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Abstract. In this paper we continue the development of the circles of parti-

tion by introducing a certain geometry of the axes of complex circles of parti-
tion. We use this geometry to verify the condition in the squeeze principle in

special cases with regards to the orientation of the axes of complex circles of

partition.

1. Introduction

In our seminal work [1], we introduced the method of *circles of partition* (CoP),
a novel approach grounded in a combinatorial structure that encodes specific addi-
tive properties of subsets of integers. This structure is equipped with a geometric
interpretation, whereby the elements are viewed as points in the plane, with their
weights corresponding to elements of the underlying subset. Formally, we define
the set of points as:

C(n,M) = {[x] | x, n− x ∈M} . (1.1)

Each point in this setexcept the central pointmust be uniquely paired with an-
other point, such that the two are joined by a line referred to as an axis of the CoP.
We denote an axis of a CoP by L[x],[y], and define an axis contained within the CoP
as:

L[x],[y] ∈̂ C(n,M) which implies [x], [y] ∈ C(n,M) with x + y = n.

In [2], we extended the method of circles of partition to complex numbers, where
the corresponding points are weighted by complex numbers and co-axis points are
connected by a line. This leads to the notion of the *complex circle of partition*
(cCoP), defined as:

Co(n,CM) =
{

[z] | z, n− z ∈ CM,=(z)2 = <(z) (n−<(z))
}
,

where

CM := {z = x + iy | x ∈M, y ∈ R} ⊆ C,
with M ⊆ N. This complex additive structure is abbreviated as *cCoP*. The

condition =(z)2 = <(z) (n−<(z)), referred to as the circle condition, ensures
that all points on the cCoP lie on a circle in the complex plane. This circle,
known as the *embedding circle* of the cCoP Co(n,CM), is denoted by Cn. These
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embedding circles have the property that they are fully contained within larger
embedding circles, except at the origin, which serves as a common point [2]. For
any axis, we assign the following relation:

L[z1],[z2] ∈̂ C
o(n,CM) which implies [z1], [z2] ∈ Co(n,CM) with z1 + z2 = n.

The structure of complex circles of partition offers greater versatility, incorpo-
rating features absent in the standard CoPs. Notably, for each axis L[z],[n−z] of a
cCoP, there exists a corresponding *conjugate axis*:

L
[z],[n−z]

,

where [z] and [n− z] denote the complex conjugate points. The geometric con-
figuration of embedding circles, including the space outside the embedding circle,
reveals an interesting ordering principle between points on interacting axes from
distinct cCoPs. A key consequence of the circle condition is the following result:

|L[z1],[z2]| = n

for any axis L[z1],[z2] ∈ Co(n,CM) =
{

[z] | z, n− z ∈ CM,=(z)2 = <(z) (n−<(z))
}

.
The *squeeze principle* [3], introduced as a tool for studying the binary Goldbach
conjecture, also finds a slightly modified version in [2]. For the readers convenience,
we briefly revisit this elegant principle below.

Theorem 1.1 (The squeeze principle). Let B ⊂M ⊆ N and Co(n,CM) and Co(n+
t,CM) with t ≥ 4 be non–empty cCoPs with integers n, t, s of the same parity. If
there exist an axis L[z1],[z2] ∈̂ Co(n,CM) with z2 ∈ CB and an axis L[w1],[w2] ∈̂ Co(n+
t,CM) with w1 ∈ CB such that

<(z1) < <(w1) and <(z2) < <(w2) (1.2)

then there exists an axis L[u1],[u2] ∈̂ Co(n + s,CB) with 0 < s < t. Hence also
Co(n + s,CM) is not empty.

Proof. From the existence of an axis L[z1],[z2] ∈̂ Co(n,CM) follows <(z2) = n−<(z1).
With the requirement (1.2) we get

<(z2) > n−<(w1). (1.3)

On the other hand from the existence of an axis L[w1],[w2] ∈̂ Co(n + t,CM) follows
<(w2) = n + t−<(w1) and with the requirement (1.2) and the result (1.3) we get

n−<(w1) < <(z2) < n + t−<(w1) | +<(w1)

n < <(z2) + <(w1) < n + t

n < n + s < n + t.

By virtue of the requirements z2, w1 ∈ CB and n + s = <(z2) + <(w1) there is an
axis L[u1],[u2] ∈̂ Co(n + s,CB) with <(u1) = <(w1) and <(u2) = <(z2) with their
imaginary parts determined by the circle condition. Hence Co(n+s,CB) 6= ∅. Since
B ⊂ M, it follows immediately that CB ⊂ CM and hence Co(n + s,CM) 6= ∅. This
completes the proof of the squeeze principle. �
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Theorem 1.1, commonly referred to as the squeeze principle, serves as a fun-
damental framework for investigating the feasibility of partitioning integers of a
particular parity using elements drawn from a specific subset of the integers. This
principle operates by identifying a pair of non-empty complex circles of partition
(cCoPs) that share a common base set. Subsequently, additional non-empty cCoPs
with generators constrained within the interval defined by these two initial genera-
tors are determined. The squeeze principle can be applied effectively to examine the
broader issue of partitioning numbers such that each summand belongs to the same
subset of positive integers. It also prompts further exploration into the geometric
conditions under which it holds, driven by the following fundamental questions:

Question 1. How do the notions of interiors and exteriors with respect to cCoPs
facilitate the proof of the squeeze principle?

Question 2. What role do the imaginary weights of members of cCoPs play in this
context?

Question 3. Are the embedding circles of cCoPs key to proving the Binary Gold-
bach Conjecture (BGC)?

2. Orientations of axes of Complex circles of partition and related
Geometries

In this section we introduce and study the geometry of the axis of cCoPs. We
launch the following languages as a precursor to our studies. In this section we
consider only axes of distinct cCoPs L[z1],[z2] ∈̂ Co(n,CM) and L[w1],[w2] ∈̂ Co(m,CM)
such that <(z1) < <(z2) and <(w1) < <(w2) with <(z1) 6= <(w1) and <(z2) 6=
<(w2).

Definition 2.1. Let M ⊆ N and Co(n,CM) be a non–empty cCoPs with
L[z1],[z2] ∈̂ Co(n,CM). We denote the gradient of the axis L[z1],[z2] ∈̂ Co(n,CM)
with

Grad(L[z1],[z2]) =
=(z2)−=(z1)

<(z2)−<(z1)
.

We say it is an axis of positive orientation if the gradient is positive. On the
other hand if the gradient is negative, then we say it is an axis of the cCoP with a
negative orientation.

Definition 2.2. Let M ⊆ N and Co(n,CM) and Co(m,CM) be non–empty cCoPs
with L[z1],[z2] ∈̂ Co(n,CM) and L[w1],[w2] ∈̂ Co(m,CM). We say the axes are of
homogeneous orientation if they point to the same direction. We denote this
relation with L[z1],[z2] || L[w1],[w2]. If they point to different directions, then we say
the axes are of mixed orientation. We denote the axes of distinct orientation that
are perpendicular with the relation L[z1],[z2] ⊥ L[w1],[w2]. If they point to different
directions and do not intersect, then we say the axes L[z1],[z2] and L[w1],[w2] are
skewed.
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Proposition 2.3. Let M ⊆ N and Co(n,CM) and Co(m,CM) be non–empty cCoPs
with L[z],[z] ∈̂ Co(n,CM) and L[w],[w] ∈̂ Co(m,CM). Then

L[z],[z] || L[w],[w].

Proof. The claim follows since L[z],[z] ∈̂ Co(n,CM) and L[w],[w] ∈̂ Co(m,CM) are
the degenerate axes of their corresponding cCoPs and each degenerate axis must
be parallel to the imaginary axis. It follows by transitivity that the axes must be
parallel to each other. �

Lemma 2.4. Let M ⊆ N and Co(n,CM) and Co(m,CM) be non–empty cCoPs with
L[z1],[z2] ∈̂ Co(n,CM) and L[w1],[w2] ∈̂ Co(m,CM) for m > n with <(z1) < <(z2) and
<(w1) < <(w2) such that the axes are of positive orientation. If L[z1],[z2] || L[w1],[w2],
then <(z1) < <(w1) and <(z2) < <(w2).

Proof. We note that the axes L[z1],[z2] ∈̂ Co(n,CM) passes through the point (n
2 , 0)

and L[w1],[w2] ∈̂ Co(m,CM) also passes through the point (m
2 , 0) with m > n. It

follows that Grad(L[z1],[z2]) = Grad(L[w1],[w2]) so that we can write

=(z2)

<(z2)− n
2

=
=(w2)

<(w2)− m
2

since L[z1],[z2] || L[w1],[w2]. Since m > n, it follows that Int[Co(n,CM)] ⊂ Int[Co(m,CM)].
Since the axes are of positive orientation with L[z1],[z2] || L[w1],[w2] then it implies
that =(z2) < =(w2) so that <(z2)− n

2 < <(w2)− m
2 ⇐⇒ <(z2) < <(w2). Let us

join the point w2 to the point z2 by a straight line, then it is easy to see that the
gradient of this line is given by

=(w2)−=(z2)

<(w2)−<(z2)
> 0.

Similarly, let us join the point z1 to the point z2 by a straight line. We compute
the gradient of this line as

=(z1)−=(w1)

<(z1)−<(w1)
< 0.

Let us suppose that
=(z1)−=(w1)

<(z1)−<(w1)
> 0

then =(z1)−=(w1) > 0 since L[z1],[z2] || L[w1],[w2] with m > n so that <(z1) > <(w1).
It follows that

<(w1) = <(w1) < <(z1) = <(z1)

with

|w1 − (
m

2
, 0)| = |w1 − (

m

2
, 0)| > |z1 − (

m

2
, 0)| = |z1 − (

m

2
, 0)|.

Since

|=(w1)| = |=(w1)| > |=(z1)| = |=(z1)|
and the points [w1], [w1] are opposite points on the embedding circle Cm and simi-
larly the points [z1], [z1] on Cn with m > n, it follows that Cm and Cn cannot have
a common point at the origin. This violates the Big Bang theorem. �

We obtain a similar result of the natural ordering principle of the real part of
axes of cCoPs in the case where the axes are all of negative orientation.
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Lemma 2.5. Let M ⊆ N and Co(n,CM) and Co(m,CM) be non–empty cCoPs
with L[z1],[z2] ∈̂ Co(n,CM) and L[w1],[w2] ∈̂ Co(m,CM) for m > n with <(z1) <
<(z2) and <(w1) < <(w2) such that the axes are of negative orientation. If
L[z1],[z2] || L[w1],[w2], then <(z1) < <(w1) and <(z2) < <(w2).

Proof. We note that the axes L[z1],[z2] ∈̂ Co(n,CM) passes through the point (n
2 , 0)

and L[w1],[w2] ∈̂ Co(m,CM) also passes through the point (m
2 , 0) with m > n. It

follows that Grad(L[z1],[z2]) = Grad(L[w1],[w2]) so that we can write

=(z2)

<(z2)− n
2

=
=(w2)

<(w2)− m
2

since L[z1],[z2] || L[w1],[w2]. Since m > n, it follows that Int[Co(n,CM)] ⊂ Int[Co(m,CM)].
Since the axes are of negative orientation with L[z1],[z2] || L[w1],[w2] then it implies
that =(z1) = −=(z2) < −=(w2) = =(w1) so that we have

−=(z1)

<(z2)− n
2

=
−=(w1)

<(w2)− m
2

⇐⇒ =(z1)

<(z2)− n
2

=
=(w1)

<(w2)− m
2

.

Since =(w1) > =(z1), it follows that <(z2)− n
2 < <(w2)− m

2 ⇐⇒ <(z2) < <(w2)
for m > n. Let us join the point w2 to the point z2 by a straight line, then it is
easy to see that the gradient of this line is given by

=(w2)−=(z2)

<(w2)−<(z2)
< 0

since =(z2) < =(w2). Similarly, let us join the point z1 to the point z2 by a straight
line. We compute the gradient of this line as

=(z1)−=(w1)

<(z1)−<(w1)
> 0.

Let us suppose that
=(z1)−=(w1)

<(z1)−<(w1)
> 0

then =(z1)−=(w1) < 0 since L[z1],[z2] || L[w1],[w2] with m > n so that <(z1) > <(w1).
It follows that

<(w1) = <(w1) < <(z1) = <(z1)

with
|w1 − (

m

2
, 0)| = |w1 − (

m

2
, 0)| > |z1 − (

m

2
, 0)| = |z1 − (

m

2
, 0)|.

Since
|=(w1)| = |=(w1)| > |=(z1)| = |=(z1)|

and the points [w1], [w1] are opposite points on the embedding circle Cm and simi-
larly the points [z1], [z1] on Cn with m > n, it follows that Cm and Cn cannot have
a common point at the origin. This violates the Big Bang theorem. �

The lemma under discussion establishes a relationship between two geometric
axes, each contained within distinct critical configurations of points (cCoPs) asso-
ciated with different parameters. These axes, which are embedded within certain
mathematical structures, are described as having negative orientation and being
parallel to each other. The primary goal of the proof is to demonstrate that if these
axes are parallel, specific relationships must hold between the real parts of their
defining points.
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The proof begins by identifying that the axes pass through specific points on the
real line, which are determined by their respective parameters. Since the axes are
parallel, they must share the same gradient. This geometric condition is expressed
in terms of the real and imaginary components of the points that define the axes.
The proof leverages this condition to relate the positions of the points on the two
axes.

A crucial aspect of the proof is the negative orientation of the axes. This means
that the imaginary parts of the points exhibit a specific symmetry, leading to certain
inequalities between the imaginary components. These inequalities then directly
impact the real components, allowing the proof to establish a relationship between
the real parts of the points on the two axes.

To reinforce the result, the proof introduces a geometric argument, analyzing
the slopes of lines connecting corresponding points on the two axes. This analysis
confirms the earlier findings and ensures that the relationship between the real
components holds consistently. However, the proof also encounters a potential
contradiction with a previously established geometric theorem, referred to as the
”Big Bang theorem.” This contradiction serves to reinforce the conclusion, showing
that the initial configuration must satisfy the proposed inequalities.

In summary, the proof combines geometric reasoning with analytic conditions to
demonstrate that parallelism and negative orientation impose strict relationships
between the real parts of points on the axes. The conclusion is drawn through
a careful balance of geometric intuition and algebraic manipulation, highlighting
the delicate interplay between the real and imaginary components of the points
involved.

Next, we prove an important fact concerning the relationship between an axis
of a cCoP and other axes of cCoPs with higher generators. It basically purports
that the slope of cCoPs with higher generators must be relatively steeper so long
as these axis intersect. We launch formally the following fact in the lemma below.

Lemma 2.6. Let M ⊆ N and Co(n,CM) and Co(m,CM) be non–empty cCoPs with
L[z1],[z2] ∈̂ Co(n,CM) and L[w1],[w2] ∈̂ Co(m,CM) for m > n with <(z1) < <(z2)
and <(w1) < <(w2). If the axis L[z1],[z2] and the axis L[w1],[w2] intersect at a point
above the real axis, then

Grad(L[w1],[w2]) > Grad(L[z1],[z2]).

Proof. Suppose the axes L[z1],[z2] ∈̂ Co(n,CM) and L[w1],[w2] ∈̂ Co(m,CM) for m > n
with <(z1) < <(z2) and <(w1) < <(w2) intersect at the point v ∈ C. We note that
the axes L[z1],[z2] ∈̂ Co(n,CM) passes through the point (n

2 , 0) and L[w1],[w2] ∈̂ Co(m,CM)
also passes through the point (m

2 , 0) so that we can compute the gradient of the
axes. We obtain

Grad(L[w1],[w2]) =
=(v)

<(v)− m
2

and

Grad(L[z1],[z2]) =
=(v)

<(v)− n
2

.

Let us suppose that Grad(L[w1],[w2]) ≤ Grad(L[z1],[z2]), then it follows that

=(v)

<(v)− m
2

≤ =(v)

<(v)− n
2

.
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Since the axes intersect at a point above the real axis, it must be that =(v) > 0 so
that we obtain

1

<(v)− m
2

≤ 1

<(v)− n
2

⇐⇒ <(v)− n

2
≤ <(v)− m

2
⇐⇒ m < n

which violates the inequality m > n. �

We obtain an analogous result in the case the axes intersect below the real axis.

Lemma 2.7. Let M ⊆ N and Co(n,CM) and Co(m,CM) be non–empty cCoPs with
L[z1],[z2] ∈̂ Co(n,CM) and L[w1],[w2] ∈̂ Co(m,CM) for m > n with <(z1) < <(z2)
and <(w1) < <(w2). If the axis L[z1],[z2] and the axis L[w1],[w2] intersect at a point
below the real axis, then

Grad(L[w1],[w2]) < Grad(L[z1],[z2]).

Proof. Suppose the axes L[z1],[z2] ∈̂ Co(n,CM) and L[w1],[w2] ∈̂ Co(m,CM) for m > n
with <(z1) < <(z2) and <(w1) < <(w2) intersect at the point v ∈ C. We note that
the axes L[z1],[z2] ∈̂ Co(n,CM) passes through the point (n

2 , 0) and L[w1],[w2] ∈̂ Co(m,CM)
also passes through the point (m

2 , 0) so that we can compute the gradient of the
axes. We obtain

Grad(L[w1],[w2]) =
=(v)

<(v)− m
2

and

Grad(L[z1],[z2]) =
=(v)

<(v)− n
2

.

Let us suppose that Grad(L[w1],[w2]) ≥ Grad(L[z1],[z2]), then it follows that

=(v)

<(v)− m
2

≥ =(v)

<(v)− n
2

.

Since the axes intersect at a point below the real axis, it must be that =(v) < 0 so
that we obtain

1

<(v)− m
2

≤ 1

<(v)− n
2

⇐⇒ <(v)− n

2
≤ <(v)− m

2
⇐⇒ m < n

which violates the inequality m > n. �

We obtain a certain characterization of the gradient of axes of two interacting
cCoPs. This is an immediate consequence of Lemma 2.6. It will also serve in many
ways as a guiding principle for our further investigations.

Theorem 2.8. Let M ⊆ N and Co(n,CM) and Co(m,CM) be non–empty cCoPs with
L[z1],[z2] ∈̂ Co(n,CM) and L[w1],[w2] ∈̂ Co(m,CM) for m > n with <(z1) < <(z2) and
<(w1) < <(w2). If the axis L[z1],[z2] and the axis L[w1],[w2] intersect at a point above
the real axis with Grad(L[w1],[w2]) < 0, then

Grad(L[z1],[z2]) < 0.
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Proof. Let us assume to the contrary that

Grad(L[z1],[z2]) ≥ 0

then Grad(L[z1],[z2]) > 0, since Grad(L[z1],[z2]) 6= 0. The axis L[z1],[z2] and the axis
L[w1],[w2] intersect at a point above the real axis so that

0 > Grad(L[w1],[w2]) > Grad(L[z1],[z2]) > 0

by virtue of Lemma 2.6, which is absurd. �

Theorem 2.9. Let M ⊆ N and Co(n,CM) and Co(m,CM) be non–empty cCoPs with
L[z1],[z2] ∈̂ Co(n,CM) and L[w1],[w2] ∈̂ Co(m,CM) for m > n with <(z1) < <(z2) and
<(w1) < <(w2). If the axis L[z1],[z2] and the axis L[w1],[w2] intersect at a point below
the real axis with Grad(L[w1],[w2]) > 0, then

Grad(L[z1],[z2]) > 0.

Proof. Let us assume to the contrary that

Grad(L[z1],[z2]) ≤ 0

then Grad(L[z1],[z2]) < 0, since Grad(L[z1],[z2]) 6= 0. The axis L[z1],[z2] and the axis
L[w1],[w2] intersect at a point below the real axis so that

0 < Grad(L[w1],[w2]) < Grad(L[z1],[z2]) < 0

by virtue of Lemma 2.7, which is absurd. �

We obtain variants of Theorem 2.8 and Theorem 2.9 in the sequel.

Theorem 2.10. Let M ⊆ N and Co(n,CM) and Co(m,CM) be non–empty cCoPs
with L[z1],[z2] ∈̂ Co(n,CM) and L[w1],[w2] ∈̂ Co(m,CM) for m > n with <(z1) < <(z2)
and <(w1) < <(w2). If the axis L[z1],[z2] and the axis L[w1],[w2] intersect at a point
above the real axis with Grad(L[z1],[z2]) > 0, then

Grad(L[w1],[w2]) > 0.

Proof. The axis L[z1],[z2] and the axis L[w1],[w2] intersect at a point above the real
axis so that

Grad(L[w1],[w2]) > Grad(L[z1],[z2]) > 0

by virtue of Lemma 2.6, and the claim follows. �

Theorem 2.11. Let M ⊆ N and Co(n,CM) and Co(m,CM) be non–empty cCoPs
with L[z1],[z2] ∈̂ Co(n,CM) and L[w1],[w2] ∈̂ Co(m,CM) for m > n with <(z1) < <(z2)
and <(w1) < <(w2). If the axis L[z1],[z2] and the axis L[w1],[w2] intersect at a point
below the real axis with Grad(L[z1],[z2]) < 0, then

Grad(L[w1],[w2]) < 0.

Proof. The axis L[z1],[z2] and the axis L[w1],[w2] intersect at a point below the real
axis so that

Grad(L[w1],[w2]) < Grad(L[z1],[z2]) < 0

by virtue of Lemma 2.7, and the claim follows. �
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The theorems in this work address the behaviour of two axes of cCoPs that in-
tersect at points in the complex plane, with specific attention to their gradients.
These axes belong to certain configurations of points (cCoPs) and are described
by their real and imaginary components. The focus is on understanding how the
gradients (slopes) of these axes relate to one another under different conditions of
intersection, whether above or below the real axis.
The gradients (slopes) of the axes are influenced by where the intersection occurs
(above or below the real axis). The proofs rely heavily on the structure of the
axes and their geometric relationships, particularly through the use of lemmas that
describe how gradients behave at intersections. The arguments draw on both con-
tradiction and direct comparison of gradients to establish the necessary conditions
for consistency in the behaviour of the axes. These theorems form a coherent
framework for understanding how parallelism, intersection points, and gradients
interact in these geometric configurations, offering a clear and structured view of
their behaviour in different parts of the complex plane.

It is worthwhile noting that we have only confirmed the natural ordering principle
of the real parts of the upper axes points of cCoPs in the case the corresponding axes
of distinct cCoPs are parallel. We would like this behaviour to be propagated among
the remaining configuration of the axes of cCoPs that we have not yet exhaust.
It is possible that certain imagined configuration may not hold in this geometry.
In the following sequel, we will examine this naturally exhibiting principle in the
cases where any two axes of distinct non-empty cCoPs are skewed. We launch the
following result.

Lemma 2.12. Let M ⊆ N and Co(n,CM) and Co(m,CM) be non–empty cCoPs with
L[z1],[z2] ∈̂ Co(n,CM) and L[w1],[w2] ∈̂ Co(m,CM) for m > n with <(z1) < <(z2)
and <(w1) < <(w2). If the axis L[z1],[z2] and the axis L[w1],[w2] are skewed with
Grad(L[w1],[w2]) > Grad(L[z1],[z2]) > 0 then <(z1) < <(w1) and <(z2) < <(w2).

Proof. Let axis L[z1],[z2] and the axis L[w1],[w2] be skewed with Grad(L[w1],[w2]) >
Grad(L[z1],[z2]) > 0. Let us join z2 to w2 by a straight line. Then by the em-
bedding Int[Co(n,CM)] ⊂ Int[Co(m,CM)] with the axes L[z1],[z2] and L[w1],[w2] pass-
ing through the point (n

2 , 0) and (m
2 , 0), respectively with m > n, it follows that

=(w2) > =(z2). Let us suppose that the gradient of this line

=(w2)−=(z2)

<(w2)−<(z2)
< 0.

Then it follows that <(w2) < <(z2) so that the axes L[z1],[z2] and L[w1],[w2] must
intersect at a point since Grad(L[w1],[w2]) > Grad(L[z1],[z2]) > 0 and L[w1],[w2] passes
through the point (m

2 , 0) with m > n, contradicting the requirement that the axes
L[z1],[z2] and L[w1],[w2] are skewed . Thus we must have <(w2) > <(z2). Similarly
let us join the point z1 to the point w1 by a straight line. Then by the embed-
ding Int[Co(n,CM)] ⊂ Int[Co(m,CM)] with the axes L[z1],[z2] and L[w1],[w2] passing
through the point (n

2 , 0) and (m
2 , 0), respectively with m > n and Grad(L[w1],[w2]) >

Grad(L[z1],[z2]) > 0, it follows that =(w1) < =(z1) < 0. Let us suppose that the
gradient of this line

=(w1)−=(z1)

<(w1)−<(z1)
> 0
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then it implies that <(z1) > <(w1). It follows that

<(w1) = <(w1) < <(z1) = <(z1)

with

|w1 − (
m

2
, 0)| = |w1 − (

m

2
, 0)| > |z1 − (

m

2
, 0)| = |z1 − (

m

2
, 0)|.

Since

|=(w1)| = |=(w1)| > |=(z1)| = |=(z1)|
and the points [w1], [w1] are opposite points on the embedding circle Cm and simi-
larly the points [z1], [z1] on Cn with m > n, it follows that Cm and Cn cannot have
a common point at the origin. This violates the Big Bang theorem. �

We obtain an analogous result in the case all the axis are of negative orientation
and slopes down negatively.

Lemma 2.13. Let M ⊆ N and Co(n,CM) and Co(m,CM) be non–empty cCoPs with
L[z1],[z2] ∈̂ Co(n,CM) and L[w1],[w2] ∈̂ Co(m,CM) for m > n with <(z1) < <(z2)
and <(w1) < <(w2). If the axis L[z1],[z2] and the axis L[w1],[w2] are skewed with
Grad(L[w1],[w2]) < Grad(L[z1],[z2]) < 0 then <(z1) < <(w1) and <(z2) < <(w2).

Proof. Let the axis L[z1],[z2] and the axis L[w1],[w2] be skewed with 0 > Grad(L[z1],[z2]) >
Grad(L[w1],[w2]). Let us join z1 to w1 by a straight line. Then by the embed-
ding Int[Co(n,CM)] ⊂ Int[Co(m,CM)] with the axes L[z1],[z2] and L[w1],[w2] pass-
ing through the point (n

2 , 0) and (m
2 , 0), respectively with m > n, it follows that

=(w1) < =(z1) < 0. Let us suppose that the gradient of this line

=(w1)−=(z1)

<(w1)−<(z1)
< 0

then it follows that <(w1) < <(z1). It follows that

<(w1) = <(w1) < <(z1) = <(z1)

with

|w1 − (
m

2
, 0)| = |w1 − (

m

2
, 0)| > |z1 − (

m

2
, 0)| = |z1 − (

m

2
, 0)|.

Since

|=(w1)| = |=(w1)| > |=(z1)| = |=(z1)|
and the points [w1], [w1] are opposite points on the embedding circle Cm and sim-
ilarly the points [z1], [z1] on Cn with m > n, it follows that Cm and Cn cannot
have a common point at the origin. This violates the Big Bang theorem. Similarly,
let us join z2 to w2 by a straight line. Then by the embedding Int[Co(n,CM)] ⊂
Int[Co(m,CM)] with the axes L[z1],[z2] and L[w1],[w2] passing through the point (n

2 , 0)
and (m

2 , 0), respectively with m > n, it follows that =(w2) < =(z2) < 0. Let us
suppose that the gradient of this line

=(w2)−=(z2)

<(w2)−<(z2)
> 0.

Then it follows that <(w2) < <(z2) so that the axes L[z1],[z2] and L[w1],[w2] must
intersect at a point since Grad(L[w1],[w2]) < Grad(L[z1],[z2]) < 0 and L[w1],[w2] passes
through the point (m

2 , 0) with m > n, contradicting the requirement that the axes
L[z1],[z2] and L[w1],[w2] are skewed . Thus we must have <(w2) > <(z2). �
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We examine the remaining skew case of interacting axes of distinct cCoPs in the
scenario where they have gradient of opposite signs.

Lemma 2.14. Let M ⊆ N and Co(n,CM) and Co(m,CM) be non–empty cCoPs with
L[z1],[z2] ∈̂ Co(n,CM) and L[w1],[w2] ∈̂ Co(m,CM) for m > n with <(z1) < <(z2)
and <(w1) < <(w2). If the axis L[z1],[z2] and the axis L[w1],[w2] are skewed with
Grad(L[w1],[w2]) > 0 and Grad(L[z1],[z2]) < 0 such that

|Grad(L[w1],[w2])| > |Grad(L[z1],[z2])|
then <(z1) < <(w1) and <(z2) < <(w2).

Proof. Under the requirement |Grad(L[w1],[w2])| > |Grad(L[z1],[z2])| with the em-
bedding

Int[Co(n,CM)] ⊂ Int[Co(m,CM)]

it implies that =(z1) > =(w1) and =(z2) < =(w2). Let us join the point z1 to the
point w1 by a straight line and suppose for the gradient of this line

=(z1)−=(w)

<(z1)−<(w1)
> 0.

then it follows that <(w1) < <(z1). It follows that

<(w1) = <(w1) < <(z1) = <(z1)

with
|w1 − (

m

2
, 0)| = |w1 − (

m

2
, 0)| > |z1 − (

m

2
, 0)| = |z1 − (

m

2
, 0)|.

Since
|=(w1)| = |=(w1)| > |=(z1)| = |=(z1)|

and the points [w1], [w1] are opposite points on the embedding circle Cm and simi-
larly the points [z1], [z1] on Cn with m > n, it follows that Cm and Cn cannot have
a common point at the origin. This violates the Big Bang theorem. Similarly, let
us join z2 to w2 by a straight line and suppose of the gradient of this line

=(z2)−=(w2)

<(z2)−<(w2)
< 0.

Then it implies that <(z2) > <(w2) since =(z2)−=(w2) < 0. Since Grad(L[w1],[w2]) >
0 and the axis L[w1],[w2] must pass through the point (m

2 , 0) with m > n, it follows
that both axes L[z1],[z2] and L[w1],[w2] must intersect at a point. This violates the
requirement that the axes are skewed. �

Up to this point, we have nearly exhausted the investigation of the inherent
ordering behavior of the real parts of the axis points for interacting cCoPs with
distinct generators, specifically in the cases where the axes are either parallel or
skewed. However, the case of interacting axes that intersect remains to be fully
explored. It is important to note that attempting to replicate the same arguments
in the scenario where the axes of distinct cCoPs intersect may lead to complications
or potential deadlocks. We now turn our attention to examining the corresponding
converses of Lemma 2.6 and Lemma 2.7.

Lemma 2.15. Let M ⊆ N and Co(n,CM) and Co(m,CM) be non–empty cCoPs with
L[z1],[z2] ∈̂ Co(n,CM) and L[w1],[w2] ∈̂ Co(m,CM) for m > n with <(z1) < <(z2) and
<(w1) < <(w2). If Grad(L[w1],[w2]) < Grad(L[z1],[z2]), then the axis L[z1],[z2] and
the axis L[w1],[w2] cannot intersect at a point above the real axis.
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Proof. Suppose the axes L[z1],[z2] and the axis L[w1],[w2] intersect at a point above
the real axis with Grad(L[w1],[w2]) < Grad(L[z1],[z2]). Now let v ∈ C be their point
of intersection, then =(v) > 0 and we obtain

Grad(L[w1],[w2]) =
=(v)

<(v)− m
2

and

Grad(L[z1],[z2]) =
=(v)

<(v)− n
2

.

It follows that

=(v)

<(v)− m
2

<
=(v)

<(v)− n
2

⇐⇒ <(v)− n

2
< <(v)− m

2
⇐⇒ m < n

which violates the inequality m > n. �

Lemma 2.16. Let M ⊆ N and Co(n,CM) and Co(m,CM) be non–empty cCoPs with
L[z1],[z2] ∈̂ Co(n,CM) and L[w1],[w2] ∈̂ Co(m,CM) for m > n with <(z1) < <(z2) and
<(w1) < <(w2). If Grad(L[w1],[w2]) > Grad(L[z1],[z2]), then the axis L[z1],[z2] and
the axis L[w1],[w2] cannot intersect at a point below the real axis.

Proof. Suppose the axes L[z1],[z2] and the axis L[w1],[w2] intersect at a point below
the real axis with Grad(L[w1],[w2]) > Grad(L[z1],[z2]). Now let v ∈ C be their point
of intersection, then =(v) < 0 and we obtain

Grad(L[w1],[w2]) =
=(v)

<(v)− m
2

and

Grad(L[z1],[z2]) =
=(v)

<(v)− n
2

.

It follows that

=(v)

<(v)− m
2

>
=(v)

<(v)− n
2

⇐⇒ <(v)− n

2
< <(v)− m

2
⇐⇒ m < n

which violates the inequality m > n. �

It is important to note that by combining Lemma 2.6 with its converse, Lemma
2.16, one obtains an equivalent statement. A similar equivalence holds when Lemma
2.7 is paired with Lemma 2.15. These equivalences, in their own right, could serve
as benchmarks for proving or disproving such configurations within the geometry.
However, the arguments and methods employed in this paper do not sufficiently
address cases where arbitrary axes of distinct cCoPs intersect.

In light of the preceding lemmas and their respective converses, we observe a
natural synergy between the geometric configurations described. The interplay of
gradients and axes of distinct cCoPs reveals important boundary conditions for the
axes interaction below the real axis. While the conditions for non-intersection are
clearly outlined, a more nuanced exploration of cases involving arbitrary intersec-
tions of axes will be reserved for future work. For the present study, we restrict
our analysis to configurations where the axes exhibit certain symmetry and lim-
iting behavior, particularly those governed by the Squeeze Principle. By doing
so, we provide a focused framework for investigating the dynamics of cCoP axes
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Figure 1. Limiting Axes for the Squeeze Principle

within specific boundary limits, which allows for more precise characterizations in
subsequent theorems.

If a certain non–empty cCop Co(n,CM) with an axis L[z],[n−z] is given, then
for another non–empty cCoP Co(n + t,CM) a lower and an upper limiting axis
L[u],[n+t−u] resp. L[v],[n+t−v] for the validity of the Squeeze Principle can be deter-
mined analytically (see figure 1).

Lemma 2.17. Let M ⊆ N and Co(n,CM) and Co(n+t,CM) with t ≥ 4 be non–empty
cCoPs with positive integers n, t of the same parity. If there is an axis L[z1],[z2] of
Co(n,CM), then there are a lower and an upper limiting axis L[u1],[u2] resp. L[v1],[v2]

of the cCoP Co(n + t,CM) with

<(z1) = <(u1) and <(v2) = <(z2)

such that

Grad(L[u1],[u2])
2 =

4<(z1) (n + t−<(z1))

(n + t− 2<(z1))2
and

Grad(L[v1],[v2])
2 =

4<(z2) (n + t−<(z2))

(n + t−<(z2))2
.

Proof. Appropriate of Definition 2.1 the gradient of the axis L[u1],[u2] of the cCop
Co(n + t,CM) is defined as

Grad(L[u1],[u2]) =
=(u2)−=(u1)

<(u2)−<(u1)
.

Since =(u2) = −=(u1), we have

Grad(L[u1],[u2]) =
−2=(u1)

<(u2)−<(u1)
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and squared

Grad(L[u1],[u2])
2 =

4=(u1)2

(<(u2)−<(u1))2
.

In accordance with the circle condition, we get

Grad(L[u1],[u2])
2 =

4<(u1)(n + t−<(u1))

(<(u2)−<(u1))2

and because <(u1) = <(z1) and <(u2)−<(u1) = n + t− 2<(u1)

Grad(L[u1],[u2])
2 =

4<(z1)(n + t−<(z1))

(n + t− 2<(z1))2
.

In an equivalent manner, we get for the axis L[v1],[v2] of the same cCoP using the
requirement <(v2) = <(z2)

Grad(L[v1],[v2])
2 =

4<(z2)(n + t−<(z2))

(n + t− 2<(z2))2
.

�

However if <(z2) < n+t
2 , then the gradient of the upper limiting axis changes its

sign. In this case the verical diameter of the embedding circle Cn+t plays the role
of the upper limiting axis and its gradient goes to infinity.

Theorem 2.18. Let the requirements of Lemma 2.17 be fulfilled. If for an axis
L[w1],[w2] of the cCoP Co(n + t,CM) with <(w1) < <(w2) holds

Grad(L[u1],[u2])
2 < Grad(L[w1],[w2])

2 < Grad(L[v1],[v2])
2 (2.1)

with the limiting axes like in Lemma 2.17, then and only then the requirements of
the Squeeze Principle (see Theorem 1.1) <(z1) < <(w1) and <(z2) < <(w2) are
fulfilled.

Proof. We set x1 := <(z1), x2 := <(z2), y1 := <(w1), y2 := <(w2) and m := n + t.
Using this in (2.1) and with Lemma 2.17 we get

4x1(m− x1)

(m− 2x1)2
<

4y1 · y2
(y2 − y1)2

<
4x2(m− x2)

(m− 2x2)2
. (2.2)

For the divisor of the central term it holds

(y2 − y1)2 = y21 + y22 − 2y1y2 = (y1 + y2)2 − 4y1y2 = m2 − 4y1y2 > 0.

We consider at first the left inequality. By crosswise multiplication and dividing by
4 we get

x1(m− x1)(m2 − 4y1y2) < y1y2(m− 2x1)2

m3x1 − 4mx1y1y2 −m2x2
1 + 4x2

1y1y2 < m2y1y2 − 4mx1y1y2 + 4x2
1y1y2.
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We note on both sides −4mx1y1y2 + 4x2
1y1y2. Hence it remains

m3x1 −m2x2
1 < m2y1y2 | ÷m2

x1(m− x1) < y1y2

mx1 − x2
1 < my2 − y22

y22 − x2
1 < m(y2 − x1)

(y2 + x1)(y2 − x1) < m(y2 − x1) | ÷(y2 − x1)

y2 + x1 < m | −y2
x1 < m− y2 = y1

<(z1) < <(w1).

Now we consider the right inequality at first for the case x2 > m
2 . By crosswise

multiplication and dividing by 4 we get now

y1y2(m− 2x2)2 < (mx2 − x2
2)(m2 − 4y1y2)

4x2
2y1y2 − 4mx2y1y2 + m2y1y2 < m3x2 − 4mx2y1y2 + 4x2

2y1y2 −m2x2
2

m2y1y2 < m3x2 −m2x2
2

y1y2 < mx2 − x2
2.

And now with y2 = m− y1

y1(m− y1) = my1 − y21 < mx2 − x2
2

m(y1 − x2) < y21 − x2
2 and since x2 > y1

m(x2 − y1) > x2
2 − y21 = (x2 − y1)(x2 + y1)

m > x2 + y1

m− y1 > x2

y2 > x2

<(z2) < <(w2).

In the case x2 ≤ m
2 we have the following situation. Because of the requirement

<(w1) < <(w2) we have y2 > m
2 and finally

<(w2) = y2 >
m

2
≥ x2 = <(z2).

Since all derivation chains are reversible, the reversed direction is valid too. �
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