|\Psi(t_1)\rangle$ act as $|+n\rangle$; $\{\text{only }\omega_0(\rightarrow L_n)\}$ $[-1;0;0] = L_{wb}$ µ&S in the same of e $B_{u} = [-1;0;0] = L_{wb}$ precess about B_a=[0;0;1] {thick arrow} of $e^+ B_{11}$ direction $\blacktriangle B$ Y- 🔿 ■effect E&B; |Ψ(2t₁)>= |+n>; |Ψ(t₁)>=-And Lab & Lwb precess about Bb=[0;1;0] [0; -1; 0] =[0; -1; 0] $L_{ga}(0) = L_{gb}(0) = 3^{-1/2} [1;1;1]; {Black}$ $|+n\rangle; |<m|+n\rangle|^{2} = |<m|\Psi(t_{1})\rangle|^{2}$ If $\theta = \pi/2$; Lwa $=L_{wa}$ $|\Psi(t_1/2)\rangle$ act in B&E the same as S $|-n\rangle \{ |\langle m | \Psi(t_1/2) \rangle |^2 = |\langle m | -n \rangle |^2 \}$ as they Z Same as former picture Step14aPr have the same L_; but oof.123dx {but $|\Psi(t)>\neq|-n>$ for $q=\mu_0/(4\pi)$; $\mu_0=4\pi10^{-1}$ with talign µ/s in CM is $L_{qa}(0) =$ Larmor Precession \mathbf{Y}^+ any t; Because t=t₁/2 L_q of $e^+ B_u$ µ to B; Direction $L_{qb}(0) =$ back unchanged FRONT is needed to get $-L_{a}$ · [1;0;0]; $T \equiv \Delta L / \Delta t$ =[0;-1;0] $L_q(\Delta t)$ but t=n_eT_L; needed to **L_w of e⁺ B_u**get n_e & t₁/2=n_oT₁/2 \neq n_e -X+ $L_q(\Delta t) Z$ L_w of e B_u = [0; -1; 0] $T_{\tau}; n_{\sigma} \neq 2n_{\sigma} = n_{\sigma} \} |+n > \rightarrow L_{\sigma}$ Larmor Step14d =[0:1:0]Precession $t_1 = 2\pi / (20\omega_p);$ eProof.m of e Bu $L_{\alpha}(\Delta t) = New L_{\alpha}$ $|+n\rangle \rightarrow L_{a} \& n_{a}; -|-n\rangle \rightarrow -L_{a} \& n_{a};$ $\mathbf{L}_{qa}\left(\frac{\mathbf{t}_{1}}{\mathbf{t}_{1}}\right) \neq \mathbf{L}_{qb}\left(\frac{\mathbf{t}_{1}}{\mathbf{t}_{1}}\right); \mathbf{X}^{-0.5}$ Direction S precesse's clockwise after time $\Delta t = [0;1;0]$ $T = \Delta L / \Delta t$ about B; (about -B)



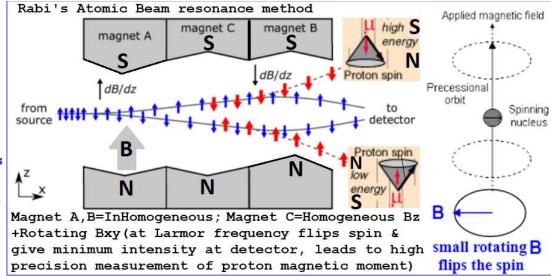


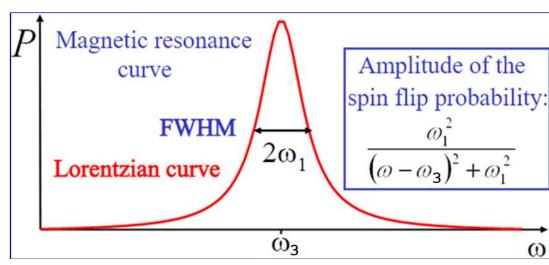

19-G particle is created by a powerful collision of 2 non- $I = [I_{xx}, I_{xy}, I_{xz};$ existing spheres; & thus, having a maximally thin oblate I_{yx}, I_{yy}, I_{yz}; spheroid shape. When it collides with e, it bends, such that $I_{zx}, I_{zy}, I_{zz}];$ it has plan of symmetry. & the normal of this plan is its ω_0 ; Because this plan of symmetry remains plan of symmetry during all of its motion, its ω always align with its L. 101 NOW (products of inertia in ω_0 direction are 0& remain 0; I_{zz} never changed; L=I ω) & |L|=I $_{03}\omega_{03}=\hbar$; This formed bended G is G_{τ}^{-} ; X⁺ ■ j_e=biggest magnitude of collision impulse that cause no deformation when e⁺ collide with G; In our universe: j_=M_c(c+v_{co})=constnat; {M_c=G mass; v_c=speed of G} Thus the speed of G that j_e cause=c; {Because if: G=A=Ellipsoid[s₁=s₃=r; s₂=0]; $M_{G}=M_{A};G_{Z}^{+}=Ac; e^{+}=B=ellipsoid[s_{1}=s_{2}=R;s_{3}]; V_{B}=\omega_{A}=[0;0;0];V_{A}=[0;-v_{G};0]$ 0]; $\omega_{\rm B} = [0;0;-w]$; No orientation; $n = [0;-1;0]; T_{\rm A} = [r;0;0]; T_{\rm B} = [-R;0;$ $L=I[0;0;\omega_3]=[0;0;I_{zz}\omega_3]$ 0]; $j_e = (v_c + Rw) (e+1) M_a M_B / (3.5 M_a + 6 M_B); V_{ac} = [0; j_e / M_a - v_c; 0]; |V_{ac}| = (M_a (c+v_c)) / M_a - v_c = c$ **j_d=bigger** $(j_d > j_e)$ collision impulse magnitude that cause deformation; $j_d = |J_d|$; n_d =unit normal of the last contact point of G & e⁺; G_z^+ is emitted at n_d direction; The amount of J_d that goes in the direction of $n_d=J_d \bullet n_d=j_d$ $\cos\theta = \operatorname{constant} = j_{e}; \{\theta = \text{angle between } J_{d} \& n_{d}\}$ Because as long as the impulse is stronger than j it continue to bend the G particle& it won't be its last contact point. Therefore the speed of the emitted $G_{x/y/z}^{+/-}$ is always c, **regardless of e⁺ or G velocity**{slower G v, require different:s₂, j, n, I_a, T_a, T_b}; **Larger** j_d increase the ω_{03} of the formed G_z^+ but also increase its deformation, & its bending $angle(\theta)$, which reduces I_{03} ; such that $|\mathbf{L}| = \mathbf{I}_{03} \omega_{03} = \hbar$; remain constant for any \mathbf{G}_z^+ {with any $\theta = a\cos(j_e/j_d)$ } **G**₁⁺ deformation demonstration: By approximating G into a box[2A,b,c] {A=500; $b=1; c=1000; p=0.001; [kq/m^3] |L|=10^8$ & the deformation into θ , we can evaluate G_z^+ shape(θ) as function of j_d/j_e ; by θ we find I_{03} than $\omega_{a3} = \omega_{03} = |L|/I_{03} = \hbar/I_{03}$; $\{\omega_{03} \text{ needed to conserve } |L|=\hbar\}$ We can see that as j_d increases: θ° & ω_{a3} increase; Furthermore, we can see that G_{r}^{+} with bigger ω_{A3} cause more powerful subsequent collision {bigger | J_{out} |; even though its I values smaller; only the 60 longer T_{n} collide with the ball, as rotation is faster than velocity}; • Other deformed shapes (with same volume & mass as G_z^+) can require any $|\omega_{a3}|$ to 30

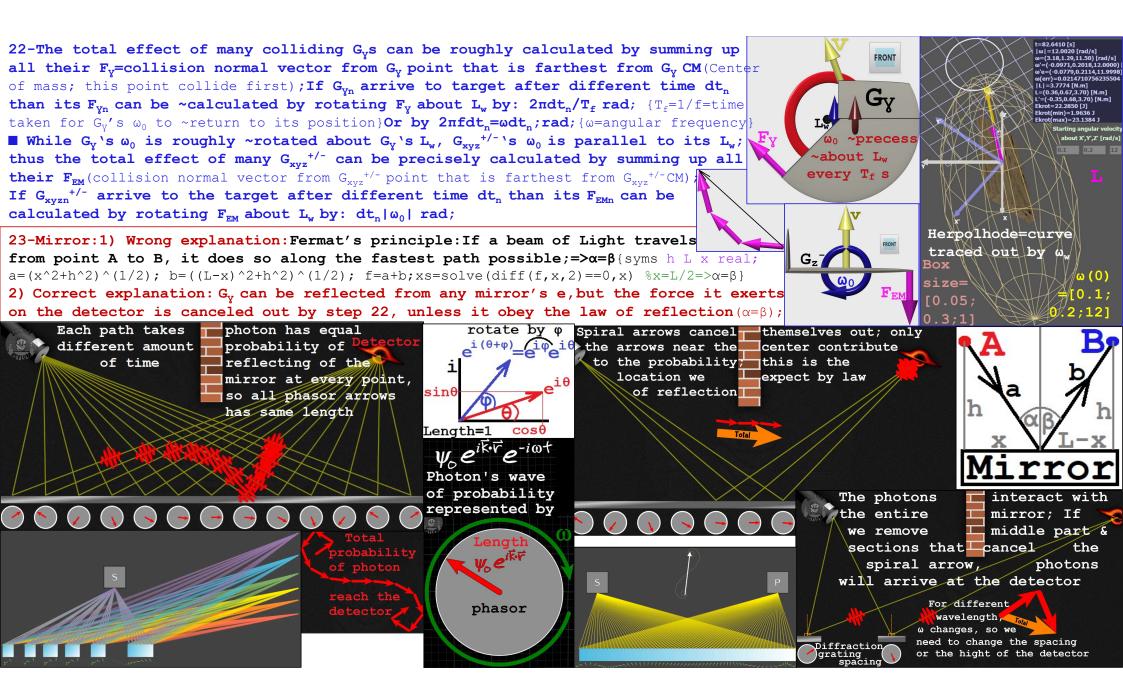
preserve |L|;{e.g. cube[1;1;1000000] require $|\omega_{A3}|=600,000$; to preserve |L|};

20-Right/Left circularly polarized photon=G_v that its L & v are opposite/parallel; Their & ~precess around -v/v; create rotational effect when collide into a **target** (many G_v adds up the same rotational effect); Linearly polarized photon= $\boldsymbol{G}_{\boldsymbol{v}}$ that its $\boldsymbol{L}_{\boldsymbol{w}}$ & \boldsymbol{v} are perpendicular, its ω -precess perpendicular to v, thus its total effect is canceled out upon many collisions (because each G_v collide into different point at target), & we say mistakenly that it has no angular momentum;

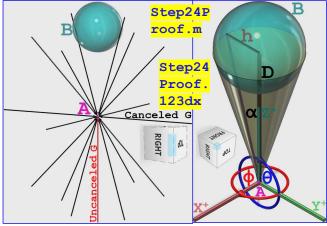


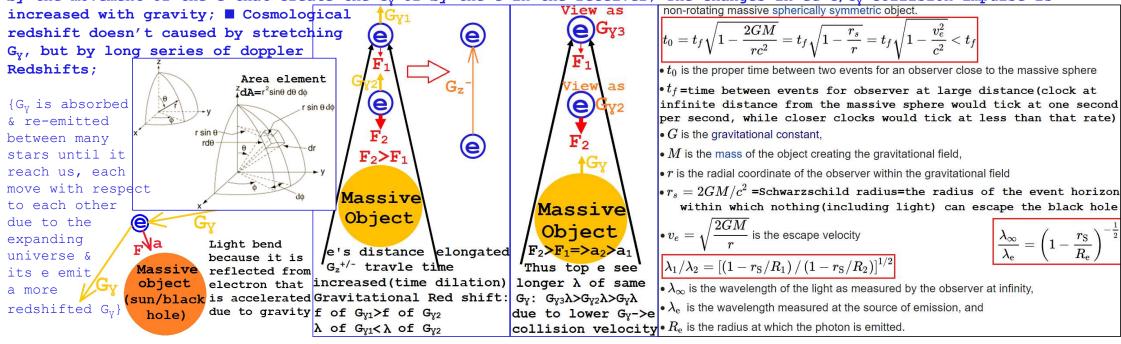

Circulary polarized light can be generated using helical antena 🚽


Antenna emit/receive λG_{Y} $-R=\lambda/2$ q V(x) $U_E(\mathbf{R})=k_erac{qQ}{\mathbf{R}}$ Verticaly polarized


Extra/Shortage of e pile up in both ends creating electric potential energy $U_{\rm F}$ $\lambda = c/f = ch/U_E = chR/(k_eqQ)$ AC tuned to: $qQ=ch/(2k_e)$

21-Rabi cycle: For Homogenous B₁ rotating about Homogenous B₃: $B = [B_1 \cos(\omega t); B_1 \sin(\omega t); B_3]; \quad \omega_1 = -B_1 \gamma; \\ \omega_3 = -B_3 \gamma; \\ \gamma = g_a q/(2m_a); \quad p(+ \rightarrow -) = -B_1 \gamma; \\ \omega_3 = -B_3 \gamma; \\ \gamma = g_a q/(2m_a); \quad p(+ \rightarrow -) = -B_1 \gamma; \\ \omega_3 = -B_3 \gamma; \\ \gamma = g_a q/(2m_a); \quad p(+ \rightarrow -) = -B_1 \gamma; \\ \omega_3 = -B_3 \gamma; \\ \gamma = g_a q/(2m_a); \quad p(+ \rightarrow -) = -B_1 \gamma; \\ \omega_3 = -B_3 \gamma; \\ \gamma = g_a q/(2m_a); \quad p(+ \rightarrow -) = -B_1 \gamma; \\ \omega_3 = -B_3 \gamma; \\ \gamma = g_a q/(2m_a); \quad p(+ \rightarrow -) = -B_1 \gamma; \\ \omega_3 = -B_3 \gamma; \\ \gamma = g_a q/(2m_a); \quad p(+ \rightarrow -) = -B_1 \gamma; \\ \omega_3 = -B_3 \gamma; \\ \gamma = g_a q/(2m_a); \quad p(+ \rightarrow -) = -B_1 \gamma; \\ \omega_3 = -B_3 \gamma; \\ \gamma = g_a q/(2m_a); \quad p(+ \rightarrow -) = -B_1 \gamma; \\ \omega_3 = -B_3 \gamma; \\ \gamma = g_a q/(2m_a); \quad p(+ \rightarrow -) = -B_1 \gamma; \\ \omega_3 = -B_3 \gamma; \\ \gamma = g_a q/(2m_a); \quad p(+ \rightarrow -) = -B_1 \gamma; \\ \omega_3 = -B_3 \gamma; \\ \gamma = g_a q/(2m_a); \quad p(+ \rightarrow -) = -B_1 \gamma; \\ \omega_3 = -B_3 \gamma; \\ \gamma = g_a q/(2m_a); \quad p(+ \rightarrow -) = -B_1 \gamma; \\ \omega_3 = -B_3 \gamma; \\ \gamma = g_a q/(2m_a); \quad p(+ \rightarrow -) = -B_1 \gamma; \\ \omega_3 = -B_3 \gamma; \\ \gamma = g_a q/(2m_a); \quad p(+ \rightarrow -) = -B_1 \gamma; \\ \omega_3 = -B_3 \gamma; \\ \gamma = g_a q/(2m_a); \quad p(+ \rightarrow -) = -B_1 \gamma; \\ \omega_3 = -B_3 \gamma; \\ \gamma = g_a q/(2m_a); \quad p(+ \rightarrow -) = -B_1 \gamma; \\ \omega_3 = -B_3 \gamma;$ Spin flip probability=probability to get |-Z> from time evolve $|+Z\rangle=\omega_1^2/(\omega_1^2+(\omega-\omega_3)^2)\sin^2(\frac{1}{2}t(\omega_1^2+(\omega-\omega_3)^2)^{1/2});$ If $\omega \rightarrow \omega_3; p(+ \rightarrow -) =$ $\sin^2(t^{1}\omega_1)$; making the amplitude of spin flip probability to 1; and the time taken for this flip=t= $\pi/\omega_1 = 2\pi m_0/(B_1q_2q)$; { $\upsilon(+\rightarrow -) =$ $\sin^2(\pi/2) = 1$ e in B₃ will have larmor precession with $|\omega_{\tau}| = B_3 \gamma = \omega_3$; rad/s; If we rotate magnetic field perpendicular to B_3 at $|\omega_1|$ rad/s $G_{xvz}^{+/-}$ will always hit e face in opposite direction of its face motion, creating stronger force that flip its internal **magnetic field direction** (opposite L_a but not opposite L_w ; see $L_a \rightarrow L_w$ transformation); The time taken for this flip increase with m & decrease with $B_1 \& q$; While ω_3 is rad/s; f is (number of occurrences of repeating event)/s. thus $\omega_3 = 2\pi f$; and if we fire circularly polarized photon with $f=\omega_3/(2\pi)$; at right angle to B₃ it will also flip the electron; G_v with $f=\omega_3/(2\pi)$; has period= $T_f=1/f=2\pi$ $/\omega_3 = 4\pi m_e/(B_3 g_s q) = n_o T_1 = T_w = time taken for G_v 's \omega_0$ to ~return to its position (it never return exactly) same as the larmor precession period of e; Thus all G_vs will also collide with e in opposite direction of its motion, creating strong force that flip e; \blacksquare E(G_z^{+/-}) interacts with e charge(ω_3), but not spin($\omega_{1/2}$); B(G_{xy}^{+/-}) interacts with e spin($\omega_{1/2}$), but not charge(ω_3); In homogenous B, spin can precess at same angle for infinite time. Interaction with other particle is required to change precession angle.





24-Gravity: In the universe, everywhere & every time NE-shape with any velocity can be created; Thus any object'll feel collision forces from all directions, that on average cancel each other out. But if 2 objects stand close to each other, they will feel less collision forces from the side that in between them. Thus a small object A(radius r) will not feel collision forces from a cone angle α that its base originate from the big object B(radius h), which is at distance D; Thus α =atan(h/D); Force=Area*Pressure; The effective pressure for any prevented collision at θ, ϕ inside the cone is kcos(θ); k=constant; cos(θ)=effective direction(as collision directions that are not parallel to D are cancel out)So we can calculate the cone prevented force=force exerted from the opposite direction=F=ffkcos(θ)r²sin(θ)d ϕ d θ ; [first integrate by ϕ from 0 to 2 π ; & than by θ from 0 to α] {Area element=r²sin(θ)d ϕ d θ ; F=knh²r²/(D²+h²)=~knh²r²/D²; {D>>h}so it obay the Inverse-square law like:Newton Gravitational force: F=Gm₁m₂/D²;

■ All bodies fall with the same acceleration regardless of their mass, because the more massive the body the more fundamental particles (e.g. e) it contain, & each fundamental particles get a prevented collision cone that cause it to attract with $F=\sim k\pi h^2 r^2/D^2$; Where r^2 is an expression to its mass; {sphere surface area= $4\pi r^2$ } gravitational redshift is caused by the movement of the e that create the G_v or by the e in the receiver; The changes in e& G/G_v collision impulse is

25-Entanglement: If e/e^+ collide with G it bend & rotate it, transform it into $G_v/G_{vvr}^{+/-}$ with v=c; always, because the bending reduce the collision energy responsible for v; But in the universe there are also small clusters(0) that are not capable of being deformed {O can be a ~spherical cluster composed of Gs}; Thus if e/e⁺ collide with O it emit it with v>>c{no deformation so no energy loss}; This O can be thrown back& forth between 2 opposite $L_{\alpha} e/e^+$ creating what we call entanglement { changing e A L_{α} change 0 collision point, which change O collision point into e B, which transform e B L_{q} to be opposite of e A L_{q} again}; Entangled photons are created when the e in their transmitter is entangled to e in their receiver/polarizer;

each other. We recorded whether the measured spin are the same (uu, dd) or different (ud, du). repeating this over and over, randomly varying the measurement directions independently.

Detector B

Detector B

60

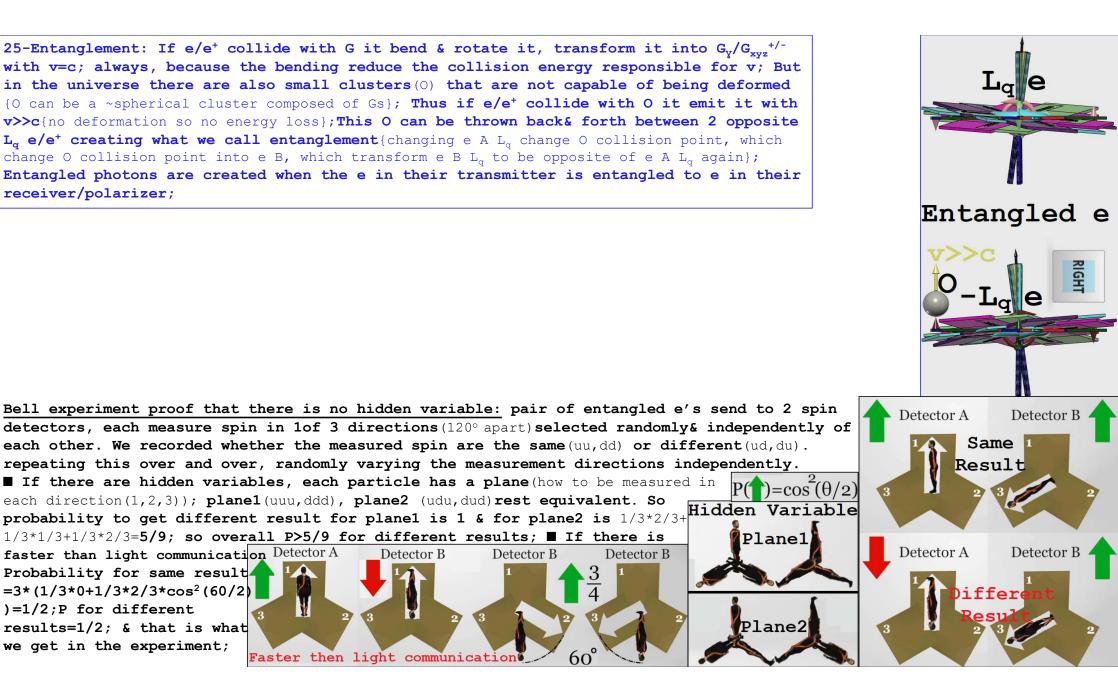
Detector B

■ If there are hidden variables, each particle has a plane (how to be measured in

Faster then light communicatio

each direction(1,2,3)); plane1(uuu,ddd), plane2 (udu,dud)rest equivalent. So

1/3*1/3+1/3*2/3=5/9; so overall P>5/9 for different results; ■ If there is

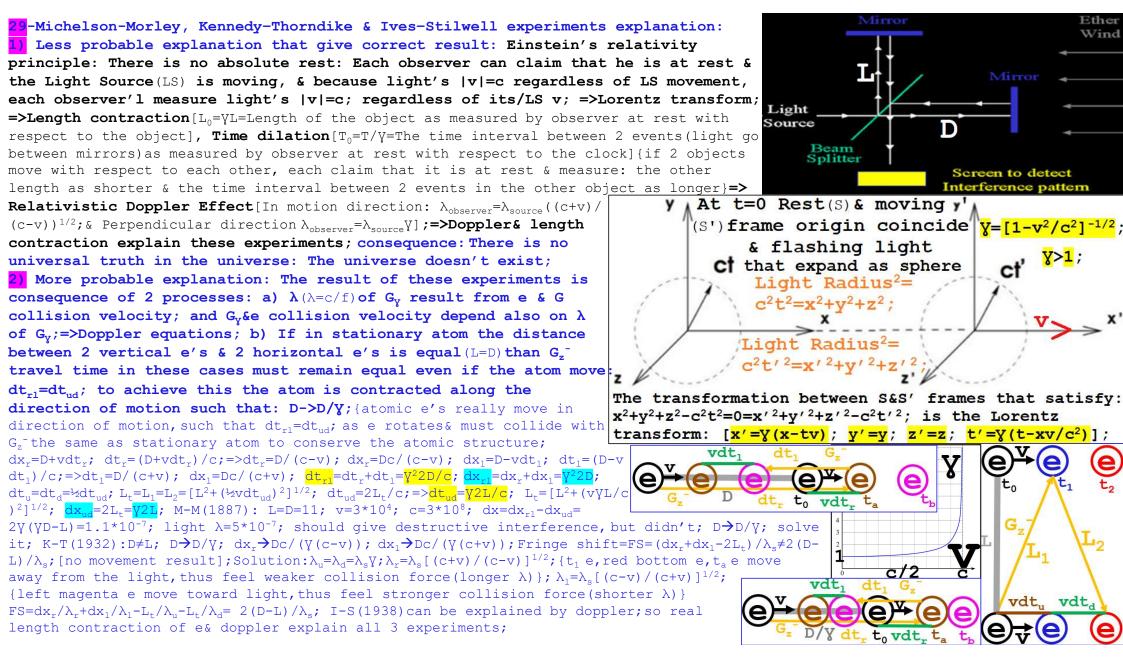

Y

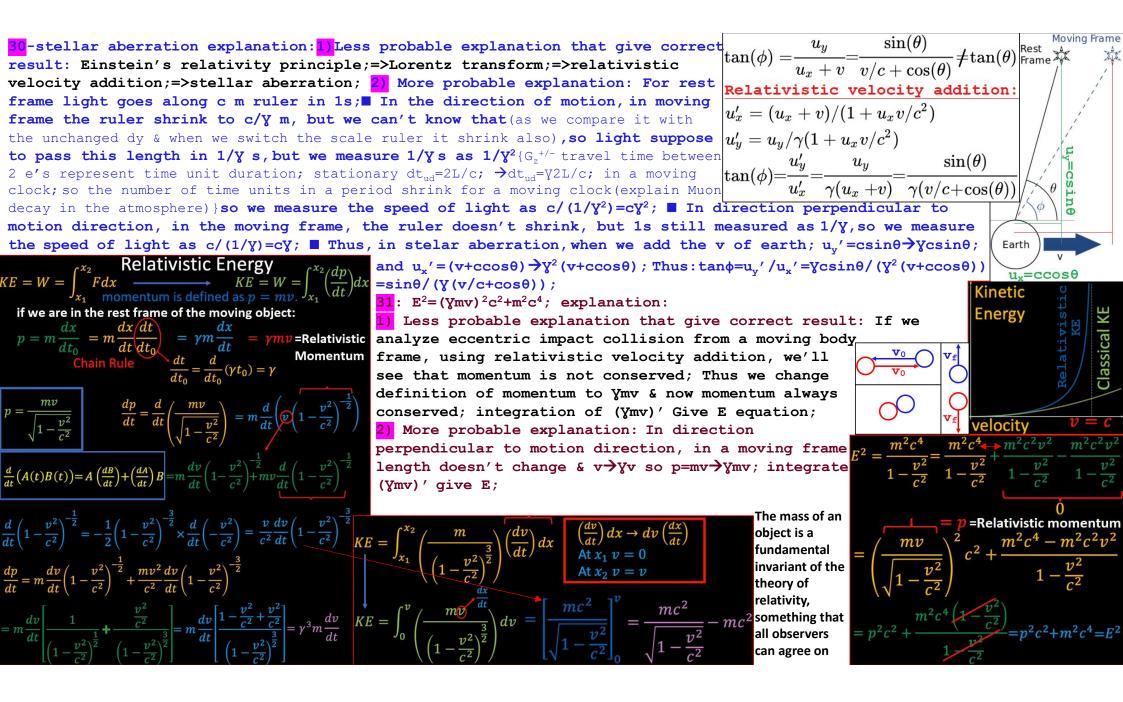
faster than light communication Detector A

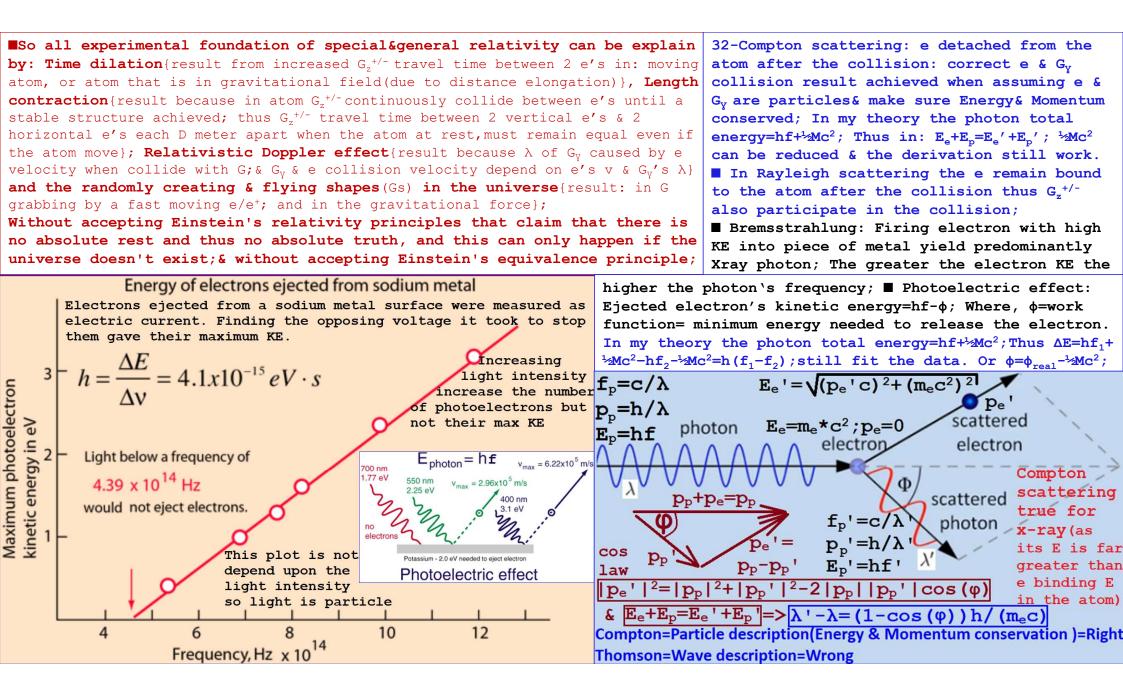
Probability for same result $=3*(1/3*0+1/3*2/3*\cos^2(60/2))$

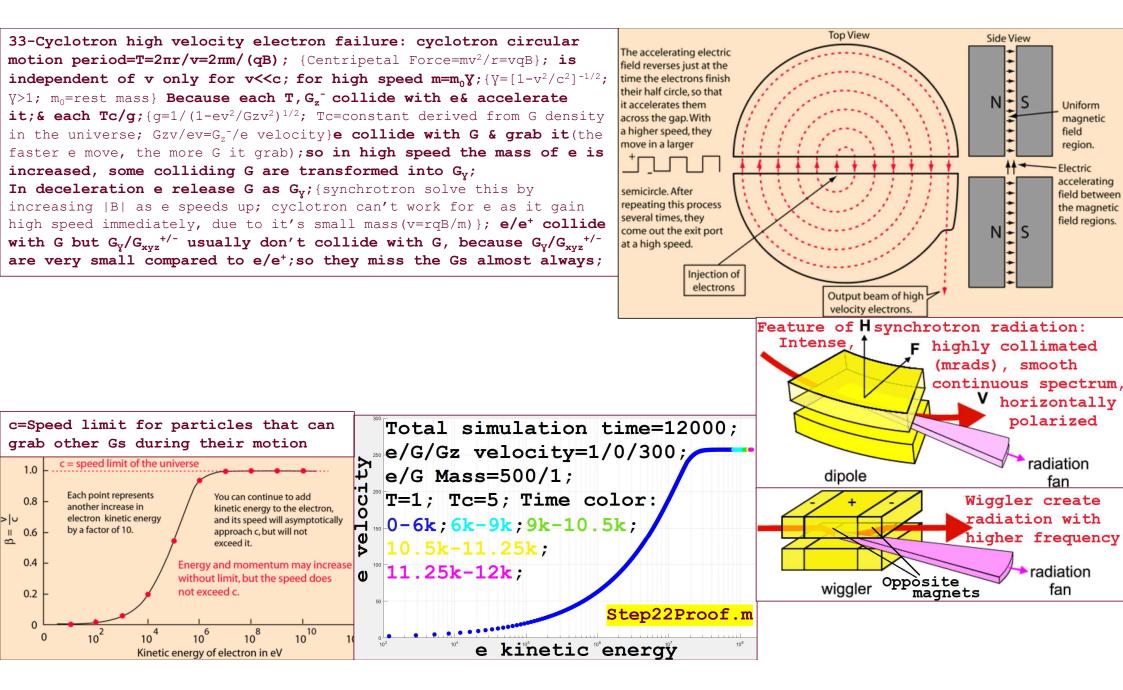
results=1/2; & that is what we get in the experiment;

)=1/2;P for different

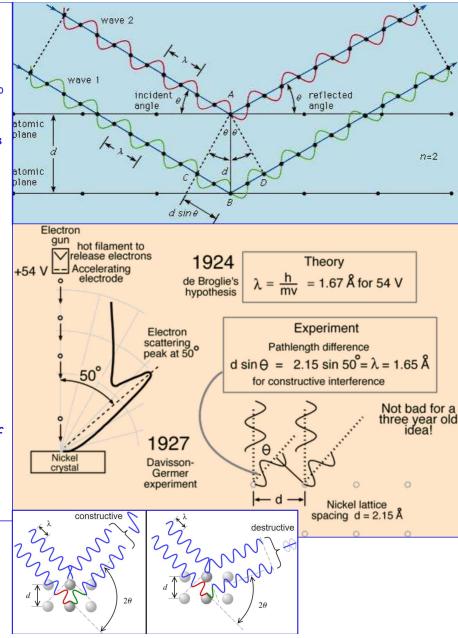


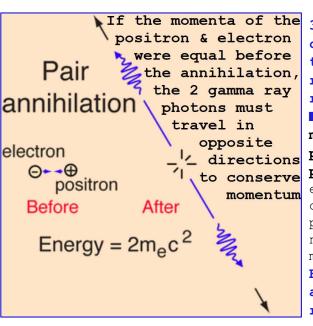

Plane1

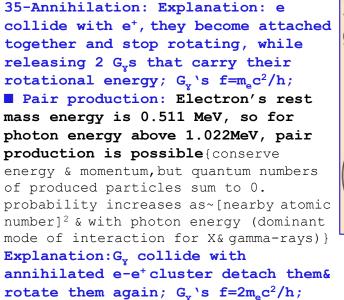

Plane2

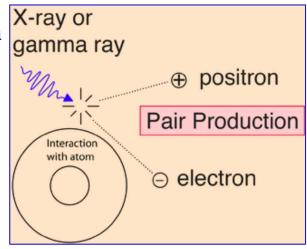

Universe properties involving many particles (Less certain explanations)

Illuminated BBO emit 2 Gys & Os 28-Double slit: e/G_v collide with e in 26-Photons 1 & 4 exhibit quantum that entangled the BBO's e with the edge of the narrow slits, this e correlations(entanglement), despite the e's of the polarizers that they have never coexisted; emit $e/G_v \& 0$; 0 steer the e in the neasurements BBO split blue photon into 2 nade here... screen & entangled them with the e in **Explanation:** β -BaB₂O₄ (BBO) emit G_vs (Energy & Momentum conserved) that fly at v=c; & Os that fly at the slits' edges. Thus next emitted Blue wave e/G_v will thrown to the entangled es v>>c; O steer the e in the beam plate **Coincidence circuit** Laser in the screen(which were chosen by $G_{v'}$ s splitter(BS) & the e in BBO to be 325m entangled device is used to correlated, thus when BBO emit $G_{\chi3/4}$ cT_f or e's vT_r); Any measurement device photon confirm that the 2 pair measured photons before/after the slit interfere with they will be correlated with $G_{V1/2}$; fiber 2 produced at the the entanglement; nonlinear doublesame time: crystal slit screen BBO Small molecule/ 435m (beta compensator Photons/Electrons barium crystal ... have effect borate) over here \rightarrow Gy4 1/(10B) photons splited and electron from them 1/500 entangled beam gun 27-Elitzur-Vaidman bomb tester: QM Wrong interference explanation: Bed bomb=photon pass through pattern t=0 $t = \tau$ time without absorbance; photon go in both pathways; time τ C click; D not(destructive interference); Good Delay https://arxiv.org/p bomb=explode upon photon absorbance; photon line Destructive df/1209.4191.pdf chose way, if pass through bomb it explodes, D interference if chose upper path bomb not explode & D or **Single Photon** C click; so if D click we know the bomb good HSM Detector BBO Mirror without explode it(25% chance) Correct Explanation: Half-silvered mirror (HSM) time eject G_v in one direction & O in the other; O Constructive steer the e in mirror & e in upper HSM to be $2\,\mathrm{mm}$ thick θ_{a} PBS O/Gy λ/2= β -BaB₂O₄ correlated; If there is bed bomb (or no bomb) Gv hit interference Half wave plates the e in the upper HSM & C click (D won't click as HWP e in D path get O that destructively interfere with G_v); If there is a good bomb, G_v explode it, or O PBS Projecting get absorb by the bomb without exploding it (0 is compensating. polarizing Mirror a sphere & is not rotated) & G_v go & click D/C; crystals Mirror beam-splitter HSM

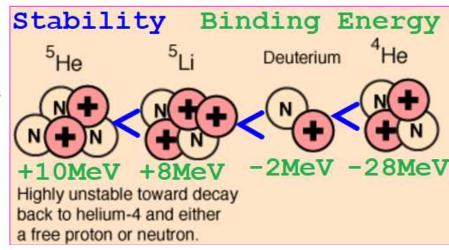


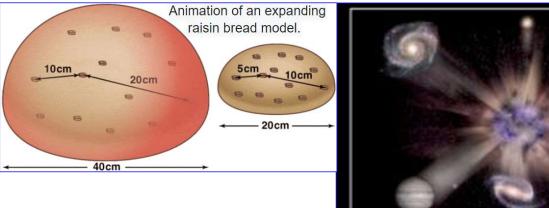


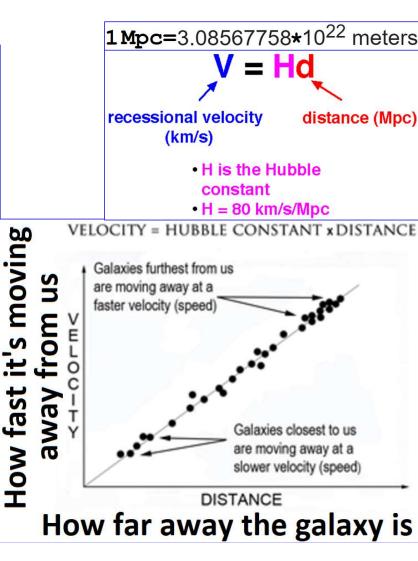



34-While the multiple steps creating e/e⁺ give them a specific structure $[I_1=I_2=~I_3/2, \omega_w \& Z^+$ Return to $\omega_0 \& Z^+_0 each T_L=2\pi I_1/|L_w|; s; |\omega_{03}| >> |\omega_{01/2}|: X^+ ~return to X^+_0 each 2T_L] (by Intermediate& Major axis theorem and by numerous collisions & centrifugal force) <math>G_y$ is creating by only 2 collisions and has no unique shape, however, as we can see from page 13, its ω_w ~return to ω_0 each T_f s; For both $G_y \& e/e^+ \omega_w$ period dictates the B interaction; While the spin state period indicate a more precise period that is still common to all e/e⁺/(G_y with same f); Thus for e/e⁺ the spin state period is 2 T_L (take into account $\omega_w \& X^+$ period; & called spin $\frac{1}{2}$ particle) but for G_y s with same f it remain T_f as each G_y originate from different G shape and has different G_q shape, even though they all have the same f; (spin 1 particle)Yet all e/e⁺/ G_y have period(T) and thus f=1/T; If they move they have: $\lambda = v/f = vT$; For G_y : $\lambda = c/f = cT_f = h/p_R$; $\{E^2 = (\gamma mv)^2 c^2 + m^2 c^4; \gamma = [1 - v^2/c^2]^{-1/2}; p_R = \gamma mv; m > 0; E = cp_R = hf = hc/\lambda\}$

■ Davisson Germer experiment: Electrons released from tungsten filament accelerated using 54V=KE/q battery into nickel chloride crystal $(d=2.15*10^{-10})$, the scattered electrons have maximum intensity at $\theta=50^{\circ}$; 1) Less probable explanation: de Brogllie's hypothesis: electron is wave: $\lambda=h/p=h/(mv)=1.67*10^{-10}; \{v=(2*m*KE)^{(1/2)}/m=(2*m*V*q)^{(1/2)}/m=4.36*10^{6}m/s;$ $m=9.109*10^{-31}; V=54; q=1.602*10^{-19}; h=6.626*10^{-34} \}$ the peak is due to constructive interference of wave: $\lambda=dsin\theta/n=1.65*10^{-10}/n$; n=integer; 2) More probable explanation: For e/e^+ : $T=T_L=2\pi I_1/|L_w|=8\pi^2ms_2^2/(5h)$; $\{|L_w|=h/(4\pi); I_1=m(s_2^2+s_3^2)/5; s_3 \rightarrow 0; T_L$ is common to all e/e^+ with any angular momentum}Thus, if es, with same L_w , that fly with v, arrive at the detector with the same ω_w , we see larger signal; for this to happen, the extra travelling time=dsin(θ)/v=nT; n=integer;{indicate that T=1.89*10^{-17}/n; & $s_2=2.95*10^{-11}/n^{1/2}$; Because all e/e^+ are same mass asymmetric clusters $[I_1=I_2=~I_3/2; |\omega_{03}|>>|\omega_{01/2}|]$ & their Z⁺ align each T_L;

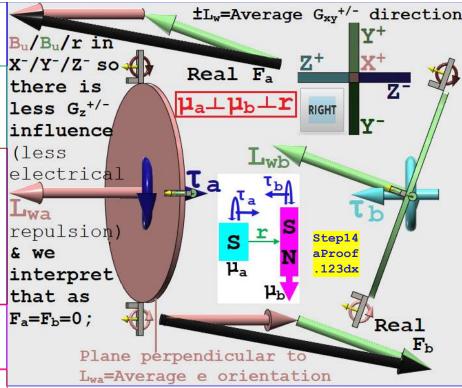





36. [mass of nucleus]-[mass of its nucleons]=∆m<0 always, but different for different elements. Amc²=nuclear binding energy that holds the nucleons together{Nucleus is made up of nucleons(protons, neutrons); while Energy to release e from H atom=13.6eV; (ionization E); the Energy to break apart p & n from alpha particle(2p+2n)=28Me V=c²[2m_p+2m_n-m_{alpha}]; m_n=939.5; m_p= 938;m_{alpha}=3727; [MeV/c²]binding E}

37- The expansion of the universe appears to be accelerating. The velocity of galaxy away from earth[km/s]=The distance of the galaxy from earth[km]*26*10⁻¹⁹. {we have red shift from everything so or we are moving away from everything or the universe is expanding and its expanding faster and faster with acceleration}. Explanation: In the universe, every-where & time NE-space/3D-spaces is being created;

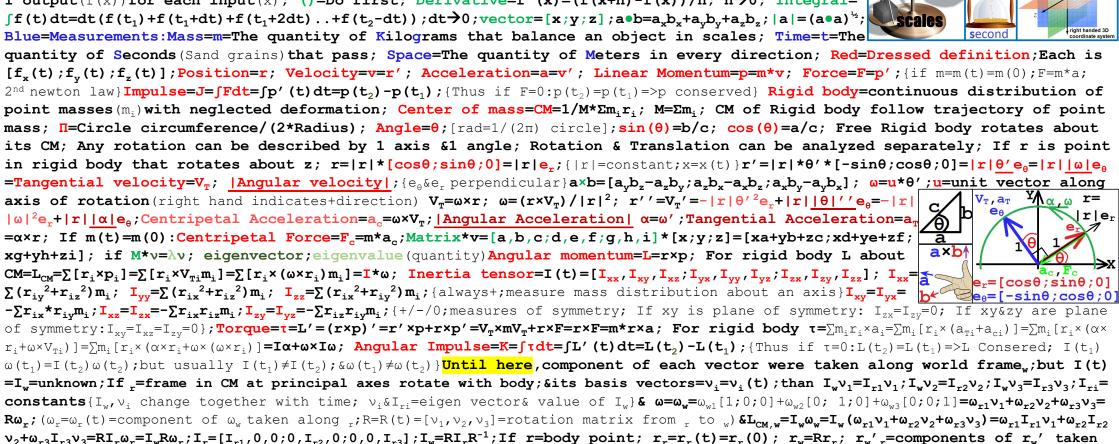
Wild guess

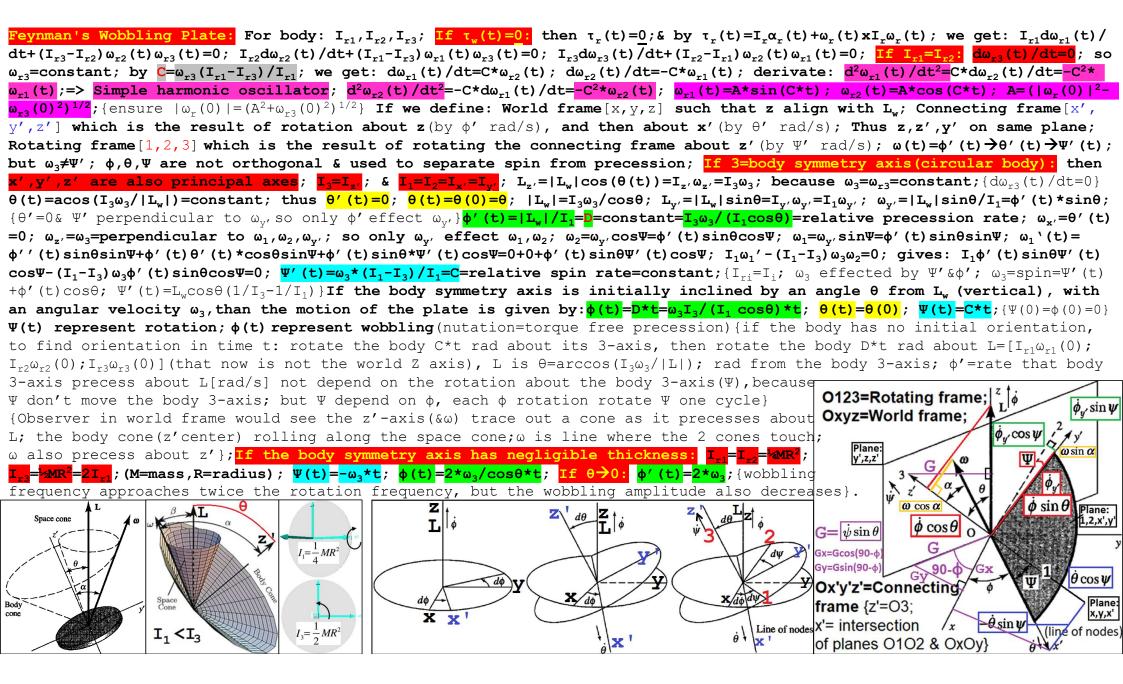

38-u|d Quark is probably like $e^+|e$ cluster but with more G components & $L_3=2/3$ of $e^+' \le L_3|$ $L_3=1/3$ of e's L_3 ; Anti u|d Quark is probably like $e|e^+$ cluster but with more G components & $L_3=2/3$ of e's $L_3|$ $L_3=1/3$ of $e^+' \le L_3$;

39-Color charge is probably the particle's B_u ; where Red/Green/Blue are $X^+/Y^+/Z^+ B_u$ direction & AntiRed/AntiGreen/AntiBlue are $X^-/Y^-/Z^- B_u$; While $X^+&X^- B_u$ particles attracts $X^+&Y^+&Z^+ B_u$ or $X^-&Y^-&Z^- B_u$ particles impose no B force on each other & allow a delicate attraction dance by opposite L_3 ;

40-While Helicity=sign(L•p);{+=RH; -=LH}, Chirality is probably a function of p•r & thus it dictate if the particle hit the target such that its L contribute positively to increase the collision impact; The target is hitted by the particle p & by the particle rotational motion, which cause greater collision force that release sub-cluster particle as what we call weak force; \blacksquare Neutrino is probably like e cluster but with less G component & with initial orientation that flip it 90° about X axis; thus its major rotation is about the world Y axis and its $L_3 \rightarrow 0$;

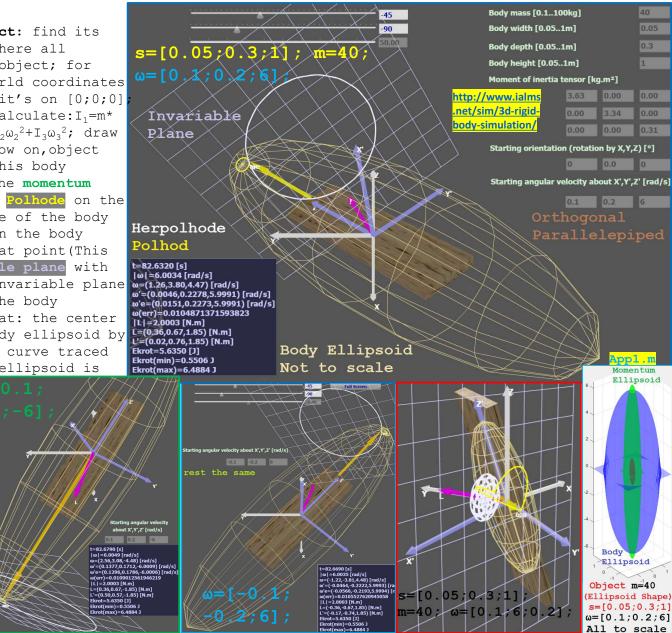
41-In atom the e & the positive nucleus play give and take with $G_{xyz}^{+/-}$; Thus number of $G_{xyz}^{+/-}$ rotations must be integer number in equilibrium. The equilibrium can reach in many ways, lead to different energy level.

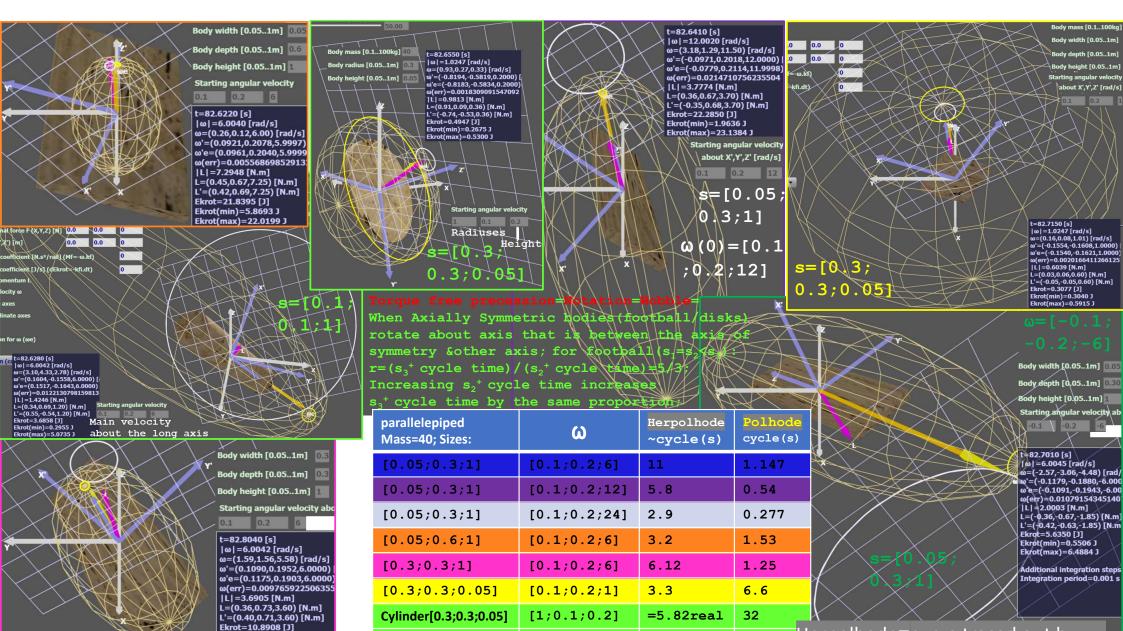

42-Superconductor stay locked in space, when put near magnet; Explanation: If the superconductor move, each e in it is moving in B, so it feel force, so the e's in the superconductor move in circle, this circular motion & B now opposing the superconductor's movement;



Appendix

Green=Pure definition; Quantity=a=1+1..+1[a times]; a+b=a+1+1..+1[b times]; a-b=a-1-1..-1[b times]; a*b=ab=a+a..+a[b times]; a/b=c=>a-b-b..-b[c times]=0; $a^b=a*a..*a[b times]$; function=f(x)=return 1 output(f(x)) for each input(x); ()=Do first; Derivative=f'(x)=(f(x+h)-f(x))/h; h→0; Integral= $f(t) dt=dt(f(t_1)+f(t_1+dt)+f(t_1+2dt)..+f(t_2-dt)); dt→0; vector=[x;y;z]; a•b=a_xb_x+a_yb_y+a_zb_z; |a|=(a•a)^{\frac{1}{2}};$ Blueze Measurements to the second secon


along $_{r}$; $(r_{w'}_{r}\neq0;r_{r}'=0)R^{-1}=$ Inverse $R=R^{T}; \omega \times = W=[0, -\omega_{3}, \omega_{2}; \omega_{3}, 0, -\omega_{1}; -\omega_{2}, \omega_{1}, 0]; r_{w'}_{r}=R^{T}r_{w'}=R^{T}(\omega_{w}\times r_{w})=R^{T}\omega_{w}\times R^{T}r_{w}=\omega_{r}\times r_{r}=R^{T}(Rr_{r})'=R^{T}R'r_{r};$ $L_{r}=R^{T}L_{w}=R^{T}(I_{w}\omega_{w})=R^{T}(RI_{r}R^{T}\omega_{w})=I_{r}\omega_{r}; \tau_{w}=L_{w'}'=(RL_{r})'=(RI_{r}\omega_{r})'=RI_{r}\omega_{r}'+R'I_{r}\omega_{r}; (I_{r}'=0)\tau_{r}=R^{T}\tau_{w}=R^{T}(RI_{r}\omega_{r}'+R^{T}R'I_{r}\omega_{r}'+R'I_{r}\omega_{r}'+R'I_{r}\omega_{r}'+R'I_{r}\omega_{r}'+R'I_$



Appendix 1: General Rotational Motion Visualization

To visualize the rotational motion of a general object: find its principal axes of inertia(axes from center of mass where all products of inertia are 0; possible to find for any object; for ellipsoid its our s_1, s_2, s_3 ; Align these axes with world coordinates (x, y, z), the object center of mass will not move and it's on [0;0;0] $\omega = \omega$ at time 0; m=object mass; For ellipsoid object calculate:I₁=m* $(s_2^2+s_3^2)/5; I_2=m^*(s_1^2+s_3^2)/5; I_3=m^*(s_2^2+s_1^2)/5; T=I_1\omega_1^2+I_2\omega_2^2+I_3\omega_3^2; draw$ body ellipsoid: $1=x^2/(T/I_1)+y^2/(T/I_2)+z^2/(T/I_2)$; From now on, object orientation will be the same as the orientation of this body ellipsoid; Calculate: $L=(I_1\omega_1)^2+(I_2\omega_2)^2+(I_3\omega_3)^2$; draw the momentum ellipsoid: $1=x^2/(L/I_1^2)+y^2/(L/I_2^2)+z^2/(L/I_3^2)$; Draw the **Polhode** on the body ellipsoid, the **Polhode** is the intersection curve of the body ellipsoid & the momentum ellipsoid. The point ω lie on the body ellipsoid, draw a normal to the body ellipsoid at that point (This normal=(2/T)*[$I_1 \omega$ (1); $I_2 \omega$ (2); $I_3 \omega$ (3)]),draw an invariable plane with the same normal at point ω(distance between[0;0;0]&invariable plane [1.26,3.80,4.47)[rad/s] =T/ \sqrt{L}); To visualize the motion: roll without slip the body ellipsoid on the unchanged invariable plane, such that: the center of mass is unchanged, the curve traced out on the body ellipsoid by the points of contact with the plane is polhod & the curve traced out on the plane by the points of contact with body ellipsoid is

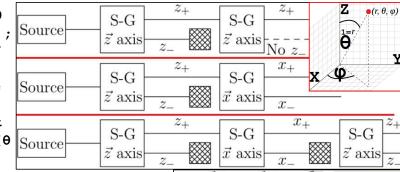
the Herpolhode. While polhod is closed curve, herpolhode is an open curve meaning that rotation doesn't perfectly repeat itself. Example: Rotational motion visualization of orthogonal parallelepiped sizes=[0.05; 0.3; 1];m=40; $(I_i^{orthogonal_parallelepiped=I_i^{Ellipsoid}*5/12);$ For various ω ; in the green/blue cases the Polhode finish to roll in the invariable plane in 1.147s; & in 11s the Herpolhode finish to create the first almost closed circle in the invariable plane; The Herpolhode curve is almost a closed circle but it's never exactly repeat itself. The red case show rotation about an intermediate axis, which is unstable, meaning that the direction of motion can vary a lot.

[0.1;0.2;6]

Cylinder[0.1;0.1;1]

Ekrot(min)=1.8743 J

Ekrot(max)=11.3500 J

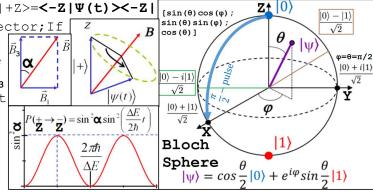

Herpolhode=curve traced out by ω_w

1.1

=15.25real

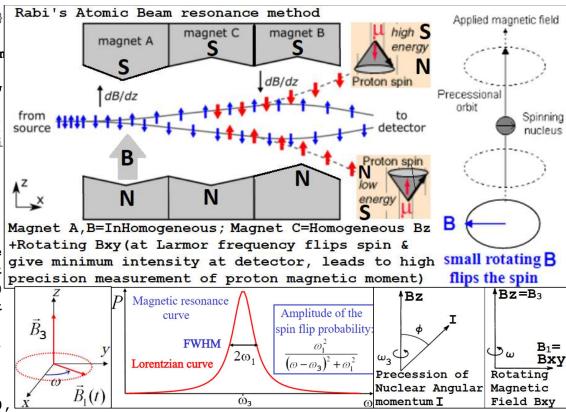
Classical Electro-Magnetic Theory: μ of stationary $e/e^{+}\{\mu \leftarrow F_{a,b} \& \tau_{a,b} \leftarrow L_{w}\}$ can be simulate by q that move in circular path& using: $F_{a}=q_{1}q_{a}r^{u}/(\epsilon_{a}4\pi|r|^{2})$; $F_{m}=qv\times B_{a}$; $B_{a}=10^{-7}qv\times r^{u}/|r|^{2}$; we can calculate the general equations: $\tau=\mu\times B_{a}$; {if e(mass=m_{e})move in circle($\omega = [0;0;w]$; Radius)L=m_R×v; is in B_, its circular path feels $\tau = [d\tau (\theta = 0 \text{ to } 2\Pi) = \frac{1}{2}w|R|^2[B_{2}; -B_{1};0] = \mu \times B_{2}; \mu = Lq/(2m_{2}); \omega = |\omega|[sin\theta_{0}cos\phi_{0}; \mu = 1]$ $\sin\theta_{\alpha};\cos\theta_{\alpha};\cos\theta_{\alpha};\operatorname{Perpendicular}:R_{0}=|R|[\sin(\theta_{\alpha}+\Pi/2)\cos\varphi_{\alpha};\sin(\theta_{\alpha}+\Sigma\Pi)\sin\varphi_{\alpha};\cos(\theta_{\alpha}+\Sigma\Pi)];\operatorname{Rodrigez}:R=R_{0}\cos\theta+(\omega^{u}\times R_{0})\sin\theta+\omega^{u}(\omega^{u}\otimes R_{0})(1-\cos\theta)\}$ Thus, for $e(q<0)/e^{+}(q>0)\mu\&L$ antiparallel/parallel; This τ tends to line up μ with B_{e} , highest/lowest energy configuration is when μ is antiparallel/parallel to B_{μ} ; $|\tau| = |\mu| |B_{\mu}| \sin\alpha; \alpha = \text{angle between } \mu \&B_{\mu}; W_{max} = \int |\mu| |B_{\mu}| \sin\alpha (\alpha = \Pi \text{ to } 0) = 2|\mu| |B_{\mu}|$ **B_i=~10⁻⁷ (3 (μ•r^u)r^u-μ)/|r|³**; {e orbit generate B_i=∫dB_i (θ=0 to 2Π)at r; If r>>R} |B_i|=~10⁻⁷ |μ| (1+3cos²α)^{1/2}/|r|³; {α=between r&μ} $|B_{i}|_{max} = 2|B_{i}|_{min}$; τ exerted by μ_{a} on $\mu_{b} = \frac{\tau_{b} = \mu_{0}}{(4\pi |r|^{3})(3(\mu_{a} \bullet r^{u})\mu_{b} \times r^{u} - \mu_{b} \times \mu_{a})}$; $\tau_{a} = \frac{\mu_{0}}{(4\pi |r|^{3})(3(\mu_{b} \bullet r^{u})\mu_{a} \times \mu_{b})}$ (**v**₂ (**v**₁ $\mathbf{r}^{u} - \mu_{a} \times \mu_{b} ; \text{ Force exerted by } \mu_{a} \text{ on } \mu_{b} = \frac{\mathbf{F}_{b} = 3\mu_{0} / (4\pi |\mathbf{r}|^{4}) (\mu_{b} (\mu_{a} \bullet \mathbf{r}^{u}) + \mu_{a} (\mu_{b} \bullet \mathbf{r}^{u}) + \mathbf{r}^{u} (\mu_{a} \bullet \mu_{b}) - 5\mathbf{r}^{u} (\mu_{a} \bullet \mathbf{r}^{u}) (\mu_{b} \bullet \mathbf{r}^{u})) = \frac{1}{2} (\mu_{a} \bullet \mathbf{r}^{u}) (\mu_{b} \bullet \mathbf{r}^{u}) (\mu_{b} \bullet \mathbf{r}^{u}) (\mu_{b} \bullet \mathbf{r}^{u}) + \mathbf{r}^{u} (\mu_{a} \bullet \mu_{b}) - 5\mathbf{r}^{u} (\mu_{a} \bullet \mathbf{r}^{u}) (\mu_{b} \bullet \mathbf{r}^{u})) = \frac{1}{2} (\mu_{a} \bullet \mathbf{r}^{u}) (\mu_{b} \bullet \mathbf{r}^{$ $\nabla(\mu_{\rm h} \bullet B_{\rm a})$; {The circular path when r>R feels $F=\int dF(\theta=0 \text{ to } 2\Pi)$; r=from a to b; $\mu_0=4\pi 10^{-7}$; $B_a=B_a(r)=10^{-7}(3(\mu_a \bullet B_a))$ r^{u} $r^{u}-\mu_{a}$ $/|r|^{3}$; ∇ on variable r; & then Placement of r} $F_{z}=-F_{a}$; If B is uniform & doesn't depend on d $F_{z}=$ $\mathbf{F}_{\mathbf{b}} = \mathbf{0}; \{ \mathbb{W} = \int \nabla (\mu_a \bullet B_b(\mathbf{r})) d\mathbf{r} = \mu_a \bullet B_b(\mathbf{r}_2) - \mu_a \bullet B_b(\mathbf{r}_1) \} \text{ If } 2 \text{ same } \mu e's \text{ stand along } \mu : |\mathbf{F}_a| = \mathbf{q}_1 \mathbf{q}_2 / (\varepsilon_0 4\pi |\mathbf{r}|^2);$ $|\mathbf{F}_{m}| = |\mu_{a}| |\mu_{b}| 6\mu_{0} / (4\pi |\mathbf{r}|^{4}); |\mathbf{F}_{e}| / |\mathbf{F}_{m}| = |\mathbf{r}|^{2} / 3 (cm_{e} / (|S|g_{s}))^{2} = |\mathbf{r}|^{2} 8 / 3 (cm_{e} / (\hbar g_{s}))^{2} = 4.460352055599433 \times 10^{24} |\mathbf{r}|^{2};$ $=c^{2}10^{-1}$ a1 $\{S_{z}=\pm\hbar/2; \mu_{z}=S_{z}g_{s}q/(2m_{e}); \varepsilon_{0}\mu_{0}c^{2}=1; \mu_{0}=4\pi10^{-7}\} |B_{i\mu}|_{max}= -2 \times 10^{-7} |\mu|/|r|^{3} = 10^{-7} hg_{s}q/(2m_{e}|r|^{3});$ $|B_{iv}|_{max} = 10^{-7} q|v|/|r|^2; |B_{iv}|_{max}/|B_{iu}|_{max} = |v||r|2m_e/\hbar g_s = 8627.9872780518003976252304522023|r||v|;$ $q_2\hat{\mathbf{r}}/|\mathbf{r}|^2$ $(If v_2 = -v_1 Fm = 0)$ av×Be RIdθ =dav×Be(d) RId0 dθc App2.m =~10-7 dF $dB_i =$ COSU '7dg sine q<0 a<0 $\cos\theta; \sin\theta; 0$ $L=m_eR\times v; \mu_a=Lq/(2m_e)$ App3.m

mass=dm=µ*dx If y(x,t) describe the y component of tiny $(dx \rightarrow 0)$ piece of an almost horizontal rope $(\theta \rightarrow 0)$ with mass density $\theta + d\theta$ μ (dm= μ *dx) it must satisfy: $\frac{\partial^2 y}{\partial t^2} = T_p / \mu * \frac{\partial^2 y}{\partial x^2}$; 1D wave equation (1Dwe); {F=ma; Fy= μ dx $\frac{\partial^2 y}{\partial t^2}$; T_P=Rope Tension; $\theta \rightarrow 0; \sin(\theta) = \theta; Fy = -T_{p} \sin(\theta) + T_{p} \sin(\theta + d\theta) = -T_{p} \theta + T_{p} (\theta + d\theta) = T_{p} d\theta; \tan(\theta) = \frac{\partial y}{\partial x}; \frac{\partial^{2} y}{\partial x^{2}} = d\tan(\theta) / dx = \frac{\theta}{\sqrt{2\pi}} + \frac{\partial^{2} y}{\partial x} = \frac{\partial^{2} y}{\partial x^{2}} = \frac{\partial^{2} y}{\partial x^{2$ $\cos(\theta)^2 = 1; dx^* \partial^2 y / \partial x^2 = d\theta; Fy = \mu^* dx \partial^2 y / \partial t^2 = T_p d\theta = T_p dx^* \partial^2 y / \partial x^2$ If $w^2 = T_p / \mu^* k^2;$ Any f(k*x+w*t+ph) satisfy 1Dwe= $\partial^2 y / \partial t^2 = T_p / \mu^* k^2;$ $|v|^2 \partial^2 y / \partial x^2$; {T_R=ma[kg*m/s²]; μ =[kg/m]; (T_R/ μ)^{1/2}=|v|[m/s]; v=-w/k} wavelength= λ &period T defined such that f(x,t)= x = x+dy=f(x±v*t) $f(x+\lambda,t)=f(x,t+T)$; frequency=v=v/ λ ; Amplitude=A; Phase= φ ; { $f(x,t)=Ae^{(i(k^*x+w^*t+\varphi))}$; f shape travel along x with v; $\lambda = 2\pi/k; T = 2\pi/w \left\{ \frac{\lambda f}{\partial x^2} + \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial z^2}; Any f = f \left(\frac{k - \pi w + t + \varphi}{f} \right) \left\{ f \text{ shape travel along } k \right\} \left[\frac{v}{2} - \frac{v^2}{k} \right]^2 = \frac{v^2}{k} \left[\frac{v^2 + \partial^2 f}{\partial z^2}; Any f = f \left(\frac{k - \pi w + t + \varphi}{k} \right) \left\{ f \text{ shape travel along } k \right\} \left[\frac{v}{2} - \frac{v^2}{k} \right]^2 = \frac{v^2}{k} \left[\frac{v^2 + \partial^2 f}{\partial z^2}; Any f = f \left(\frac{k - \pi w + t + \varphi}{k} \right) \left\{ f \text{ shape travel along } k \right\} \left[\frac{v^2 + \partial^2 f}{\partial z^2}; Any f = f \left(\frac{k - \pi w + t + \varphi}{k} \right) \left\{ f \text{ shape travel along } k \right\} \right]^2 = \frac{v^2 + \partial^2 f}{\partial z^2}; Any f = f \left(\frac{k - \pi w + t + \varphi}{k} \right) \left\{ f \text{ shape travel along } k \right\} \left[\frac{v^2 + \partial^2 f}{\partial z^2}; Any f = f \left(\frac{k - \pi w + t + \varphi}{k} \right) \left\{ f \text{ shape travel along } k \right\} \right]^2$ ∂t²=c²*∆f;3Dwe; If q,f satisfy 3Dwe(same c)f+q,f*q,af+bq also; superposition principle; Thus, if a particle is a wave, it can be analyzed as a linear combination of $\Psi(r,t)=C*e^{(i*(K\bullet r-\omega^*t))}$; waves with the same |v|; where C=A*e^(i\phi); K=2\piv/(λ |v|); ω =|v||K|; |p|=h/ λ ; h=h/(2\pi); true also for electrons & also for any particle, $\mathbf{E} = \mathbf{K} \mathbf{E} + \mathbf{P} \mathbf{E} = \mathbf{m} \mathbf{v} |^{2}/2 + \mathbf{U} = |\mathbf{p}|^{2}/(2 \mathbf{m}) + \mathbf{U}; \{\mathbf{p} = \mathbf{m}\mathbf{v}; \mathbf{P} \mathbf{E} = \mathbf{U}\} \mathbf{b}\mathbf{y} \text{ frequency} = \mathbf{f} = |\mathbf{v}|/\lambda; \mathbf{E} = \mathbf{h}\mathbf{f}; \mathbf{\Psi} \mathbf{E} = -\mathbf{h}^{2}/(2\mathbf{m}) \mathbf{v} + \mathbf{U}\mathbf{\Psi} = \mathbf{i}\mathbf{h}\partial\mathbf{\Psi}/\partial\mathbf{t}; \{\Delta \Psi = -\Psi | \mathbf{K} |^{2} + \mathbf{U}\mathbf{W} = \mathbf{i}\mathbf{h}\partial\mathbf{\Psi}/\partial\mathbf{t}; \{\Delta \Psi = -\Psi | \mathbf{K} |^{2} + \mathbf{U}\mathbf{W} = \mathbf{i}\mathbf{h}\partial\mathbf{\Psi}/\partial\mathbf{t}; \{\Delta \Psi = -\Psi | \mathbf{K} |^{2} + \mathbf{U}\mathbf{W} = \mathbf{i}\mathbf{h}\partial\mathbf{\Psi}/\partial\mathbf{t}; \{\Delta \Psi = -\Psi | \mathbf{K} |^{2} + \mathbf{U}\mathbf{W} = \mathbf{i}\mathbf{h}\partial\mathbf{\Psi}/\partial\mathbf{t}; \{\Delta \Psi = -\Psi | \mathbf{K} |^{2} + \mathbf{U}\mathbf{W} = \mathbf{i}\mathbf{h}\partial\mathbf{\Psi}/\partial\mathbf{t}; \{\Delta \Psi = -\Psi | \mathbf{K} |^{2} + \mathbf{U}\mathbf{W} = \mathbf{i}\mathbf{h}\partial\mathbf{\Psi}/\partial\mathbf{t}; \{\Delta \Psi = -\Psi | \mathbf{K} |^{2} + \mathbf{U}\mathbf{W} = \mathbf{i}\mathbf{h}\partial\mathbf{\Psi}/\partial\mathbf{t}; \{\Delta \Psi = -\Psi | \mathbf{K} |^{2} + \mathbf{U}\mathbf{W} = \mathbf{i}\mathbf{h}\partial\mathbf{\Psi}/\partial\mathbf{t}; \{\Delta \Psi = -\Psi | \mathbf{K} |^{2} + \mathbf{U}\mathbf{W} = \mathbf{i}\mathbf{h}\partial\mathbf{\Psi}/\partial\mathbf{t}; \{\Delta \Psi = -\Psi | \mathbf{K} |^{2} + \mathbf{U}\mathbf{W} = \mathbf{i}\mathbf{h}\partial\mathbf{\Psi}/\partial\mathbf{t}; \{\Delta \Psi = -\Psi | \mathbf{K} |^{2} + \mathbf{U}\mathbf{W} = \mathbf{i}\mathbf{h}\partial\mathbf{\Psi}/\partial\mathbf{t}; \{\Delta \Psi = -\Psi | \mathbf{K} |^{2} + \mathbf{U}\mathbf{W} = \mathbf{i}\mathbf{h}\partial\mathbf{\Psi}/\partial\mathbf{t}; \{\Delta \Psi = -\Psi | \mathbf{K} |^{2} + \mathbf{U}\mathbf{W} = \mathbf{i}\mathbf{h}\partial\mathbf{\Psi}/\partial\mathbf{t}; \{\Delta \Psi = -\Psi | \mathbf{K} |^{2} + \mathbf{U}\mathbf{W} = \mathbf{i}\mathbf{h}\partial\mathbf{\Psi}/\partial\mathbf{t}; \{\Delta \Psi = -\Psi | \mathbf{K} |^{2} + \mathbf{U}\mathbf{W} = \mathbf{i}\mathbf{h}\partial\mathbf{\Psi}/\partial\mathbf{t}; \{\Delta \Psi = -\Psi | \mathbf{K} |^{2} + \mathbf{U}\mathbf{W} = \mathbf{i}\mathbf{h}\partial\mathbf{\Psi}/\partial\mathbf{t}; \{\Delta \Psi = -\Psi | \mathbf{K} |^{2} + \mathbf{U}\mathbf{W} = \mathbf{i}\mathbf{h}\partial\mathbf{W}/\partial\mathbf{t}; \{\Delta \Psi = -\Psi | \mathbf{K} |^{2} + \mathbf{U}\mathbf{W} = \mathbf{i}\mathbf{h}\partial\mathbf{W}/\partial\mathbf{t}; \{\Delta \Psi = -\Psi | \mathbf{K} |^{2} + \mathbf{U}\mathbf{W} = \mathbf{i}\mathbf{h}\partial\mathbf{W}/\partial\mathbf{t}; \{\Delta \Psi = -\Psi | \mathbf{K} |^{2} + \mathbf{U}\mathbf{W} = \mathbf{i}\mathbf{h}\partial\mathbf{W}/\partial\mathbf{t}; \{\Delta \Psi = -\Psi | \mathbf{K} |^{2} + \mathbf{U}\mathbf{W} = \mathbf{i}\mathbf{h}\partial\mathbf{W}/\partial\mathbf{t}; \{\Delta \Psi = -\Psi | \mathbf{K} |^{2} + \mathbf{U}\mathbf{W} = \mathbf{i}\mathbf{h}\partial\mathbf{W}/\partial\mathbf{t}; \{\Delta \Psi = -\Psi | \mathbf{K} |^{2} + \mathbf{U}\mathbf{W} = \mathbf{i}\mathbf{h}\partial\mathbf{W}/\partial\mathbf{t}; \{\Delta \Psi = -\Psi | \mathbf{K} |^{2} + \mathbf{U}\mathbf{W} = \mathbf{i}\mathbf{h}\partial\mathbf{W}/\partial\mathbf{T}; \{\Delta \Psi = -\Psi | \mathbf{K} |^{2} + \mathbf{U}\mathbf{W} = \mathbf{i}\mathbf{h}\partial\mathbf{W}/\partial\mathbf{T}; \{\Delta \Psi = -\Psi | \mathbf{K} |^{2} + \mathbf{U}\mathbf{W} = \mathbf{i}\mathbf{h}\partial\mathbf{W}/\partial\mathbf{T}; \{\Delta \Psi = -\Psi | \mathbf{K} |^{2} + \mathbf{U}\mathbf{W} = \mathbf{i}\mathbf{h}\partial\mathbf{W}/\partial\mathbf{T}; \{\Delta \Psi = -\Psi | \mathbf{K} |^{2} + \mathbf{U}\mathbf{W} = \mathbf{i}\mathbf{h}\partial\mathbf{W}/\partial\mathbf{T}; \{\Delta \Psi = -\Psi | \mathbf{K} |^{2} + \mathbf{U}\mathbf{W} = \mathbf{i}\mathbf{h}\partial\mathbf{W}/\partial\mathbf{T}; \{\Delta \Psi = -\Psi | \mathbf{K} |^{2} + \mathbf{U}\mathbf{W} = \mathbf{i}\mathbf{h}\partial\mathbf{W}/\partial\mathbf{T}; \{\Delta \Psi = -\Psi | \mathbf{K} |^{2} + \mathbf{U}\mathbf{W} = \mathbf{i}\mathbf{h}\partial\mathbf{W}/\partial\mathbf{T}; \{\Delta \Psi = -\Psi | \mathbf{K} |^{2} + \mathbf{$ $=-\Psi(2\pi/\lambda)^{2}=-\Psi(|p|/\hbar)^{2}; \Psi|p|^{2}=-\hbar^{2}\Delta\Psi; |p|^{2}=2m(E-U); \Psi 2m(E-U)=-\hbar^{2}\Delta\Psi; \omega=|v||K|=|v|2\pi/\lambda=f2\pi=2\pi E/h=E/\hbar; \partial\Psi/\partial t=-i\omega Ce^{(i(K\bullet r-L))}$ $\omega^{(1)} = -i\omega\Psi = -i\Psi =$ normalized such that $\int \int |\Psi(\mathbf{r},t)|^2 d\mathbf{r} d\mathbf{r} d\mathbf{r} d\mathbf{r} d\mathbf{r} = \int_{\mathbf{r}} |\Psi|^2 d\mathbf{v} = 1$; (each $\int \text{from } -\mathbf{\omega} t \mathbf{\omega}$) then: $|\Psi(\mathbf{r}_1,t_1)|^2 d\mathbf{v} can$ describe the probability that a particle that is measured at time t_1 exists at position r_1 (if the particle Acos (KO is measured at time t it must exist somewhere; $|\Psi|^2$ =probability density}; By s.e: Knowing $\Psi(r,t0)$ determined Ψ at all times. if Ψ_1, Ψ_2 are solutions, $a^*\Psi_1 + b^*\Psi_2$ is a solution (a, b=complex); Ψ_1, Ψ_2 eqvivalent if $\Psi_1 = a^*\Psi_2$; $H^\circ = -\hbar^2/(2m) \Delta + U_2$; $H^{\circ}\Psi = \Psi E = i\hbar \partial \Psi / \partial t; \quad K = p/h; \quad \Psi = Ce^{(i(K \bullet r - \omega t))} = Ce^{(i(K \bullet r))}e^{(-i\omega t)} = Ce^{(i(K \bullet r))}e^{(-iEt/h)} = \Psi(r)U(t) = Ce^{(i/h(p \bullet r - Et))}; \quad \nabla f = [\partial f / \partial x; \partial f / \partial y; \partial f / \partial z];$ $\nabla \Psi = i/\hbar * \Psi * p; \text{ Momentum operator} = P^{\circ} = \hbar/i \nabla = -i\hbar \nabla; P^{\circ} \Psi = p\Psi; \text{ Position operator} = r^{\circ}; r^{\circ} \Psi = r\Psi; \text{ Angular momentum}(r \times p) \text{ operator} = L^{\circ}$ length=1 $=-i\hbar x \nabla = -i\hbar [y\partial/\partial z - z\partial/\partial y; z\partial/\partial x - x\partial/\partial z; x\partial/\partial y - y\partial/\partial x]; \{a \times b = [a_v b_z - a_z b_v; a_z b_x - a_x b_z; a_x b_v - a_v b_x] \} L^o \Psi = L\Psi; Kinetic energy (mv^2/2 = p^2/(2m)) operator$ $=K^{\circ}=(-i\hbar*\nabla)^{2}/(2m)=-\hbar^{2}\nabla^{2}/(2m); K^{\circ}\Psi=K\Psi; Potential energy(U=U(x,y,z)) operator=U^{\circ}; U^{\circ}\Psi=U\Psi; Commutator=[0,0]=0,0]=0,0]=0,0]=0,0]$ =-Xih∂/∂xf+ih∂/∂xXf=-Xihf'+ih(f+Xf')=ihf; [L_x,L_y]=ihL_z; [L_z,L_x]=ihL_y; [L_y,L_z]=ihL_x; If we can measure 2 things at the same time then their commutators must equal O(their operators must be able to act simultaneously on the same state) Thus we can't measure X&p,Lx&Lv,Lz&Lx,Lv&Lz at the same time; Heisenberg's uncertainty principle; functions are just infinite dimensional vectors Dirac notation: Instead of $\Psi(x)$ we write vector with x dimensions (for position x= ∞) with values $\Psi(x)$ in each dimension= $|\Psi\rangle$ = $\sum \Psi(\mathbf{x}) | \mathbf{x} \ge [\Psi(-\infty) \dots; \Psi(\mathbf{x}-d\mathbf{x}); \Psi(\mathbf{x}); \Psi(\mathbf{x}+d\mathbf{x}); \dots \Psi(\infty)]; | \mathbf{x} \ge basis vector \{e.g: [1;0;0..], [0;1;0;..], ..\} while | \mathbf{a} \ge Ket Vector = [a_1;a_2;..];$ $\frac{1}{2} = \text{Bra Vector} = [a_1^*, a_2^*, \ldots] = (|a^*)^{\mathrm{T}}; \text{ If } |x^* = \text{basis vector then } \Psi(x) = (x)^{\mathrm{T}} = 0^{\mathrm{T}} \Psi(-\infty) + \ldots + 0^{\mathrm{T}} \Psi(\infty); \quad \langle \Psi | \Psi \rangle = \Psi^*(-\infty)^{\mathrm{T}} \Psi(-\infty) + \ldots + 0^{\mathrm{T}} \Psi(\infty); \quad \langle \Psi | \Psi \rangle = \Psi^*(-\infty)^{\mathrm{T}} \Psi(-\infty) + \ldots + 0^{\mathrm{T}} \Psi(\infty); \quad \langle \Psi | \Psi \rangle = \Psi^*(-\infty)^{\mathrm{T}} \Psi(-\infty) + \ldots + 0^{\mathrm{T}} \Psi(\infty); \quad \langle \Psi | \Psi \rangle = \Psi^*(-\infty)^{\mathrm{T}} \Psi(-\infty) + \ldots + 0^{\mathrm{T}} \Psi(\infty); \quad \langle \Psi | \Psi \rangle = \Psi^*(-\infty)^{\mathrm{T}} \Psi(-\infty) + \ldots + 0^{\mathrm{T}} \Psi(\infty); \quad \langle \Psi | \Psi \rangle = \Psi^*(-\infty)^{\mathrm{T}} \Psi(-\infty) + \ldots + 0^{\mathrm{T}} \Psi(\infty); \quad \langle \Psi | \Psi \rangle = \Psi^*(-\infty)^{\mathrm{T}} \Psi(-\infty)^{\mathrm{T}} \Psi(-\infty) + \ldots + 0^{\mathrm{T}} \Psi(\infty); \quad \langle \Psi | \Psi \rangle = \Psi^*(-\infty)^{\mathrm{T}} \Psi(-\infty)^{\mathrm{T}} \Psi(-\infty)^{\mathrm{T}}$..+Ψ*(ω) *Ψ(ω)=1; For any operator O: OΨ(x)=gΨ(x); Ô|Ψ>=g|Ψ>; g=eigenvalue{real;result}; |Ψ>=eigenvector{state of system(2 or more)}; Ô=Hermitian {Observable; measurable} {Matrix M is Hermitian if M=(M^{*})^T;Matrix M is Hermitian if its eigenvalues are real}The measured spin along axis(z)=1/2h,-1/2h; (eigenvalue) lets define their eigenvectors as |+Z>=[1;0], |-Z>=[0;1] & find their operator Ŝ_z=[A,B;C,D]; by Ŝ_z[1;0]=ħ/2[1;0]=[A;C]; Ŝ_z[0;1]=-ħ/2[0;1]=[B;D];thus Ŝ_z=½ħσ_z; σ_z=[1,0;0,-1]; Assuming spin operator is like L operator $[\hat{S}_z, \hat{S}_x] = i\hbar \hat{S}_v; [\hat{S}_v, \hat{S}_z] = i\hbar \hat{S}_x; [\hat{S}_x, \hat{S}_v] = i\hbar \hat{S}_z;$ using this we find $\hat{S}_x = \frac{1}{2}\hbar\sigma_x; \sigma_x = [0, 1; 1, 0]; \hat{S}_v = \frac{1}{2}\hbar\sigma_v; \sigma_v = [0, -i; i, 0];$ & their eigenvectors $|+X\rangle = [2^{-0.5}; 2^{-0.5}], |-X\rangle = [2^{-0.5}; -2^{-0.5}]; |+Y\rangle = [2^{-0.5}; i*2^{-0.5}], |-Y\rangle = [2^{-0.5}; -i*2^{-0.5}]; \sigma = [\sigma_x; \sigma_y; \sigma_z]; \hat{S} = \frac{1}{2}\hbar\sigma; |\hat{S}| = (\hat{S}_x^2 + \hat{S}_y^2 + \hat{S}_z^2)^{1/2} = I\hbar 3^{1/2}/2;$ (I=Identity); Position operator has ω eigenvectors & ω eigenvalues; $\langle \Psi | \hat{O} | \Psi \rangle = \sum P(g_i) g_i = Average value \{\langle -\Psi | \hat{S}_{ij} | -\Psi \rangle = -\frac{1}{2}\hbar\}$

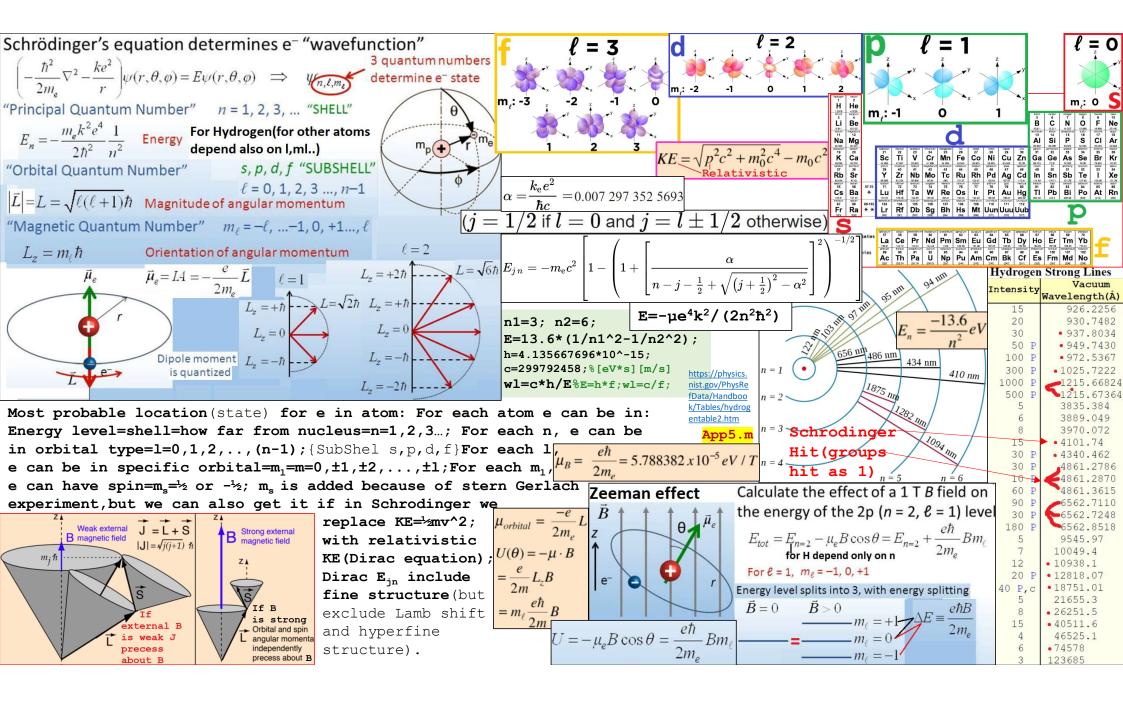


Unit direction=u=[sin θ cos φ ; sin θ sin φ ; cos θ]; \hat{S}_n =u $\hat{S}=\frac{1}{2}\hbar$ [cos θ , sin θ (cos φ -isin φ); sin θ (cos φ +isin φ),-cos θ]; its eigenvalues + $\frac{1}{2}\hbar$,- $\frac{1}{2}\hbar\delta$ eigenvectors |+n>=[e^(-i φ /2)cos(θ /2); e^(i φ /2)sin(θ /2)], |-n>=[-e^(-i φ /2)sin(θ /2); e^(i φ /2)cos(θ /2)]; {or |+m>=[cos(θ /2); e^(i φ)sin(θ /2)], |-m>=[-e^(-i φ)sin(θ /2); cos(θ /2)]; are spin up, down point along θ , φ } {by [V,D]=eig(Sn) & normalize by u=[V(1,2); V(2,2)]; nu=u/norm(u)...} {if there is spin $\frac{1}{2}$ particle in state |+n> probability of finding it in spin up state|+Z>is <+Z|+n><+Z|+n>*=cos²(θ /2)} If a particle prepared as | Ψ > to see how it will be measured in |+n> we can write it with base change: | Ψ >=[e^(-i β /2)cos(α /2); e^(i β /2)sin(α /2)]=x[e^(-i φ /2)cos(θ /2); e^(i φ /2)sin(θ /2); e^(i φ /2)cos(θ /2)]; & slove for x;x=<+n| Ψ >; The probability

that it'll be measured in $|+n\rangle$ is x^*x^* ; {If $\beta = \varphi = 0$; $x^*x^* = (+n|\Psi\rangle (+n|\Psi\rangle)^* = \cos((\theta - \alpha)/2))^2$; $(+Y|+X\rangle (+Y|+X\rangle)^* = b_2$ } If a particle prepared as $|\Psi\rangle$ than as $|+n\rangle$ its state is $g = ((+n|\Psi\rangle)|+n\rangle$ the probability that it'l be measured in $|+m\rangle$ is $(+m|g)^*$; If a particle prepared as $|\Psi\rangle$ than we use stern Gerlach machine in direction $n(SG_n)$ the we take both $|+n\rangle$ to SG_m the probability that it'll be measured in $|+m\rangle$ is $(+m|\Psi\rangle)^*$ (mixed state is like we didn't use SG_n); The spin rotation operator for α rad rotation about unit vector $u = [\cos(\alpha/2) - iu_3 \sin(\alpha/2), -\sin(\alpha/2)(u_2+iu_1); -\sin(\alpha/2)(I u_1-u_2), \cos(\alpha/2) + iu_3 \sin(\alpha/2)] = \exp(-i\alpha/2\sigma \cdot u); {e^x = x^0 + x^{1+b_2x^2} + ... + x^n/n!; (i\alpha \cdot u \cdot S/h)^n = matrix multiplication; x^0 = I \ u = I^0 + 1^{-1} + 1^{-1$

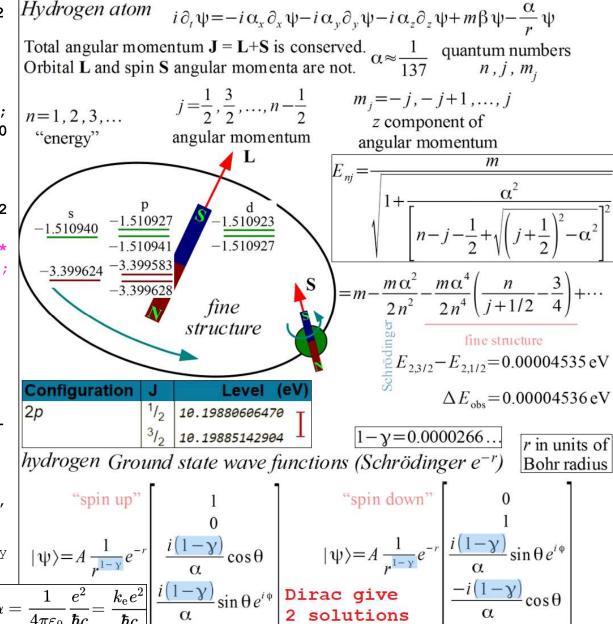

 $= \text{For } B = [B_1;0;B_3]; H = \frac{1}{2} \hbar [\omega_3, \omega_1; \omega_1, -\omega_3]; \sin\alpha = B_1 / |B| = B_1 / (B_1^2 + B_3^2)^{1/2} = \omega_1 / (\omega_1^2 + \omega_3^2)^{1/2}; \cos\alpha = \omega_3 / (\omega_1^2 + \omega_3^2)^{1/2}; H = \frac{1}{2} \hbar (\omega_1^2 + \omega_3^2)^{1/2} [\cos\alpha, \sin\alpha; \sin\alpha, \sin\alpha; \sin\alpha, -\cos\alpha]; Eigenstate: |+\lambda > = \cos(\alpha/2) |+Z > + \sin(\alpha/2) |-Z >; & Ep = \frac{1}{2} \hbar (\omega_1^2 + \omega_3^2)^{1/2}; |-\lambda > = \sin(\alpha/2) |+Z > -\cos(\alpha/2) |-Z >; & Em = -Ep; Rearrange |+Z > = \cos(\alpha/2) |+\lambda > + \sin(\alpha/2) |-\lambda >; |-Z > = \sin(\alpha/2) |+\lambda > -\cos(\alpha/2) |-\lambda >; |\Psi(0) > = |+Z >; Time evolves: |\Psi(t) > = exp(-iEpt/\hbar) \cos(\alpha/2) |+\lambda > + exp(-$

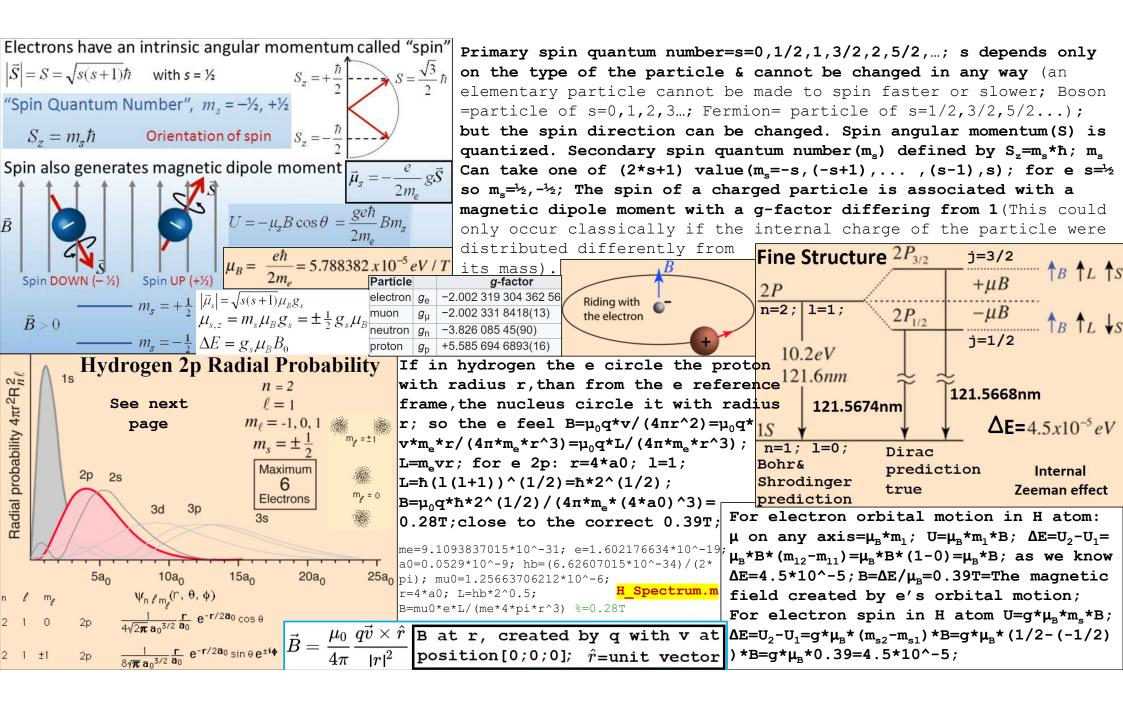
iEmt/h) sin ($\alpha/2$) |- λ ; Spin flip probability=p=probability to get|-Z>from time evolve |+Z>=<-Z| $\Psi(t)$ ><-Z| $|\Psi(t)$ >*=sin²(α) sin²((Ep-Em)t/(2h))= $\omega_1^2/(\omega_1^2+\omega_3^2)$ sin²(t($\omega_1^2+\omega_3^2$)^{1/2}/2); {with same basis vector; If $B_1=0; \omega_1=0; p=0;$ If $B_3=0; \omega_3=0; p=sin^2(t\omega_1/2);$ If t=2 π h/(Ep-Em); p=0; If t= π h/(Ep-Em); p=sin²(α)} **For B=[0;0;B_3]; H=\frac{1}{2}h[\omega_3, 0; 0, -\omega_3]; eigenstate: |+\lambda>=|+Z>=[1;0]; & Ep=\frac{1}{2}h\omega_3; |-\lambda>=|-Z>=[0;1]; &Em=-\frac{1}{2}h\omega_3; If |\Psi(0)>=|+n>; Time evolves: |\Psi(t)>=[exp(-i(\varphi+\omega_3t)/2)\cos(\Theta/2); exp(i(\varphi+\omega_3t)/2)\cos(\Theta/2); exp(i(\varphi+\omega_3t)/2) sin(\Theta/2)]; {ih}\partial \Psi/\partial t=ih[-i\omega_3^{1/2}\Psi_1; i\omega_3^{1/2}\Psi_2]=H\circ\Psi=E\Psi; if \Psi=eigenvector of H\circ than E*E* doesn't change with time (&\Psi=stationary state) }\Theta between the spin & B stays constant while \varphi increased by \omega_3 t (spin precession frequency is independent of \Theta); corresponds to Bloch vector precessing around B with angular frequency (|angular velocity|) of \omega_3{Bloch vector=[sin(\Theta) cos(\varphi); sin(\Theta) sin(\varphi); cos(\Theta)] correspond to |n+>; If \Theta \rightarrow \Theta + \pi; |+n> \rightarrow |-n>}**

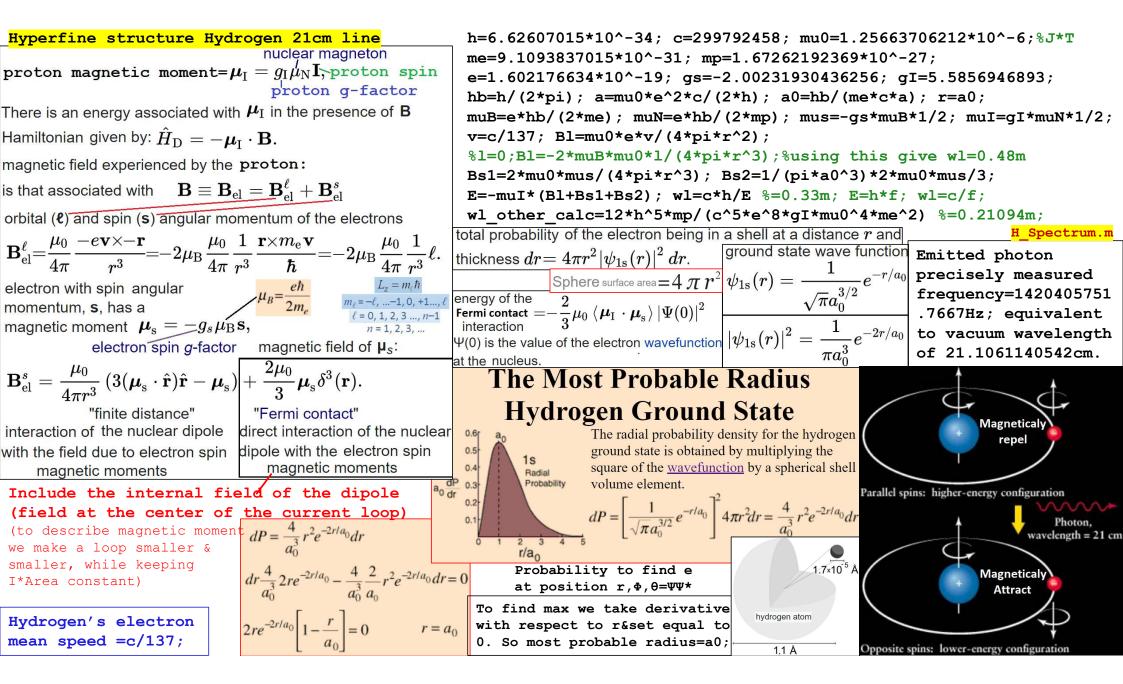

 $\{ \langle +Z | | \Psi(t) \rangle \langle +Z | | \Psi(t) \rangle *= \cos^{2}(\theta/2); \langle -Z | | \Psi(t) \rangle \langle -Z | | \Psi(t) \rangle *= \sin^{2}(\theta/2) \}$ If B_1 rotating about B_3 : $B=[B_1\cos(\omega t); B_1\sin(\omega t); B_3]; \omega_1=-B_1\gamma;$ $\omega_3 = -B_3\gamma; H^{\circ} = \frac{1}{2}\hbar[\omega_3, \omega_1 \exp(-i\omega t); \omega_1 \exp(i\omega t), -\omega_3]; \Psi = \Psi$ as viewed from the rotating frame; $\Psi = [\Psi_1; \Psi_2] = [\Psi_{r_1} \exp(-i\omega t/2); \Psi_{r_2} \exp(i\omega t/2)];$ {Rotation operator: $u=[0;0;1]; \alpha=\omega t$ } $\Psi_r=[exp(i\omega t/2),0;0,exp(-i\omega t/2)]\Psi$ = $[\Psi_{n1}; \Psi_{n2}]; \{M^{-1}\}$ Rewrite $i\hbar \partial \Psi / \partial t = i\hbar \partial \Psi / \partial t = i\hbar [\partial \Psi_{n1} / \partial t; \partial \Psi_{n2} / \partial t] =$ $i\hbar [\partial \Psi_{r1}/\partial texp(-i\omega t/2) - i\omega/2exp(-i\omega t/2)\Psi_{r1}; \partial \Psi_{r2}/\partial texp(i\omega t/2) + i\omega/2exp(-i\omega t/2)\Psi_{r2}$ $i\omega t/2)\Psi_{r2}$]=H° Ψ = $\frac{1}{2}\hbar[\omega_{3}\Psi_{1}+\omega_{1}exp(-i\omega t)\Psi_{2};\omega_{1}exp(i\omega t)\Psi_{1}-\omega_{3}\Psi_{2}]= \frac{1}{2}\hbar[\omega_{3}\Psi_{r1}exp(-i\omega t)\Psi_{r2};\omega_{1}exp(i\omega t)\Psi_{r2}]$ $\omega t/2$) + $\omega_1 \exp(-i\omega t/2) \Psi_{r_2}; \omega_1 \exp(i\omega t/2) \Psi_{r_1} - \omega_3 \Psi_{r_2} \exp(i\omega t/2)];$ split equations & Rearrange $i\hbar\partial\Psi_{r1}/\partial t = -\frac{1}{2}\hbar\Psi_{r1}(\omega-\omega_3) +\frac{1}{2}\hbar\omega_1\Psi_{r2}$; $i\hbar\partial\Psi_{r2}/\partial t =$ $\frac{1}{2}\hbar\omega_1\Psi_{r1} + \frac{1}{2}\hbar\Psi_{r2}(\omega - \omega_3)$; combine with $\Delta\omega = \omega - \omega_3$; $i\hbar\partial\Psi_r/\partial t = \frac{1}{2}\hbar[-\Delta\omega_1\omega_1;\omega_1,\omega_1]$ $\Delta \omega$] $\Psi_r = H_r^{\circ} \Psi_r$; H_r° is time independent; Spin flip probability=p= $|\langle -Z|\Psi \rangle|^{2} = |\Psi_{2}|^{2} = |\Psi_{r2}\exp(i\omega t/2)|^{2} = |\Psi_{r2}|^{2} = |\langle -Z|\Psi_{r} \rangle|^{2}; \& \text{ this was}$ calculated 2 sections ago with $H=\frac{1}{2}\hbar[\omega_3,\omega_1;\omega_1,-\omega_3]$; now we have H_r° , so we need to replace former section's $\omega_3 \rightarrow -\Delta \omega$ and we get $p=\omega_1^2/(\omega_1^2+\Delta\omega^2)\sin^2(t(\omega_1^2+\Delta\omega^2)^{1/2}/2)$; If $\omega \rightarrow \omega_3$; (Resonance condition $\Delta\omega=0$; p=sin²(t $\omega_1/2$); $\omega_3=2\pi f$; so if we fire photon f= $\omega_3/(2\pi)$; at right angle to B₂ it will flip the electron at~ $t=\pi/\omega_1$; this photon has energy $E=hf=2\pi\hbar f=\hbar\omega_3$; { $E=-\mu \bullet B=-\gamma \hat{S} \bullet B$; so Electron:spin up $E = -\gamma \hbar B_2 = \hbar \omega_2$; & spin down $E = \gamma \hbar B_2 = -\hbar \omega_2$; $\Delta E = \hbar \omega_2$; $|\omega_1| = |B|\gamma$; Rabi method true for electron/atomic nuclei in liquids & solids; }

Dirac equation: $E = (p^2 c^2 + m^2 c^4)^{1/2}$; so $E = (p^2 + m^2)^{1/2}$; If $\alpha_1 = [0, 0, 0, \frac{1}{X}]$

In hydrogen atom electron(mass=m _e ; position vector= x_e) & proton($m_p; x_p$) orbit each other about a common center of
mass; In hydrogen electron exerts on proton force= $F_{e ightarrow p}$ =m _p *a _p ; & proton exerts on electron force= $F_{p ightarrow e}$ =m _e *a _e =- $F_{e ightarrow p}$ =
-mp*ap=me*ae; ap=-ae*me/mp; The relative position of the electron with respect to the proton=xrel=xe-xp;
The relative acceleration of the electron with respect to the proton is $a_{rel} = a_p = d^2x_e/dt^2 - d^2x_p/dt^2 = d^2/dt^2 (x_e - x_p) = d^2x_e/dt^2 = d^2/dt^2 (x_e - x_p) = d^2x_e/dt^2 = d^2/dt^2 = d^2/dt$
$d^{2}/dt^{2}x_{re1} = a_{e} - a_{p} = a_{e} + a_{e} + m_{e}/m_{p} = a_{e} + (1 + m_{e}/m_{p}) = a_{e} + ((m_{p} + m_{e})/m_{p}) = a_{e} + m_{e} + ((m_{p} + m_{e})/m_{e}) = F_{p \rightarrow e}/\mu; \mu = m_{e} + m_{p}/(m_{e} + m_{p}); \frac{d^{2}/dt^{2}x_{re1}}{d^{2}/dt^{2}x_{re1}} = a_{e} + a_{e} + m_{e}/m_{p} + m_{e}/m_{p} = a_{e} + a_{e} + m_{e$
$\mathbf{F_{p \rightarrow e}/\mu}; \mathbf{r= x_{rel} }; \mathbf{For \ Hydrogen \ potential \ energy=- F_{p \rightarrow e} *r=-(k*q_e*q_p/r^2)*r=U=-k*e^2/r; \{k=8.9875517923*10^9; q_p=-q_e=e=1.602176634, k=1.20176634, k=$
*10^-19C; m _e =9.1093837015*10^-31kg; m _p =1.67262192369*10^-27kg} -h^2/(2m) * $\Delta \Psi + U * \Psi = E * \Psi$; {*r^2; Substitute $\Psi(\theta, \Phi, r) = R(r) * P(\theta)$ *F(Φ) = R*P*F; $d\Psi/dr = dR(r)/dr * P(\theta) * F(\Phi)$; divide by R*P*F} $\frac{-\hbar^2}{2\mu} \frac{1}{r^2 \sin\theta} \left[\sin\theta \frac{\partial}{\partial r} \left(r^2 \frac{\partial\Psi}{\partial r} \right) + \frac{\partial}{\partial \theta} \left(\sin\theta \frac{\partial\Psi}{\partial \theta} \right) + \frac{1}{\sin\theta} \frac{\partial^2\Psi}{\partial \phi^2} \right]$
$\frac{1}{R}\frac{d}{dr}\left[r^{2}\frac{dR}{dr}\right] + \frac{2\mu}{\hbar^{2}}(Er^{2} + ke^{2}r) + \left[\frac{1}{P\sin\theta}\frac{d}{d\theta}\left[\sin\theta\frac{dP}{d\theta}\right] + \frac{1}{F\sin^{2}\theta}\frac{d^{2}F}{d\phi^{2}}\right] = 0 \frac{\Delta \text{ in spherical}}{\text{coordinates}} + U(r)\Psi(r,\theta,\phi) = E\Psi(r,\theta,\phi) \left[\frac{1}{P\sin\theta}\frac{dP}{d\theta}\right] + \frac{1}{F\sin^{2}\theta}\frac{d^{2}F}{d\phi^{2}} = 0 \frac{\Delta \text{ in spherical}}{\frac{P}{P}} + \frac{1}{P\sin\theta}\frac{dP}{d\theta} + \frac{1}{F\sin^{2}\theta}\frac{d^{2}F}{d\phi^{2}} = 0 \frac{\Delta \text{ in spherical}}{\frac{P}{P}} + \frac{1}{P}\frac{dP}{d\theta} + \frac{1}{F}\frac{dP}{d\theta} + \frac$
First 2 terms are function of $\mathbf{r} (=\mathbf{a} (\mathbf{r}))$, So: $\mathbf{a} (\mathbf{r}) + \mathbf{b} (\theta) + \mathbf{c} (\Phi, \theta) = 0$; $\left[\frac{1}{P\sin\theta} \frac{d}{d\theta} \left[\sin\theta \frac{dP}{d\theta}\right] + \frac{1}{F\sin^2\theta} \frac{d^2F}{d\phi^2}\right] = C_r$
$a(r) = -b(\theta) - c(\Phi, \theta)$; if we vary only r, $b(\theta)$ and $c(\Phi, \theta)$ can't vary
but the equation must hold so:a(r)=Constant1=-C _r ; if we vary only $\sin\theta d \left[\sin\theta d \right] = 1 d^2F$
but the equation must hold so:a(r)=Constant1=-C _r ; if we vary only $\frac{\sin\theta}{P}\frac{d}{d\theta}\left[\sin\theta\frac{dP}{d\theta}\right] - C_r \sin^2\theta = -\frac{1}{F}\frac{d^2F}{d\phi^2} = -C_{\phi} \Phi$ equation must hold so left side=right side=Constant2=-C _{\$\phi} =m ² ; $\Psi(r,\theta,\phi) = R(r)P(\theta)F(\phi)$
$\frac{1}{16} \frac{1}{F(\phi) = F(\phi + 2n\pi)} \frac{1}{d^2F/d\phi^2 = F^*C_{\phi}^2} = -F^*m^2; F(\phi) = A^*e^{(1^*m^*\phi)}; F(\phi) = F(\phi + 2^*\pi); \{\text{physical constaint}\}$
$n=integer$ $A * e^{(i*m*\Phi)} = A * e^{(i*m*(\Phi+2*\pi))} = A * e^{(i*m*\Phi)} * e^{(i*m*2*\pi)} : 1 = e^{(i*m*2*\pi)} = cos(m*)$
$\frac{1}{2\pi} + i + \sin(m + 2\pi); m = 0, \pm 1, \pm 2, \pm 3; \text{ Lets normalized } F(\Phi) \text{ by } \int F(\Phi) ^2 d\Phi = \frac{1}{2\pi} + i + \sin(m + 2\pi); m = 0, \pm 1, \pm 2, \pm 3; \text{ Lets normalized } F(\Phi) \text{ by } \int F(\Phi) ^2 d\Phi = \frac{1}{2\pi} + i + \sin(m + 2\pi); m = 0, \pm 1, \pm 2, \pm 3; \text{ Lets normalized } F(\Phi) \text{ by } \int F(\Phi) ^2 d\Phi = \frac{1}{2\pi} + i + \sin(m + 2\pi); m = 0, \pm 1, \pm 2, \pm 3; \text{ Lets normalized } F(\Phi) \text{ by } \int F(\Phi) ^2 d\Phi = \frac{1}{2\pi} + i + \sin(m + 2\pi); m = 0, \pm 1, \pm 2, \pm 3; \text{ Lets normalized } F(\Phi) \text{ by } \int F(\Phi) ^2 d\Phi = \frac{1}{2\pi} + i + \sin(m + 2\pi); m = 0, \pm 1, \pm 2, \pm 3; \text{ Lets normalized } F(\Phi) \text{ by } \int F(\Phi) ^2 d\Phi = \frac{1}{2\pi} + i + \sin(m + 2\pi); m = 0, \pm 1, \pm 2, \pm 3; \text{ Lets normalized } F(\Phi) \text{ by } \int F(\Phi) ^2 d\Phi = \frac{1}{2\pi} + i + \sin(m + 2\pi); m = 0, \pm 1, \pm 2, \pm 3; \text{ Lets normalized } F(\Phi) \text{ by } \int F(\Phi) ^2 d\Phi = \frac{1}{2\pi} + i + \sin(m + 2\pi); m = 0, \pm 1, \pm 2, \pm 3; \text{ Lets normalized } F(\Phi) \text{ by } \int F(\Phi) ^2 d\Phi = \frac{1}{2\pi} + i + \sin(m + 2\pi); m = 0, \pm 1, \pm 2, \pm 3; \text{ Lets normalized } F(\Phi) \text{ by } \int F(\Phi) ^2 d\Phi = \frac{1}{2\pi} + i + \sin(m + 2\pi); m = 0, \pm 1, \pm 2, \pm 3; \text{ Lets normalized } F(\Phi) \text{ by } \int F(\Phi) ^2 d\Phi = \frac{1}{2\pi} + i + \sin(m + 2\pi); m = 0, \pm 1, \pm 2, \pm 3; \text{ Lets normalized } F(\Phi) \text{ by } \int F(\Phi) ^2 d\Phi = \frac{1}{2\pi} + i + \sin(m + 2\pi); m = 0, \pm 1, \pm 3, \ldots; \text{ Lets normalized } F(\Phi) \text{ by } \int F(\Phi) ^2 d\Phi = \frac{1}{2\pi} + i + \sin(m + 2\pi); m = 0, \pm 1, \pm 3, \ldots; \text{ Lets normalized } F(\Phi) \text{ by } \int F(\Phi) ^2 d\Phi = \frac{1}{2\pi} + i + \sin(m + 2\pi); m = 0, \pm 1, \pm 3, \ldots; \text{ Lets normalized } F(\Phi) \text{ by } \int F(\Phi) ^2 d\Phi = \frac{1}{2\pi} + i + \sin(m + 2\pi); m = 0, \pm 1, \pm 3, \ldots; \text{ Lets normalized } F(\Phi) \text{ by } \int F(\Phi) ^2 d\Phi = \frac{1}{2\pi} + i + \sin(m + 2\pi); m = 0, \pm 1, \pm 3, \ldots; \text{ Lets normalized } F(\Phi) \text{ by } \int F(\Phi) ^2 d\Phi = \frac{1}{2\pi} + i + \sin(m + 2\pi); m = 0, \pm 1, \pm 3, \ldots; \text{ Lets normalized } F(\Phi) \text{ by } H(\Phi) + i + \sin(m + 2\pi); m = 0, \pm 1, \pm 3, \ldots; \text{ Lets normalized } F(\Phi) + i + \sin(m + 2\pi); m = 0, \pm 1, \pm 3, \ldots; \text{ Lets normalized } F(\Phi) + i + \sin(m + 2\pi); m = 0, \pm 1, \pm 3, \ldots; \text{ Lets normalized } F(\Phi) + i + \sin(m + 2\pi); m = 0, \pm 1, \pm 3, \ldots; \text{ Lets normalized } F(\Phi) + i + \sin(m + 2\pi)$
$\left(\begin{array}{c} (0 + 2\pi (\bullet) & 0 \\ 0 & 1 \end{array} \right)^{2} * d\Phi = \int A^{2} * d\Phi = \left[\Phi A^{2} + C3 \right] = 2\pi * A^{2} = 1; A = 1/(2\pi)^{(1/2)}; C_{r} = -1(1+1) \sin \theta \frac{d}{d\theta} \left(\sin \theta \frac{d^{2}r}{d\theta} \right) + \left[l(l+1) \sin^{2}\theta - m^{2} \right] \mathbf{P} = 0$
$\mathbf{F}_{m}(\phi) = \frac{1}{\sqrt{2\pi}} e^{im\phi} \left[\frac{1}{R} \frac{d}{dr} \left[r^{2} \frac{dR}{dr} \right] + \frac{2\mu}{\hbar^{2}} (Er^{2} + ke^{2}r) = l(l+1) \right] \xrightarrow{\mathbf{C}_{\Phi} = -m^{2}; * \mathbf{P}} \underbrace{\mathbf{Solve by Frobenius to:}}_{\mathbf{Y}_{1m}(\theta, \Phi) = \mathbf{P}^{*}\mathbf{F};} \underbrace{\mathbf{Solve by Frobenius to:}}_{\mathbf{P}_{l}^{m}(\theta) = \mathbf{N} P_{l}^{m}(\cos\theta), \text{Legendre polynomial}}_{\mathbf{P}_{l}^{m}(\theta) = \mathbf{N} P_{l}^{m}(\cos\theta), \text{Legendre polynomial}}_{\mathbf{P}_{l}^{m}(\theta) = \mathbf{N} P_{l}^{m}(\cos\theta), \text{Legendre polynomial}}_{\mathbf{P}_{l}^{m}(\theta) = \mathbf{N} P_{l}^{m}(\theta) = \mathbf{N} P_{l}^{m}(\cos\theta), \text{Legendre polynomial}}_{\mathbf{P}_{l}^{m}(\theta) = \mathbf{N} P_{l}^{m}(\theta) = \mathbf{N} P_{l}^{m}(\cos\theta), \text{Legendre polynomial}}_{\mathbf{P}_{l}^{m}(\theta) = \mathbf{N} P_{l}^{m}(\cos\theta), \text{Legendre polynom}_{$
$\frac{d^2 \chi(s)}{d^2 \chi(s)} - \left[\frac{l(l+1)}{2} - \frac{n}{4} + \frac{1}{4} \right] \chi(s) = 0 \frac{*\hbar^2 R/(2\mu r); \ \chi(r) = rR(r); \ R(r) = X(r)}{2\pi r^{-1}; \ dR/dr = r^{-1} * dX/dr - X * r^{-2}; \ n^2 = 1 xy'' + (\alpha + 1 - x)y' + ny = 0. \frac{R(r) r^{-1} $
Assume $\chi(s) = s^{l+1}L(s)\exp(-s/2) \begin{vmatrix} s=2r\mu e^{2k}/(n\hbar^{2}); & r=sn\hbar^{2}/(2\mu e^{2k}); \\ *-\hbar^{2}n^{2}/(2\mu e^{4}k^{2}); & s/r=constant; \\ d^{2}X(r)/dr^{2}=(s/r)^{2*}d^{2}X(s)/ds^{2}; \end{vmatrix} \qquad y = L_{n}^{(\alpha)}(x) = \frac{x^{-\alpha}e^{x}}{n!} \frac{d^{n}}{dx^{n}} (e^{-x}x^{n+\alpha}) P_{l}(x) = \frac{1}{2^{l}l!} \left(\frac{d}{dx}\right)^{l} (x^{2}-1)^{l}$
$s \frac{d^{2}L}{d^{2}L} = \left[s - 2(l+1) \right] \frac{dL}{dL} + \left[n - (l+1) \right] \frac{dL}{dL} = 0 \text{(l+1)} \text{(a+1-s)}; \text{App4.m} Y_{lm}(\theta, \phi) = N_{lm} e^{im\phi} P_{l}^{m}(\cos\theta),$
$s_{ds^{2}} = [s - 2(l+1)]_{ds} + [n - (l+1)]_{L} = 0 R(r) = s L_{n-l-1}(s) \exp(-s/2)$ n_here=n-l-1>=0; n=integer>=l+1; Normalized constant

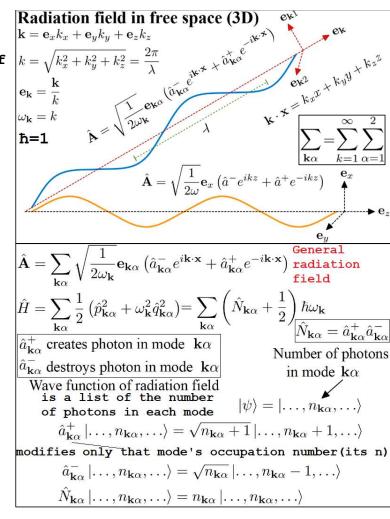

wavefunction normalization integral $a_0=\hbar^2/(k\mu e^2)$; Normalized hydrogen wave function: $\psi_{nlm}(r,\theta,\phi)=R_{nl}(r)Y_{lm}(\theta,\phi)$
$ \sum_{m=1}^{\infty} \frac{\pi^{2\pi}}{(2l+1)(l-m)!}]^{1/2} $
$1 = \int_{r=0}^{\infty} \int_{\theta=0}^{\pi} \int_{\phi=0}^{2\pi} \left R(r) Y(\theta, \phi) \right ^2 r^2 \sin \theta d\theta d\phi dr \left \begin{array}{c} k=1/(4\pi\epsilon_0); \\ r=na_0 s/2; \\ s=2r/(na_0); \end{array} \right Y_{lm}(\theta, \phi) = (-1)^m \left[\frac{(2l+1)(l-m)!}{4\pi(l+m)!} \right]^{1/2} P_l^m(\cos \theta) e^{im\phi}$
$1 = \int_{r=0}^{\infty} \int_{\theta=0}^{\infty} \left R(r) Y(\theta, \phi) \right ^2 r^2 \sin \theta d\theta d\phi dr \left \begin{array}{c} \frac{r=na_0 s/2}{s=2r/(na_0)}; \\ \frac{r=na_0 s/2}{s=2r/(na_0)}; \end{array} \right Y_{lm}(\theta, \phi) = (-1)^m \left[\frac{(2l+1)(l-m)!}{4\pi(l+m)!} \right]^{-r} P_l^m(\cos \theta) e^{im\phi}$ $\overline{P_l^m(x)} = (1-x^2)^{ m /2} \left(\frac{d}{dx} \right)^{ m } P_l(x) = \frac{4\pi\epsilon_0 \hbar^2}{\mu\epsilon^2} = 0.53 \times 10^{-10} \text{ m}} R_{nl}(r) = -\left[\left(\frac{2}{na_0} \right)^3 \frac{(n-l-1)!}{2n\{(n+l)!\}^3} \right]^{1/2} \left(\frac{2r}{na_0} \right)^l e^{-r/na_0} L_{n+l}^{2l+1}(2r/na_0)$ $\overline{P_l(x)} = \frac{1}{2^l l!} \left(\frac{d}{dx} \right)^l (x^2-1)^l \left[L_q^p(x) = \frac{d^p}{dx^p} L_q(x) \right] + \frac{d^p}{p} L_q(x)$ $\overline{P_l(x)} = \frac{1}{2^l l!} \left(\frac{d}{dx} \right)^l (x^2-1)^l \left[L_q^p(x) = \frac{d^p}{dx^p} L_q(x) \right] + \frac{d^q}{p} L_q(x)$ $\overline{P_l(x)} = \frac{1}{2^l l!} \left(\frac{d}{dx} \right)^l (x^2-1)^l \left[L_q^p(x) = \frac{d^q}{dx^p} L_q(x) \right] + \frac{d^q}{p} L_q(x)$ $\overline{P_l(x)} = \frac{1}{2^l l!} \left(\frac{d}{dx} \right)^l (x^2-1)^l \left[L_q^p(x) = \frac{d^q}{dx^p} L_q(x) \right] + \frac{d^q}{p} L_q(x)$ $\overline{P_l(x)} = \frac{1}{2^l l!} \left(\frac{d}{dx} \right)^l (x^2-1)^l \left[L_q^p(x) = \frac{d^q}{dx^p} L_q(x) \right] + \frac{d^q}{p} L_q(x)$ $\overline{P_l(x)} = \frac{1}{2^l l!} \left(\frac{d}{dx} \right)^l (x^2-1)^l \left[L_q^p(x) = \frac{d^q}{dx^p} L_q(x) \right] + \frac{d^q}{p} L_q(x)$ $\overline{P_l(x)} = \frac{1}{2^l l!} \left(\frac{d}{dx} \right)^l (x^2-1)^l \left[L_q^p(x) = \frac{d^q}{dx^p} L_q(x) \right] + \frac{d^q}{p} L_q(x)$ $\overline{P_l(x)} = \frac{1}{2^l l!} \left(\frac{d}{dx} \right)^l (x^2-1)^l \left[L_q^q(x) = \frac{d^q}{dx^p} L_q(x) \right]$
$P_{l}(x) = \frac{1}{2^{l}l!} \left(\frac{d}{dx}\right)^{l} (x^{2}-1)^{l}$ $L_{q}^{p}(x) = \frac{\alpha}{dx^{p}} L_{q}(x)$ Probability density of finding an electron in hydrogen atom in the n, l, m quantum state is $ \psi_{nlm} ^{2} = \psi_{nlm}^{\star}(r, \theta, \phi) \psi_{nlm}(r, \theta, \phi),$ Defined $p^{2} = -ue^{4k^{2}/(2Eb^{2})}$
time-independent Schrödinger equation, ignoring all spin-coupling interactions reduced mass $\mu = m_e M/(m_e + M)$ Laplacian in spherical coordinal state in volume element $d\tau = r^2 dr \sin \theta d\theta d\phi$ is $ \psi_{nlm} ^2 d\tau$. Defined $n^2 = -\mu e^4 k^2/(2E\hbar^2)$ & than discover that for solution: n>=1+1;
$\left(-\frac{\hbar^2}{2\mu}\nabla^2 - \frac{e^2}{4\pi\epsilon_0 r}\right)\psi(r,\theta,\phi) = E\psi(r,\theta,\phi) \left[-\frac{\hbar^2}{2\mu}\left[\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial\psi}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\psi}{\partial\theta}\right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2\psi}{\partial\phi^2}\right] - \frac{e^2}{4\pi\epsilon_0 r}\psi = E\psi\left[\frac{1}{2},3,\ldots,n-1; C_r=-1,(1+1); C_r=-1,(1+1); C_r=-1,(1+1); C_r=-1,(1+1); C_r=-1,\ldots,n-1; C_r=-1,(1+1); C_r=-1,\ldots,n-1; $
Hamiltonian This is a separable, partial differential equation which can be solved in terms of special functions. Hamiltonian Hamiltonian Hamiltonian n=1 n=2 n=3 n=6 n=7 Hamiltonian Hamiltonian Hamiltonian n=6 n=7 Hamiltonian Hamiltonian Hamiltonian Hamiltonian n=6 n=7 Hamiltonian Hamiltonian Hamiltonian
l = 0 $m = 0$ $m =$
$l = 1$ $m = 0$ $l = 1$ $m = 0$ $(n, 1, m)$ $(n, 1, m)$ $mu = me^{mp/(me+mp); a^{0}=hb^{2}/(k*mu*e^{2}); a^{0}=0.53*10^{(-10);}$ $P = (1-x^{2})^{(abs(m)/2)*diff(1/(factorial(1)*2^{1})*diff((x^{2}-1)))^{(abs(m)/2)*diff(1/(factorial(1)*2^{1})*diff((x^{2}-1)))^{(abs(m)/2)*diff((x^{2}-1)))^{(abs(m)/2)*diff((x^{2}-1))})^{(abs(m)/2)*diff((x^{2}-1))^{(abs(m)/2)*diff((x^{2}-1))})^{(abs(m)/2)*diff((x^{2}-1))^{(abs(m)/2)*diff((x^{2}-1))^{(abs(m)/2)*diff((x^{2}-1)))^{(abs(m)/2)*diff((x^{2}-1))})^{(abs(m)/2)*diff((x^{2}-1))^{(abs(m)/2)*diff((x^{2}-1))})^{(abs(m)/2)*diff((x^{2}-1))^{(abs(m)/2)*diff((x^{2}-1))^{(abs(m)/2)*diff((x^{2}-1))})^{(abs(m)/2)*diff((x^{2}-1))^{(abs(m)/2)*diff((x^{2}-1))})^{(abs(m)/2)*diff((x^{2}-1))^{(abs(m)/2)*diff((x^{2}-1))})^{(abs(m)/2)*diff((x^{2}-1))^{(abs(m)/2)*diff((x^{2}-1))})^{(abs(m)/2)*diff((x^{2}-1))})^{(abs(m)/2)*diff((x^{2}-1))})^{(abs(m)/2)*diff((x^{2}-1))})^{(abs(m)/2)*diff((x^{2}-1))})^{(abs(m)/2)*diff((x^{2}-1))})^{(abs(m)/2)*diff((x^{2}-1))})^{(abs(m)/2)*diff((x^{2}-1))})^{(abs(m)/2)*diff((x^{2}-1))})^{(abs(m)/2)*diff((x^{2}-1))})^{(abs(m)/2)*diff((x^{2}-1))})^{(abs(m)/2)*diff((x^{2}-1)))^{(abs(m)/2)*diff((x^{2}-1)))^{(abs(m)/2)*diff((x^{2}-1))})^{(abs(m)/2)*diff((x^{2}-1)))^{(abs(m)/2)*diff((x^{2}-1)))^{(abs(m)/2)*diff((x^{2}-1))})^{(abs(m)/2)*diff((x^{2}-1)))^{(abs(m)/2)*diff((x^{2}-1)))^{(abs(m)/2)*diff((x^{2}-1)))})^{(abs(m)/2)*diff((x^{2}-1)))^{(abs(m)/2)*diff((x^{2}-1)))^{(abs(m)/2)*diff((x^{2}-1)))^{(abs(m)/2)*diff((x^{2}-1)))^{(abs(m)/2)})^{(abs(m)/2)*diff((x^{2}-1)))^{(abs(m)/2)*diff((x^{2}-1)))^{(abs(m)/2)})^{(abs(m)/2)*diff((x^{2}-1))^{(abs(m)/2)*diff((x^{2}-1))^{(abs(m)/2)*diff((x^{2}-1)))^{(abs(m)/2)*diff((x^{2}-1))^{(abs(m)/2)})^{(abs(m)/2)*diff((x^{2}-1)))^{(abs(m)/2)})^{(abs(m)/2)*diff((x^{2}-1)))^{(abs(m)/2)})^{(abs(m)/2)})^{(abs(m)/2)})^{(abs(m)/2)})^{(abs(m)/2)*diff((x^{2}-1)))^{(abs(m)/2)})^{(abs(m)/2)})^{(abs(m)/2)})^{(abs(m)/2)})^{(abs(m)/2)})^{(abs(m)/2)})^{(abs(m)/2)})^{(abs(m)/2)})^{(abs(m)/2)})^{(abs(m)/2)})^{(abs(m)/2)})^{(abs(m)/2)})^{(abs(m)/2)})^{(ab$
l = 1 $m = 1$ $s) * s^{(n+1)}, s, (n+1)), s, (2*1+1);$ $WF = -(factorial(n-1-1)/(2*n*(factorial(n+1))^3) * (2/(n*a0))^3)^{(1)}$
l = 2 $m = 0$ $l = 2$ $l =$
l = 2 m = 1 P




$$\begin{split} &H{=}{-}\hbar^2/\left(2m_e\right)\Delta{+}U; \text{ If B present: } U{=}{-}k{*}e^2/r{+}e{*}Bz{*}Lz/\left(2m_e\right); \\ &H{*}\Psi{=}E{*}\Psi{=}\left(E_n{+}e{*}Bz{*}\hbar{*}m/\left(2m_e\right)\right){*}\Psi; \\ &E_n{=}{-}\mu e^4k^2/\left(2n^2\hbar^2\right); \\ &E \text{ now depend on 2 quantum number n,m so E split;} \end{split}$$

Dirac equation:

 $E = ((p*c)^{2} + (m*c^{2})^{2})^{(1/2)};$ in natural units $c=\hbar=1;$ so $E=(p^2+m^2)^{(1/2)}$; If Ax=[0,0,0,1;0,0,1,0;0,1,0,0];1,0,0,0]; Ay=[0,0,0,-i;0,0,i,0;0,-i,0,0;i,0,0,0]; Az = [0, 0, 1, 0; 0, 0, 0, -1; 1, 0, 0, 0; 0, -1, 0, 0]; B = [1, 0, 0, 0; 0]0,1,0,0;0,0,-1,0; 0,0,0,-1]; & I=Identity matrix; (Ax*Px+Ay*Py+Az*Pz+B*m)^2=(Px^2+Py^2+Pz^2+m^2)*I=E^2 *I=(E*I)^2; so E*I=Ax*Px+Ay* Py+Az*Pz+B*m; Replace with Operators ($\hbar=1$; $\partial/\partial X=\partial_x$): $I*i*\partial_+\Psi=-i*Ax*\partial_-\Psi-i*Ay*$ $\partial_{y}\Psi$ -i*Az* $\partial_{y}\Psi$ +B*m* Ψ ; Dirac equation for free electron; $\Psi = [\Psi_1; \Psi_2; \Psi_3; \Psi_4]; \quad i\partial_+ \Psi = [-i\partial_+ \Psi_4 - \partial_+ \Psi_4 - i\partial_+ \Psi_3 + m\Psi_1; -i\partial_+ \Psi_3 + \partial_+ \Psi_3 + \partial_+ \Psi_4]$ $i\partial_z \Psi_4 + m\Psi_2; -i\partial_x \Psi_2 - \partial_y \Psi_2 - i\partial_z \Psi_1 - m\Psi_3; -i\partial_x \Psi_1 + \partial_y \Psi_1 + i\partial_z \Psi_2 - m\Psi_4];$ $H=-i*Ax*\partial_{x}-i*Ay*\partial_{y}-i*Az*\partial_{z}+B*m; L_{z}=-i(x\partial/\partial y-y\partial/\partial x);$ If $\hat{S}_{2}=\frac{1}{2}[1,0,0,0;0,-1,0,0;0,0,1,0;0,0,0,-1]; \&$ $J_z = L_z + \hat{S}_z$; than $[H, J_z] = HJ_z - J_z H = 0$; => Total angular momentum(J) is conserved{Observable is constant of motion (does not depend on time) if it commutes with H} so \hat{S}_{τ} correct and because for p=0: $i\partial_{\tau}\Psi = [m\Psi_{1}; m\Psi_{2};$ $m\Psi_3$;- $m\Psi_4$]; Negative energy represent antiparticle (positron); Thus Ψ =[SpinUp electron; SpinDown electron; SpinUp positron; SpinDown positron]; [Thus Quantum mechanics & special relativity gives Dirac equation, Which predict electron spin, antimatter and Hydrogen fine structure line; Shrodinger & Dirac equations predic: Energy level differing by only tiny amounts, & electron probability distributions that are practically indistinguishable}



^{0.24} in case of: $\hbar = \omega = \mathbf{m} = 1$ classical		
$ \sum_{\substack{0.22\\0.2}} E_c = \frac{1}{2} x_0^2 P_c(x) = \frac{2dx}{T v(x)} = \frac{\Delta x}{\pi x_0 \sqrt{1 - (x/x_0)^2}} $	$\psi_n(x) = rac{1}{\sqrt{2^n n!}} \Bigl(rac{m\omega}{\pi \hbar} \Bigr)^{1/4} e^{-rac{m\omega x^2}{2\hbar}} H_n\Bigl(\sqrt{rac{m\omega}{\hbar}}$	$\left(\begin{array}{c} \overline{y} \\ \overline{y} \\ \overline{y} \end{array} \right) n = 0, 1, 2, \ldots$
^{0.18} $\frac{dx}{v}$ =Time spent in dxperiod= $T=2\pi/\omega$	V – 700	
$P_{q}(x) = \psi_{n}(x) ^{2} \Delta x$	$a_{2} (a_{2}) = a_{2} d^{n} (a_{2}) = a_{2} (a_{2}) $	$E_s = P_5(x)$
$\sum_{n=1}^{0.14} E_q = n + \frac{1}{2} = \text{probability to find} \wedge \frac{1}{2}$	$H_n(z)=(-1)^n \; e^{z^2} rac{d^n}{dz^n} \left(e^{-z^2} ight) ig E_n=\hbar\omegaig(n+z)$	$\left(+\frac{1}{2}\right) = $ probability $_{E_1}$ $P_{4(x)}$
$\sum_{n=1}^{\infty} Quantum$ the particle in x;	dz^n () n (
	Matlab: n=2; w=1; hb=1; m=1; syms x z real	E_3 $P_3(x)$
$ \begin{array}{c} $	$Hnf=(-1)^{n*exp(z^2)*diff(exp(-z^2),z,n);}$ Hn=subs(Hn	$f_{1} z_{1} x^{*} (m^{*}w/hb)^{(1/2)}$
e.e6 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	<pre>p=vpa(simplify((2^n*factorial(n))^(-1/2)*(m*w/(pi*h))</pre>	b))^(1/4) *exp(-(m*w*x^2)/(2*hb))*Hn)) $P_{1}(x)$
0.04	IN1=vpa(int(p*conj(p),x,-inf,inf))	$(a^{\dagger})^n$ how $b(a^{\dagger})^n$
0.02	$E = ((m*w^{2}*x^{2}*p-((hb^{2})/m)*diff(p,x,2))/2)/p n\rangle =$	$=\frac{(\alpha)}{\sqrt{1}} 0\rangle \qquad \qquad$
	xx=0:10/100:10; dx=0.1; Es=hb*w*(n+1/2)	$\sqrt{n!}$
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 16 	yy=subs(p*conj(p)*dx,x,xx); plot(xx,yy)	Wavefunction representations \int_{E} for the first eight bound Ψ_{c}
If $a^{+}=(m\omega/(2\hbar))^{1/2}(x-iP^{\circ}/(m\omega))=(m\omega/(2\hbar))^{1/2}(x-iP^{\circ}/(m\omega))$		
	$\theta_x/(m\omega)$ = Annihilation°; a n>=n ^{1/2} n-1>; a 0>=0;	eigenstates, n = 0 to 7. E_6 The horizontal axis Ψ_6
	x, (,) ============ , a(=== , a(=== , a(== , a(= , a(== , a(= ,	
$N=a^{+}a=Number^{\circ}; N n>=n n>; H=\hbar\omega(N+\frac{1}{2}); \qquad \hat{x}=1$	$\left(\frac{\hbar}{2}(a^{\dagger}+a)\right)$ Maxwell's equations in empty space $(c=1)$	shows the position x. E_s
$apP=(m*w/(2*hb))^{(1/2)}(x*p-hb*diff(p,x,1)/(m*w))$	$2m\omega$ B has no sources or we can write B	E_1 $\psi(0)$
$amP = (m*w/(2*hb))^{(1/2)} (x*p+hb*diff(p,x,1)/(m*w)) \hat{p} = i_{1}$	$\left[\frac{\hbar m \omega}{2}(a^{\dagger}-a)\right]$ sinks & the magnetic as the curl of another vector	
$ \sum_{i=1}^{n} \frac{(m \cdot w)(2 \cdot h)(1/2) \cdot (x \cdot mP - hb \cdot diff(mP, x, 1)/(m \cdot w))}{\hat{p} = i} $ $ \sum_{i=1}^{n} \frac{(m \cdot w)(2 \cdot hb)(1/2) \cdot (x \cdot mP - hb \cdot diff(mP, x, 1)/(m \cdot w))}{\hat{p} = i} $	2 (a a) flux through any another vector	$\psi_3 = c_3(2x^3 - 3x)e^{-\frac{1}{2}x^2}$ $E_3 = 3.5$ $\psi_1 \otimes e^{-\frac{1}{2}x^2}$
$ \{\nabla A = \partial_x A_x + \partial_y A_y + \partial_z A_z; 11 \nabla A \text{ is } 0/+7 = 10^{\circ} \text{ source free} \\ \text{sink}; \nabla X = [\partial_y A_z - \partial_z A_y; \partial_z A_x - \partial_x A_z; \partial_x A_y - \partial_y A_x]; \text{direction =max} $	vector potential) field:	
axis; length=amount of rotation; If u/A=scalar/vecto		$E_{2}=2.5$ $\Psi_{2}(x)$
$\nabla^2 A = [\nabla^2 A_x; \nabla^2 A_y; \nabla^2 A_z]; \nabla^2 u = \Delta u;$ if ∇^2 at point is $0/+/-t$		$\psi_2 = c_2(2x^2 - 1)e^{-\frac{1}{2}x^2}$ $E_1 = 1.5$ $\psi_1(x) = c_1xe^{-\frac{1}{2}x^2}$
equal/less/greater than the average of its neighbor	10 11010	
If $k=\omega$; A of EM wave travel in $z=A=e_xbcos(1)$	$\mathbf{E} = -\partial_t \mathbf{A} \qquad \nabla \times (\partial_t \mathbf{A} + \mathbf{E}) = 0$	ho $E_0=0.5$ $\psi_0(x)=c_0e^{-\frac{1}{2}x}$
$\frac{11}{10} = \frac{1}{10} = \frac{1}{10}$		
$\{\partial_t^2 A_x = V^2 A_x\}$ If q=bcos($\omega t - \theta$); A=e _x [qcos(kz)-ps	in (kz) / ω]; $\nabla \cdot \mathbf{E} = 0$ \rightarrow $\nabla \cdot \mathbf{A} = 0$ $\partial_x A_x + \partial_y A_y + \partial_z A_z =$	
$\{p=q'; \cos(\alpha-\beta)=\cos\alpha\cos\beta+\sin\alpha\sin\beta; g=p\cos(kz)+\omega q\sin(kz)\}$	z); E=-e _x g; Vector form of	
B=-e _y g; p'=q''=- ω^2 q; E=- ∂_t A; B= $\nabla \times A$ }Replace q,p wit	h $\mathbf{x}^{\circ}, \mathbf{p}^{\circ}$: wave equation	
$A^{\circ}=e_{x}(\hbar/(2\omega))^{1/2}(ae^{ikz}+a^{+}e^{-ikz}); \{m=1\}$ H=Average	$\partial_{t} \mathbf{E} = \nabla \times \mathbf{B} \rightarrow \partial_{t}^{2} \mathbf{A} = \nabla^{2} \mathbf{A} \nabla \times \nabla \times \mathbf{A} = \nabla (\nabla \cdot \mathbf{A}) - \nabla^{2} \mathbf{A}$	A 0
Space of $\frac{1}{2} E ^2 + \frac{1}{2} B ^2 = \frac{1}{2} (n^2 + \omega^2 q^2) \cdot (Avg(siny)) = ($); Avg $(\sin^2 x) = \frac{1}{2} \partial_t^2 A_x = \nabla^2 A_x \partial_t^2 A_y = \nabla^2 A_y \partial_t^2 A_z = \nabla^2 A_z$	
$p_{acc} = 0 + 2 \mathbf{D} + 2 \mathbf{D} = 2(\mathbf{P} + \mathbf{w} + \mathbf{Q}), (100) = 0.000$		$\nabla A = 0$ 2D ourl VX

Replace q,p in the field energy density H with x° , p° : $H=\frac{1}{2}(p^{\circ 2}+\omega^{2}x^{\circ 2})=\hbar\omega(N^{\circ}+\frac{1}{2});$

A°=Operator(sum over all possible modes of an expression containing one destruction & one creation operator for the corresponding photons) & the wavefunction is a list of the number of photons present in each electromagnetic mode.

"Quantum field theory is just quantum mechanics with an infinite number of harmonic oscillators."

Movie:Jan 17, 2022 https://www.youtube.com /watch?v=FPF4nSuvrGA

Subtitles:

The theory Of Nothing, how everything works and how it was created from nothing (By Guy Abitbol). Before walking through the 25 proven steps of the theory, lets skip the whole document for the good order. This document is attached in the description. Step #1 is the only not rigorously proved step in this theory (due to Gödel's incompleteness theorem). It states that nothing, or shape and space with existence contradiction is always being created (with any relative velocity); For example, if we defined nothing as a 0-dimensional point, then a shape in which a point encloses a line, that encloses a sphere surface, that enclose a spherical volume, is a non-existing shape, because this shape will be always enclosed by nothing, and we can proof that any open shape can be enclosed by something. Similarly, a space that originates from a point can't be created, because we can prove that any space must have origin, and we defined point as nothing. The following steps are proven gualitatively and demonstrated through 8 files of 3 dimensional pictures, and 44 files of MATLAB simulations, that are attached in the description. The certainty of the proofs is definite, because it is based on the pure derivation of classical mechanics as a mathematical theory. (see appendix). Step 2, When 2 high velocity non-existing-Shapes collide, they deformed into 2 Squashed non-existingShapes & move away from each other at lower speed. These squashed non-existing-Shapes will be referred to as G particles. Step 3, If 2G's collide, they bend at the collision point & rotate. Step 4, If 2 bent G's collide, they can be attached to each other & rotate together. Step 5, Further collisions bendings & attachments create cluster. Step 6, As the cluster become larger & larger, any new attachment increases its size by only small amount. But if the new attachment changes the moment of inertia, such that the cluster now rotates about its intermediate moment of inertia, then the cluster changes its orientation dramatically during the motion, even if the intermediate moment of inertia is just slightly bigger then the smallest moment of inertia. by the Intermediate axis theorem. Now, because of the dramatic changes in orientation, further collisions can cause the cluster to reorient and to rotate about its largest moment of inertia, while preserving its angular momentum and losing rotational energy. by the major axis theorem. Thus, over time, any cluster acquires 2 equal moments of inertia, while rotating about its third larger moment of inertia. Step 7, The rotation of any body is governed only by solving the system of equations in the former page. Therefore, bodies with same moment of inertia rotate the same. And this cluster rotate exactly like Feynman's Wobbling Plate, even though it's asymmetric. and the cluster's angular velocity and major axis, both return to their positions each Tsub-L seconds. The functions that describe the cluster's angular velocity are simple harmonic oscillators and wave functions. Step 8, Because, the cluster's major axis is the shortest; over time, more stuff collides in its direction, than in the other directions, making the cluster thinner and thinner. Until its large moment of inertia is about twice bigger than the other 2. Step 9, Therefore, over time, any cluster acquires 2 equal moments of inertia, while mainly rotating about its third, twice bigger moment of inertia. and the time taken for the major axis to return to its positions, is 1 half of the time taken to the other 2 axes to return to their former positions. Step 10, When the formed cluster collide with G's, it bent them at the collision point, rotate them and throw them with high speed. creating G-sub-z, which we call Electric field; or G-sub-xy, which we call Magnetic field. Step 11, Over time all the clusters in the universe throw G-sub-z and G-sub-xy on each other. That cause them to attach or detach sub-particles, and to adjust orientation. The equilibrium of these collisions creates types of clusters differing in the number of their subparticles, or mass. Step 12, Because the clusters throw many G's on each other, some G's increase the magnitude of the clusters' angular momentum, and some decrease it. such that, at equilibrium, this magnitude is equal for all clusters. by the theory of synchronization. And because the major axis period, T-sub-L, is inversely proportional to this magnitude, and proportional to the major moment of inertia, the major axes of all same type clusters align with the world Z axis, simultaneously. However, different particles of the same type have different direction of angular momentum, which is restricted to one of 2 spherical zones, which we call positive and negative charge. There is a transformation that transform between any spatial direction to a direction in the spherical zone. This corresponding spatial direction, from now on referred to as L-sub-q, is what quantum mechanics mistakenly taken as the particle angular momentum. What we call magnetic field direction, is equal to Lsub-q for a positive charge, and opposite for negative charge. Step 13, We can see that positron create G-sub-z +, and electron create G-sub-z minus. What we call electric field direction at a point, is the flying direction of G-sub-z+ there. Or the opposite flying direction of G-sub-z minus there. The collision of G-sub-z is more powerful when its tangential velocity is in the same direction as its translational velocity. And the collision response is dictated by the collision point. Therefore, because the electron and positron clusters contain many bended edges, we can see that when G-sub-z minus collide with electron it repels it from its source. and when it collides with positron it attracts it. Therefore, Like Charges Repel and Opposite Charges Attract. With a force inversely proportional to the distance squared, because G-sub-z are geometrically diluted in 3-dimensional space. Step 14, The period of the electron's major axis is half of the period of its other axes. Thus 2 different facets are capable of throwing G-sub-x+ in the direction of the electron's magnetic field, but only 1 facet is capable of throwing G-sub-x+ in a specific perpendicular direction. Therefore, the electron's magnetic field is twice stronger in the direction of its primary magnetic field, than in any perpendicular direction. The plane perpendicular to the angular momentum represents the average cluster orientation. Electron and positron with same magnetic field have exactly opposite angular momentum, and thus the same average cluster orientation. Therefore, they behave the same in magnetic field. Taking into account the tangential velocity of the average cluster orientation, and the geometric dilution and rotation of G-sub-xy, we can see that 2 electrons with same magnetic field attract if positioned along their magnetic field and repel if positioned perpendicularly.

Similarly, taking into account also the G-sub-xy flying direction and its collision point, we can prove any force and torque exerted by a magnetic field. While the information about the electron's angular momentum is sufficient to dictate most of its electric and magnetic interactions. As described by the Maxwell equations. A more precise description requires also information about the angular velocity and whether it's in an odd or even round, as real electron period involve 2 rounds of angular velocity about the angular momentum. This odd or even round will be referred to as phase. This more precise description is captured in the quantum spin state, because, it is derived from a wave function, and any wave function satisfy the simple harmonic oscillator equation, which describe our cluster's angular velocity direction and phase. For a moving electron, a more precise description requires also information about its velocity and its distance to the target. In order to determine in what direction of angular velocity and phase the electron will arrive. This information is also incorporated to the wave function in guantum mechanics by the dot product of the particle's momentum, and the target position vector. We can see from the interaction pictures, that electron in external homogeneous magnetic field feels torque but not force. And that electron and positron with same magnetic field feel same torque, but precess in opposite direction about the external magnetic field, because they have opposite angular momentum. This is a torgue induced precession, which we call Larmor precession. In contrast to the torgue free precession of the electron, that describe previously and create the T-sub-L period. The duration of one round of Larmor precession equal to the product of T-sub-L with an odd integer. Thus, after one round, the angular velocity of the electron returns to its starting point, but its non-major axes complete only half round. Therefore, the electron returns to its starting orientation only after 2 rounds of Larmor precession. Step 15, Charge that move in external magnetic field, feel force perpendicular to their movement and to the external magnetic field in a charge dependent direction. This is what we call Lorentz force, and it is demonstrated by examining the most powerful collision of G-sub-xy into a plane representing the average cluster orientation and rotation of the charge. Step 16, Moving charge generates internal magnetic field, perpendicularly to its movement and to the examined point, in a charge dependent direction. This is what we call Biot Savart Law, and it is demonstrated by examining the collision of the plane representing the average cluster orientation and rotation of the charge, into a G particle due to the charge movement. And the resulting bended particle, that thrown into the examined point. Step 17, In Stern Gerlach experiment we fire electrons through inhomogeneous magnetic field. Because of the movement of the electrons, G-sub-xy, from the magnetic field hit them in various points, and exert a changing torque on them. which align their internal magnetic field, parallel or antiparallel, to the external inhomogeneous magnetic field. As previously demonstrated, after this alignment, torque is no longer being exerted on the electrons, and an equal force push them upward or downward, depending on their internal magnetic field orientation. Creating 2 distinct parts on the screen. The probability that the electron's internal magnetic field will be align parallel to the external magnetic field, depends on G-sub-xy collision point, which depends on what amount the internal and the external magnetic fields go in the same direction, in other words, in their dot product, or in the cosine of the angle between them. However, the cosine range is 1 and -1, and a probability range is 1 and 0. A Simple range conversion and some trigonometric identities show that this probability equal to the square cosine of half the angle. Exactly what we get from quantum mechanics. Step 18, The electron and positron angular momentum is restricted to a spherical zone. Such that, when it aligns parallel or anti-parallel to its major axis, it can take infinite values, but otherwise it is restricted to one value. During Larmor precession, the internal magnetic field and L-sub-q is really precess about the external magnetic field. We can use the previously mentioned transformation to transform between the internal magnetic field to the angular momentum. During a stern Gerlach separation, an indelicate Larmor precession can also contribute to the equal separation pattern observed when applying consecutive perpendicular stern Gerlach apparatus. Step 19, G particle is created by a powerful collision of 2 non-existing spheres; and thus, having a maximally thin oblate spheroid shape. When G particle collides with positron, it bends, such that it has plan of symmetry, where the normal of this plan is its angular velocity. Thus, its angular velocity aligns with its angular momentum. The impulse of collision between positron and G particle, is referred to as non-bending impulse, if it's the biggest collision impulse that doesn't cause G bending. In our universe the non-bending impulse is constant, such that the speed of its emitted G is the speed of light. Any bigger collision impulse will cause G bending, and is referred to as a bendingimpulse. However, only the impulse at the last contact point, dictates the speed of the emitted G particle. Therefore, any bigger collision impulse will continue to bend G at their contact point. and this point won't be the last contact point until the collision impulse reaches the magnitude of the non-bending impulse. Thus, any collision impulse will emit any bended G at the speed of light, in other words, the speed of the electric and magnetic field particle is always the speed of light, regardless of the velocity of their source. While stationary and uniformly moving charge collide with G only once, an accelerating charge collide with G twice, and thus bends it twice. This twice bended G, is what we call photon. The stronger the collisions, the larger the magnitude of the photon angular velocity and its deformation. But larger deformation has smaller moment of inertia. Thus, the magnitude of the photon angular momentum, which is the product of its moment of inertia with its angular velocity, remains constant for any photon, and equal to the reduced Planck constant. On the contrary, the photon rotational energy, which is half the dot product of its angular momentum with its angular velocity, increases as the magnitude of the photon angular velocity increases. As demonstrated in page 16 and 33, even though each photon has a non-symmetric shape, its angular velocity still undergoes some kind of indelicate precession about its angular momentum.

Let's define T-sub-f as the time taken for the photon angular velocity to approximately return to its initial position. Therefore, the photon frequency is 1 over T-sub-f. Because the magnitude of the photon angular momentum is constant and equal to the reduced Planck constant, if we use change of variables in the integral that calculate the photon rotational energy, we can show that the photon rotational energy is equal to the product of its frequency and plank constant. Therefore, the total energy of any photon is greater from the known hf by a constant, but in any experiment this constant is reduced, see page 23. If a stationary charge begins an accelerated motion, it generates photon, the magnetic component of the photon, must have a direction perpendicular to the acceleration and to the photon location, in a charge dependent direction. This is a consequence of the Lienard Wiechert equation, which Stem directly from Maxwell's equations. This is demonstrated in the following pictures, that examine the collision of the charge with G particle, due to its acceleration, and the resulting photon in its examination point. The electric component of the photon is generated by the second collision, and thus it's perpendicular to its magnetic component, and to its velocity. In the former page I have demonstrated how a bigger collision impulse, between a charge and G particle, increases the amount of G bending, and its angular velocity, while decreasing its moment of inertia, such that, the magnitude of its angular momentum remains constant. And I have also shown that any photon frequency can be obtained by this mechanism. furthermore, I have also demonstrated that a bended G with larger angular velocity will cause more powerful subsequent collision with another electron, rather than a bended G with smaller angular velocity, even though its moment of inertia is smaller, and even though they both have the same magnitude of angular momentum. This explain why only high frequency photons are capable of ejecting electron in the photo electric effect. Moreover, the former page also explains why the speed of any photon is the speed of light, regardless the velocity of its source or its frequency. Because, the shape of the bended G doesn't matter, what is matter, is the impulse exerted on its last contact point. Impulse bigger than the non-bending impulse will continue to bend G, until it reaches the value of the non-bending impulse, which cause emission at the speed of light. Step 20, What we call left and right circularly polarized photons, are photons that their angular momentum is parallel and anti-parallel to their velocity, respectively. Therefore, their precessing angular velocity create rotational effect when hit a target. What we call linearly polarized photon, is photon that its angular momentum is perpendicular to its velocity. We mistakenly say that it has no angular momentum. The other photons are elliptically polarized photons. What we call polarizer is long sheets of molecules, that are capable of moving only parallel or antiparallel to a specific direction, referred to as the polarizer direction. The more the photon angular momentum is perpendicular to the polarizer direction the more probable that it will pass through it. Because this photon will be capable of moving the polarizer upon collision. And the polarizer's moving particles will in turn collide with another G and generate another photon with the same properties and direction. This is because the photon tangential velocity is much greater than its translational velocity. What we call photon polarization direction is a unit direction perpendicular to its velocity and to its angular momentum. Therefore, we can calculate the Malus's law, which is the probability that a photon will pass through a polarizer. By calculating in what amount the photon angular momentum is perpendicular to the polarizer direction, which is their absolute cross product. Thus, using some mathematical identities we arrive at the Malus photon passing probability, which is the square cosine of the angle between the polarizer direction and the photon polarization direction. Similarly, using also the Lienard Wiechert equation, we can prove the properties of: polarization by scattering. Antenna that creates vertical photon polarization direction, orient vertically, such that the moving electron will hit G particle and rotate it with angular momentum perpendicular to its emitted velocity and to its polarization direction. Using potential energy consideration, we can show that the wave length of the created photon, is twice the length of the antenna. Similarly, antenna that create horizontal photon polarization, orient horizontally. And helical antenna can be used to create circular polarized photon. Step 21, The Rabi cycle. The internal magnetic field of an electron will precess in external homogenous magnetic field, such that it returns to its initial position each odd integer multiples of T-sub-L, referred to as T-sub-w. Therefore, the electron's angular velocity also returns to its position each Tsub-w seconds. And as expected, T-sub-w is proportional to the electron mass, and inversely proportional to the electron charge, and to the magnetic field magnitude. If we rotate a second external homogenous magnetic field, perpendicularly to the first, such that its direction returns to its initial direction each T-sub-w seconds. Then its emitted G-sub-xy will always hit the electron face in an opposite direction of its motion, creating a strong force, that flip the electron internal magnetic field, or its L-sub-q. As expected, the time taken for this flip, is proportional to the electron mass, and inversely proportional to the electron charge, and to the rotating magnetic field magnitude. As expected, in order to flip the electron, instead of using the rotating magnetic field, we can also fire, circularly polarized photons with T-sub-f, that equal to T-sub-w, at a direction perpendicular to the first external magnetic field. Step 22, Quantum electro dynamics. Because the photon tangential velocity is much greater than its translational velocity, and because its angular velocity approximately rotates about its angular momentum, there will be a point on the photon that always hit the target first. The normal at this point dictate the photon exerted force direction on the target. The total effect of many colliding photons can be roughly calculated by summing up all these exerted forces directions. Because each photon travel at the speed of light, we can calculate its travel time duration, dt, and then its exerted force direction, by rotating the initial exerted force about the photon angular momentum by the product of dt, and 2 pi over Tsub-f radians. We can use this technique to prove the law of reflection. But also, to prove diffraction grating, and any other law involving photons.

While the rotating photon approximately return to its orientation each T-sub-f seconds, the rotating magnetic and electric field particles, exactly return to their orientation, because their angular velocity and angular momentum are parallel. And that is the reason that we were able to predict the electron magnetic moment to a very high accuracy. Step 24, Gravity. In the universe, everywhere and every time non-existing-shapes can be created, with any relative velocity. Therefore, any object will feel collision forces from all directions, which on average cancel each other out. But if 2 objects stand close to each other, they will feel less collision forces from the side that in between them, because each act like a barrier that prevent collisions from far created nonexisted shapes. Thus, the amount of these prevented forces of collisions that goes in the direction of these 2 objects is equal to the exerted gravitational force from the other side that each object feels. Therefore, we can calculate the gravitational force, by summing up all these prevented forces that goes in the direction of these 2 objects, using a double integral over the blocked spherical area. We can see that this calculated force, like the Newton Gravitational force, is inversely proportional to the squared distance of these objects. Additionaly, this calculated force is proportional to the products of the 2 objects' surface area, which is, an expression to their mass. This explains why anybody falls with the same acceleration, regardless of its mass. As it just cancels out, because acceleration is force over the accelerated mass. Gravitational redshift is caused by the movement of the electron that create the photon or by the movement of the electron in the receiver. In both cases, the change in the collision impulse of this electron, with G-particle or with photon, is increased with gravity. Similarly, massive object bends light. Because the light is reflected from electron, that is accelerated due to gravity. And, gravitational time dilation, is caused by electrons' distance elongation, due to gravitational forces. Step 25, Entanglement. If charge collide with G particle, it bends, rotates and emits it at the speed of light, always. because the deformation reduces the collision energy. However, in the universe, there are also small spherical shaped clusters, that are not capable of being deformed, referred to as O particles. Therefore, if electron collide with O particle, it emits it with a speed much greater than the speed of light. Because there is no energy loss to deformation. See step 29. This O particle can be thrown back and forth between 2 electrons, with opposite internal magnetic field, creating what we call entangled particles. Thus, if we change the internal magnetic field of one electron, the O particle will hit the other electron in a different point and change its internal magnetic field to be again opposite of the first. Entangled photons are created when the electron in their transmitter, is entangled to the electron of their receiver, or polarizer. See appendix.