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Abstract

The purpose of this paper is to explain at the simplest possible level why
finite mathematics based on a finite ring of characteristic p is more general
(fundamental) than standard mathematics. The belief of most mathematicians
and physicists that standard mathematics is the most fundamental arose for
historical reasons. However, simple mathematical arguments show that stan-
dard mathematics (involving the concept of infinities) is a degenerate case of
finite mathematics in the formal limit p → ∞: standard mathematics arises
from finite mathematics in the degenerate case when operations modulo a num-
ber are discarded. Quantum theory based on a finite ring of characteristic p is
more general than standard quantum theory because the latter is a degenerate
case of the former in the formal limit p → ∞.
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1 The main goal of this paper

SM deals with relations
a + b = c, a · b = c, etc. (1)

On the other hand, FM deals with relations

a + b = c (mod p), a · b = c (mod p), etc. (2)

where all the numbers a, b, c, ... can take only values 0, 1, 2, ...p − 1 and p is called
characteristic of the ring. Therefore, in FM there are no infinities and all numbers do
not exceed p in absolute value.

Before discussing these versions of mathematics, let’s discuss the following.
How should we treat mathematics: i) as a purely abstract science or ii) as a science
that should describe nature? I am a physicist and have worked among physicists
for most of my life. For them, only approach ii) is acceptable. However, when I
discussed this issue with mathematicians and philosophers, I discovered that many of
them view mathematics only from the point of view of i) and arguments related to
the description of nature are not significant for them.

Perhaps the most famous mathematician who championed the approach
i) was Hilbert. The goal of his approach is to find a complete and consistent set of
axioms which will make it possible to conclude whether any mathematical statement
is true or false. This problem is also formulated as the Entscheidungsproblem which
asks for algorithms that consider statements and answers ”Yes” or ”No” according to
whether the statements are universally valid, i.e., valid in every structure satisfying
the axioms.

In the framework of i), the problem of foundation of mathematics is very
difficult. This problem has been considered by many great mathematicians. The
Gödel’s incompleteness theorems state that mathematics involving standard arith-
metic of natural numbers is incomplete and cannot demonstrate its own consistency.
The problem widely discussed in the literature is whether the problems posed by
the theorems can be circumvented by nonstandard approaches to natural numbers,
e.g., by treating them in the framework of Peano arithmetic, Presburger arithmetic
etc. However, as shown by Turing and others, in Hilbert’s approach, the problem of
foundation of mathematics remains.

The fact that Hilbert’s approach does not raise the question of describing
nature does not mean that this approach should be rejected out of hand. For example,
Dirac’s philosophy is: ”I learned to distrust all physical concepts as a basis for a theory.
Instead one should put one’s trust in a mathematical scheme, even if the scheme does
not appear at first sight to be connected with physics. One should concentrate on
getting an interesting mathematics.” Dirac also said that for him the most important
thing in any physical theory is the beauty of formulas in this theory. That is, he meant
that sooner or later, in any beautiful mathematical theory, its physical meaning will
be found. But even if it is not found, the beauty of the theory itself has aesthetic
value. For example, in music we appreciate its beauty and do not demand that music
should somehow describe nature.
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Nevertheless, in this paper, we treat mathematics only as a tool for describ-
ing nature. In the framework of this approach, most mathematicians and physicists
believe that, at the most fundamental level, nature is described by SM, and FM
is needed only in some special model problems. In this regard, the question arises
whether it is possible to give a definition when mathematics A is more general (funda-
mental) than mathematics B, and mathematics B is a degenerate case of mathematics
A.

In [1] we have proposed the following
Definition: Let theory A contain a finite nonzero parameter and theory

B be obtained from theory A in the formal limit when the parameter goes to zero or
infinity. Suppose that, with any desired accuracy, A can reproduce any result of B by
choosing a value of the parameter. On the contrary, when, the limit is already taken,
one cannot return to A and B cannot reproduce all results of A. Then A is more
general than B and B is a degenerate case of A.

We have shown that, using this Definition, it is possible to prove purely
mathematically some known facts which in the physical literature are explained from
physical considerations, in particular:

1) NM is a degenerate case of SR in the formal limit c → ∞ where it is usually said
that c is the speed of light, but in fact, it is only a constant of the theory.;

2) CT is a degenerate case of QT in the formal limit h̄ → 0 (where h̄ is the Planck
constant).

In applications to 1), Definition implies that SR is a more general (fun-
damental) theory than NM because any result of NM can be obtained in SR with
some choice of c, and, on the other hand, NM cannot reproduce those results of SR
where it is important that c is finite and not infinitely large.

Analogously, in applications to 2), Definition implies that QT is a more
general (fundamental) theory than CT because any result of CT can be obtained in
QT with some choice of h̄, and on the other hand, CT cannot reproduce those results
of QT where it is important that h̄ is finite and not zero.

The main goal of this paper is to discuss the result of [1] that, as fol-
lows from Definition, contrary to the belief of many mathematicians and physicists
described above:

Statement: SM is a degenerate case of FM in the formal limit p → ∞,
where p is the characteristic of the ring in FM.

This implies that FM is a more general (fundamental) theory than SM
because any result of SM can be obtained in FM with some choice of p, and, on the
other hand, SM cannot reproduce those results of FM where it is important that p is
finite and not infinitely large.

As explained below, SM is a degenerate case of FM because SM is ob-
tained from FM in the case when all operations modular a number are discarded.
Also, as explained in [1], a consequence of this Statement is that, for describing
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nature at the most fundamental level, the concepts of infinitesimals, infinitely large,
limits, continuity etc. are not needed; they are needed only for describing nature
approximately.

Kronecker’s famous phrase is that God invented integers, and humans
invented everything else. However, in view of this Statement, this phrase can be
reformulated so that God came up with only finite sets of numbers, and everything
else was invented by people.

One of the key problems of SQT (based on SM) is the problem of diver-
gences: the theory gives divergent expressions for the S-matrix in perturbation theory.
In renormalized theories, the divergences can be eliminated by renormalization where
finite observable quantities are formally expressed as products and sums of singulari-
ties. From the mathematical point of view, such procedures are not legitimate but in
some cases they result in impressive agreement with experiment. The most famous
case is that the results for the electron and muon magnetic moments obtained at the
end of 40th agree with experiment with the accuracy of eight decimal digits. In view
of this and other successes of SQT, most physicists believe that agreement with the
data is much more important than the rigorous mathematical substantiation.

At the same time, in non-renormalized theories, divergences cannot be
eliminated by the renormalization procedure, and this is a great obstacle for con-
structing quantum gravity based on QFT. As the famous Nobel Prize laureate Steven
Weinberg wrote in his book [2]: ”Disappointingly this problem appeared with even
greater severity in the early days of quantum theory, and although greatly ameliorated
by subsequent improvements in the theory, it remains with us to the present day”.
The title of Weinberg’s paper [3] is ”Living with infinities”.

However, as follows from Statement, in QT based on FM, the problem
of divergences does not exist in principle because in FM there are no infinities. We
emphasize that Statement is not only our wish, but a fact proven mathematically
in [1]. Therefore, those mathematicians and physicists who insist on their position
that SM is more general (fundamental) than FM must either give arguments that
Definition is not justified or show that the proof in [1] is erroneous. However, in
numerous discussions with me, those mathematicians and physicists have presented
various arguments that, in their opinion, emphasize the correctness of their position.
Typical arguments are:

• a) Formally, you have no divergences, but you introduce the cutoff p which is a
huge number. Therefore, in cases when infinities arose in the standard theory,
you will get a huge number p which is practically infinite.

• b) The argument of the famous mathematician Yu. I. Manin was this: in your
theory there is only one parameter p and it is not clear why this parameter is
this and not another. He said that he preferred the approach with adeles when
there are many characteristics which are on equal footing.

• c) An argument that has some similarities with b) is this: when you say that
God only invented finite sets of numbers and everything else (infinitesimals,
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infinitely large etc.) was invented by people, do you think that he ”invented” a
biggest (finite) p?

I will discuss these arguments below. But first I would like to discuss

2 Analogy between SR and FM

Before the creation of SR, it was believed that NM was the most general (fundamental)
mechanics. There are no restrictions on the magnitude of speed there which can be
in the interval [0,∞). However, in SR, the speed cannot exceed c.

The fact that there is a speed limit greatly changes the standard philosophy
of NM. For example, in NM it seems unnatural that the speed of 0.99c is possible,
but 1.01c is not. For this and other reasons, it took a very long time for SR to be
accepted by the majority of physicists.

Let’s consider a simple model example when in our reference frame some
observer moves with speed v1 and in the reference frame of this observer some particle
moves in the same direction with speed v2. Then, according to the rules of NM, the
speed of the particle in our reference frame will be V = v1 + v2. So, even if v1 < c
and v2 < c then, in NM, a situation is possible when V > c and this may suggest
that the statement of SR about the speed limit is not self-consistent. However, the
result of SR in such a situation is not V = v1 + v2 but

V =
v1 + v2

1 + v1v2/c2
(3)

and this value cannot exceed c. In particular, if v1 = v2 = 0.6c then V is not
equal to 1.2c as one might think from naive considerations, but V ≈ 0.882c, and if
v1 = v2 = 0.99c then V is not equal to 1.98c but V ≈ 0.9999495c The lesson of this
example is that it is not always correct to make judgments proceeding from ”common
sense”.

Here there is an analogy with FM: for example, if a and b are such natural
numbers that a < p, b < p and in SM there may be a situation when (a + b) > p,
then in FM such a situation cannot exist because always (a + b) (mod p) < p.

It is now generally accepted that SR is confirmed experimentally to a
greater extent than NM. Also, as noted above, it follows from Definition that NM is
a degenerate case of SR since SR can reproduce any fact of NM with some choice of
c, while NM cannot reproduce those facts of SR in which it is essential that c is finite
and not infinite. Thus, SR does not disprove NM, but shows that it works with good
accuracy when speeds are much less than c. There is an analogy here with the fact
that FM does not refute SM, but shows that the latter is a good approximation to
reality only in situations where the numbers in a given problem are much less than p.

In complete logical analogy with the objections to FM in points (a-c) in
Sec. 1, one can put forward similar objections to SR, but now the role of p will be
played by c. Therefore, I think that, for being completely consistent, if we reject FM,
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we must also reject SR, and if we accept SR then, by the same logic, we must also
accept that FM is more general (fundamental) than SM.

As follows from the above results, it is not necessary to apply SR in every-
day life when speeds are much less than c because in this case NM works with a very
high accuracy. Analogously, for describing almost all phenomena at the macroscopic
level, there is no need to apply QT. For example, there is no need to describe the
motion of the Moon by the Schrödinger equation. In principle this is possible but
results in unnecessary complications. At the same time, microscopic phenomena can
be correctly described only in the framework of QT.

3 Basic facts about finite mathematics

SM starts from the infinite set of natural numbers but FM can involve only a finite
number of elements. FM starts from the ring Rp = (0, 1, 2, ...p − 1) where addition,
subtraction and multiplication are defined as usual but modulo p. In our opinion the
notation Z/p for Rp is not adequate because it may give a wrong impression that FM
starts from the infinite set Z and that Z is more general than Rp. However, although
Z has more elements than Rp, Z cannot be more general than Rp because Z does not
contain operations modulo a number.

In the set of natural numbers, only addition and multiplication are always
possible. In order to make addition invertable negative integers are introduced. They
do not have a direct physical meaning (e.g., the phrase ”this computer has -100 bits
of memory” is meaningless) and their only goal is to get the ring of integers Z. In
contrast to this situation, Rp is the ring without adding new elements and the number
p is called the characteristic of this ring. For example, if p = 5 then 3+1=4 as usual
but 3·2=1, 4·3=2, 4·4=1 and 3+2=0. Therefore -2=3 and -4=1. Moreover, if p is
prime then Rp becomes the Galois field Fp where all the four operations are possible.
For example, 1/2=3, 1/4=4 etc.

One might say that those examples have nothing to do with reality since
3+2 always equals 5 and not zero. However, since operations in Rp are modulo p,
one can represent Rp as a set {0,±1,±2, ...,±(p − 1)/2)} if p is odd and as a set
{0,±1,±2, ...,±(p/2 − 1), p/2} if p is even. Let f be a function from Rp to Z such
that f(a) has the same notation in Z as a in Rp. Then for elements a ∈ Rp such that
|f(a)| ≪ p, addition, subtraction and multiplication are the same as in Z. In other
words, for such elements we do not notice the existence of p.

One might say that nevertheless the set Fp cannot be used in physics since
1/2 = (p + 1)/2, i.e., a very large number when p is large. However, as explained in
[1], since quantum states are projective then, even in SQT, quantum states can be
described with any desired accuracy by using only integers and therefore the concepts
of rational and real numbers play only an auxiliary role.

If elements of Z are depicted as integer points on the x axis of the xy plane
then, if p is odd, the elements of Rp can be depicted as points of the circumference
in Figure 1 and analogously if p is even. This picture is natural from the following
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Figure 1: Relation between Rp and Z

considerations. As explained in textbooks, both Rp and Z are cyclic groups with
respect to addition. However, Rp has a higher symmetry because it has a property
which we call strong cyclicity: if we take any element a ∈ Rp and sequentially add
1 then after p steps we will exhaust the whole set Rp by analogy with the property
that if we move along a circumference in the same direction then sooner or later we
will arrive at the initial point. At the same time, if we take an element a ∈ Z then
the set Z can be exhausted only if we first successively add +1 to a and then -1 to a
or vice versa and those operations should be performed an infinite number of times.
As noted in [1], in QT based on FM, strong cyclicity plays an important role. In
particular, it explains why one IR of the symmetry algebra describes a particle and
its antiparticle simultaneously.

The above construction has a known historical analogy. For many years
people believed that the Earth was flat and infinite, and only after a long period of
time they realized that it was finite and curved. It is difficult to notice the curvature
when we deal only with distances much less than the radius of curvature. Analogously
one might think that the set of numbers describing physics in our universe has a
“curvature” defined by a very large number p but we do not notice it when we deal
only with numbers much less than p.

4 Proof that the ring Z is the limit of the ring Rp

when p → ∞

In this section, following Sec. 6.3 of [1], we prove that, as follows from Definition,
Statement 1: The ring Rp is more general than the ring Z and the latter

is a degenerate case of the former in the formal limit p → ∞.
Note that in the technique of SM, infinity is understood only as a limit

(i.e., as potential infinity) but the basis of SM does involve actual infinity: SM starts
from the infinite ring of integers Z and, even in standard textbooks on mathematics,
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it is not even posed a problem whether Z can be treated as a limit of finite rings. The
problem of actual infinity is discussed in a vast literature, and, in SM, Z is treated
as actual and not potential infinity, i.e., there is no rigorous definition of Z as a limit
of finite rings. Moreover, classical set theory considers infinite sets with different
cardinalities.

As explained in [1], Statement 1 is the basic stage in proving Statement,
i.e., that FM is more general than SM. In particular, as explained in detail in [1],
since we treat mathematics in the approach ii) in Sec. 1, this means that QT based
on FM is more general (fundamental) than SQT.

Therefore Statement 1 should not be based on the results of SM. In partic-
ular, it should not be based on properties of the ring Z derived in SM. The statement
should be proved by analogy with standard proof that a sequence of natural numbers
(an) goes to infinity if ∀M > 0 ∃n0 such that an ≥ M ∀n ≥ n0. In particular, the
proof should involve only potential infinity but not actual one.

The meaning of Statement 1 is that for any p0 > 0 there exists a set S
belonging to all Rp with p ≥ p0 and a natural number n such that for any m ≤ n the
result of any m operations of summation, subtraction or multiplication of elements
from S is the same as in Rp for any p ≥ p0 and that cardinality of S and the number
n formally go to infinity when p0 → ∞. This means that for the set S and number
n there is no manifestation of operations modulo p, i.e., the results of any m ≤ n
operations of elements from S are formally the same in Rp and Z.

This implies that for experiments involving only such sets S and numbers
n it is not possible to conclude whether the experiments are described by a theory
involving Rp with a large p or by a theory involving Z.

In the literature, we did not succeed in finding a direct proof of Statement
1. As noted e.g., in [1], the fact that Z can be treated as a limit of Rp when p → ∞
follows from a construction called ultraproducts. However, theory of ultraproducts
is essentially based on classical results involving actual infinity, in particular, on  Loŝ’
theorem involving the axiom of choice. Therefore theory of ultraproducts cannot be
used in proving that FM is more general than SM.

We now describe our proof of Statement 1. We define the function h(p)
such that h(p) = (p − 1)/2 if p is odd and h(p) = p/2 − 1 if p is even. Let n be a
natural number and U(n) be a set of elements a ∈ Rp such that |f(a)|n ≤ h(p). Then
∀m ≤ n the result of any m operations of addition, subtraction or multiplication of
elements a ∈ U(n) is the same as for the corresponding elements f(a) in Z, i.e., in
this case operations modulo p are not explicitly manifested.

Let g(p) and G(p) be functions of p with the range in the set of natural
numbers such that the set U(g(p)) contains at least the elements {0,±1,±2, ...,±G(p)}.
In what follows, M > 0 is a natural number. If there is a sequence of natural
numbers (an) then standard definition that (an) → ∞ is that ∀M ∃n0 such that
an ≥ M ∀n ≥ n0. By analogy with this definition we will now prove

Proposition: There exist functions g(p) and G(p) such that ∀M ∃p0 such
that g(p) ≥ M and G(p) ≥ 2M ∀p ≥ p0.

Proof: ∀p > 0 there exists a unique natural n such that 2n2

≤ h(p) <
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2(n+1)2 . Define g(p) = n and G(p) = 2n. Then ∀M ∃p0 such that h(p0) ≥ 2M2

. Then
∀p ≥ p0 the conditions of Proposition are satisfied.

Proposition implies that the ring Z is the limit of the ring Rp when p → ∞,
and the result of any finite number of additions, subtractions and multiplications in
Z can be reproduced in Rp if p is chosen to be sufficiently large. On the contrary,
when the limit p → ∞ is already taken then one cannot return back from Z to Rp,
and in Z it is not possible to reproduce all results in Rp because in Z there are no
operations modulo a number. According to Definition, this means that Statement
1 is valid, i.e., that the ring Rp is more general than Z, and Z is the degenerate case
of Rp.

When p is very large then U(g(p)) is a relatively small part of Rp, and,
in general, the results in Z and Rp are the same only in U(g(p)). This is analogous
to the fact mentioned in Sec. 2 that the results of NM and SR are the same only
in relatively small cases when velocities are much less than c. However, when the
radius of the circumference in Figure 1 becomes infinitely large then a relatively
small vicinity of zero in Rp becomes the infinite set Z when p → ∞. This example
demonstrates that, even from pure mathematical point of view, the concept of infinity
cannot be fundamental because, as soon as we involve infinity and replace Rp by Z, we
automatically obtain a degenerate theory because in Z there are no operations modulo
a number.

In quantum theory based on finite mathematics (FQT), states are elements
of linear spaces over Rp. One might get the impression that SQT is a more general
theory than FQT because in SM, Z is generalized to the case of rational and real
numbers. However, as noted above (see also [1]), since even in SQT, the states are
projective, it is sufficient to use only integers for describing experimental data with
any desired accuracy.

5 Problems with describing nature by standard

mathematics

Standard education develops a belief that SM is the most fundamental
mathematics, while FM is something inferior what is used only in special applications.
Historically, it happened so because more than 300 years ago Newton and Leibniz
proposed the calculus of infinitesimals, and, since that time, a titanic work has been
done on foundation of SM. As noted in Sec. 1, this problem has not been solved
till the present time, but for most physicists and many mathematicians the most
important thing is not whether a rigorous foundation exists but that in many cases
SM works with a very high accuracy.

The idea of infinitesimals was in the spirit of existed experience that any
macroscopic object can be divided into arbitrarily large number of arbitrarily small
parts, and, even in the 19th century, people did not know about elementary particles.
But now we know that when we reach the level of elementary particles then standard
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division loses its usual meaning and in nature there are no arbitrarily small parts and
no continuity.

For example, typical energies of electrons in modern accelerators are mil-
lions of times greater than the electron rest energy, and such electrons experience
many collisions with different particles. If it were possible to break the electron into
parts, then it would have been noticed long ago.

Another example is that if we draw a line on a sheet of paper and look
at this line by a microscope then we will see that the line is strongly discontinuous
because it consists of atoms. That is why standard geometry (the concepts of contin-
uous lines and surfaces) can work well only in the approximation when sizes of atoms
are neglected, standard macroscopic theory can work well only in this approximation
etc.

Differential equations work well in approximations where it is not necessary
to take into account that matter consists of atoms. However, it seems unnatural that
SQT is based on SM. Even the name ”quantum theory” reflects a belief that nature
is quantized, i.e., discrete, and this name has arisen because in QT some quantities
have discrete spectrum (e.g., the spectrum of the angular momentum operator, the
energy spectrum of the hydrogen atom etc.). But this discrete spectrum has appeared
in the framework of SM.

I asked physicists and mathematicians whether, in their opinion, the indi-
visibility of the electron shows that in nature there are no infinitesimals and standard
division does not work always. Some mathematicians say that sooner or later the
electron will be divided. On the other hand, as a rule, physicists agree that the
electron is indivisible and in nature there are no infinitesimals. They say that, for
example, dx/dt should be understood as ∆x/∆t where ∆x and ∆t are small but not
infinitesimal. I ask them: but you work with dx/dt, not ∆x/∆t. They reply that
since mathematics with derivatives works well then there is no need to philosophize
and develop something else (and they are not familiar with finite mathematics).

In view of efforts to describe discrete nature by continuous mathematics,
my friend told me the following joke: ”A group of monkeys is ordered to reach the
Moon. For solving this problem each monkey climbs a tree. The monkey who has
reached the highest point believes that he has made the greatest progress and is closer
to the goal than the other monkeys”. Is it reasonable to treat this joke as a hint on some
aspects of the modern science? Indeed, people invented continuity and infinitesimals
which do not exist in nature, created problems for themselves and now apply titanic
efforts for solving those problems. As follows from the results of Sec. 4 (see also [1]),
SM is a degenerate case of FM.

The founders of QT and scientists who essentially contributed to it were
highly educated. But they used only SM, and even now FM is not a part of standard
education for physicists. The development of QT has shown that the theory con-
tains anomalies and divergences. Most physicists considering those problems, work
in the framework of SM and do not acknowledge that they arise just because this
mathematics is applied.

Several famous physicists (including the Nobel Prize laureates Gross, Nambu
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and Schwinger) discussed approaches when QT involves FM (see e.g., [4]). A detailed
discussion of these approaches has been given in the book [5] where they are char-
acterized as hybrid quantum systems. The reason is that here coordinates and/or
momenta belong to a finite ring or field but wave functions are elements of standard
complex Hilbert spaces. Then the problem of foundation of QT is related to the
problem of foundation of SM. On the other hand, in [6, 7, 8], we have proposed an
approach called finite quantum theory (FQT) where not only physical quantities but
also wave functions involve finite rings or fields. As explained in [1] FQT is more
general (fundamental) than SQT.

6 Why finite mathematics is more natural than

classical one

In view of the above discussion, the following problem arises: is it justified to use
mathematics with infinitesimals for describing nature in which infinitesimals do not
exist? There is no doubt that the technique of SM is very powerful and in many cases
describes physical phenomena with a very high accuracy. However, a problem arises
whether there are phenomena which cannot be correctly described by mathematics
involving infinitesimals.

Some facts of SM seem to be unnatural. For example, tg(x) is one-to-one
reflection of (−π/2, π/2) onto (−∞,∞), i.e., the impression might arise that the both
intervals have the same numbers of elements although the first interval is a nontrivial
part of the second one. Another example is the Hilbert paradox with an infinite hotel.
But mathematicians even treat those facts as pretty ones. For example, Hilbert said:
”No one shall expel us from the paradise that Cantor has created for us”.

From the point of view of Hilbert’s approach to mathematics (see Sec. 1)
it is not important whether the above statements are natural or not, since the goal of
the approach is to find a complete and consistent set of axioms. In the framework of
this approach, the problem of foundation of SM has been investigated by many great
mathematicians (e.g., Cantor, Fraenkel, Gödel, Hilbert, Kronecker, Russell, Zermelo
and others). Their philosophy was based on macroscopic experience in which the
concepts of infinitesimals, continuity and standard division are natural. However, as
noted above, those concepts contradict the existence of elementary particles and are
not natural in QT. The illusion of continuity arises when one neglects the discrete
structure of matter.

The fact that in Hilbert’s approach there exist foundational problems fol-
lows, in particular, from Gödel’s incompleteness theorems which state that no system
of axioms can ensure that all facts about natural numbers can be proved, and the
system of axioms in SM cannot demonstrate its own consistency. The theorems are
written in highly technical terms of mathematical logics. As noted in Sec. 1, in this
paper we do not consider Hilbert’s approach to mathematics. However, simple argu-
ments in [1] show that, if mathematics is treated as a tool for describing nature, then
foundational problems of SM follow from simple arguments described below.

In the 20s of the 20th century, the Viennese circle of philosophers under
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the leadership of Schlick developed an approach called logical positivism which con-
tains verification principle: A proposition is only cognitively meaningful if it can be
definitively and conclusively determined to be either true or false (see e.g., [9, 10]).
However, this principle does not work if SM is treated as a tool for describing nature.
For example, in Hilbert’s approach one of axioms is that a + b = b + a for all natural
numbers a and b, and a question whether this is true or false does not arise. However,
if mathematics is treated as a tool for describing nature, it cannot be determined
whether this statement is true or false.

As noted by Grayling [11], ”The general laws of science are not, even
in principle, verifiable, if verifying means furnishing conclusive proof of their truth.
They can be strongly supported by repeated experiments and accumulated evidence but
they cannot be verified completely”. So, from the point of view of SM and physics,
verification principle is too strong.

Popper proposed the concept of falsificationism [12]: If no cases where a
claim is false can be found, then the hypothesis is accepted as provisionally true. In
particular, the statement that a + b = b + a for all natural numbers a and b can be
treated as provisionally true until one has found some numbers a and b for which
a + b 6= b + a.

According to the philosophy of quantum theory, in contrast to Hilbert’s
approach to mathematics, there should be no statements accepted without proof and
based on belief in their correctness (i.e., axioms). The theory should contain only
those statements that can be verified, where by ”verified” physicists mean an experi-
ment involving only a finite number of steps. This philosophy is the result of the fact
that quantum theory describes phenomena which, from the point of view of “com-
mon sense”, seem meaningless but they have been experimentally verified. So, the
philosophy of QT is similar to verificationism, not falsificationism. Note that Popper
was a strong opponent of QT and supported Einstein in his dispute with Bohr.

From the point of view of verificationism and the philosophy of QT, SM is
not well defined not only because it contains an infinite number of numbers. Consider,
for example, whether the rules of standard arithmetic can be justified.

We can verify that 10+10=20 and 100+100=200, but can we verify that,
say 10100000 + 10100000 = 2 · 10100000? One might think that this is obvious, and in
Hilbert’s approach this follows from main axioms. But, if mathematics is treated
as a tool for describing nature then this is only a belief based on extrapolating our
everyday experience to numbers where it is not clear whether the experience still
works.

In Sec. 2 we discussed that our life experience works well at speeds that
are much less than c, and this experience cannot be extrapolated to situations where
speeds are comparable to c. Likewise, our experience with the numbers we deal with
in everyday life cannot be extrapolated to situations where the numbers are much
greater.

According to verificationism and principles of quantum theory, the state-
ment that 10100000 + 10100000 = 2 · 10100000 is true or false depends on whether this
statement can be verified. Is there a computer which can verify this statement? Any
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computing device can operate only with a finite number of resources and can perform
calculations only modulo some number p. If our universe is finite and contains only
N elementary particles, then there is no way to verify that N + N = 2N . So, if,
for example, our universe is finite, then in principle it is not possible to verify that
standard rules of arithmetic are valid for any numbers.

That is why the statements in Eq. (1) are ambiguous because they does
not contain information on the computing device which verifies those statements. For
example, let us pose a problem whether 10+20 equals 30. If our computing devise is
such that p = 40 then the experiment will confirm that 10+20=30 while if p = 25
then we will get that 10+20=5.

So, the statements that 10+20=30 and even that 2 · 2 = 4 are ambiguous
because they do not contain information on how they should be verified. On the other
hand, the statements

10 + 20 = 30 (mod 40), 10 + 20 = 5 (mod 25),

2 · 2 = 4 (mod 5), 2 · 2 = 2 (mod 2)

are well defined because they do contain such an information. So only operations
modulo a number are well defined.

We believe the following observation is very important: although SM (in-
cluding its constructive version) is a part of our everyday life, people typically do not
realize that SM is implicitly based on the assumption that one can have any desired
number of resources. So, SM is based on the implicit assumption that we can con-
sider an idealized case when a computing device can operate with an infinite number
of resources. Typically, people do not realize that standard operations with natural
numbers are implicitly treated as limits of operations modulo p when p → ∞. For
example, if (a, b, c, p) are natural numbers then Eqs. (1) are implicitly treated as

lim
p→∞

[(a + b) (mod p)] = c, lim
p→∞

[(a · b) (mod p)] = c, etc.

As a rule, every limit in mathematics is thoroughly investigated but, in
the case of standard operations with natural numbers, it is not even mentioned that
those operations are limits of operations modulo p. In real life such limits even might
not exist if, for example, the universe contains a finite number of elementary particles.

So, we see that the question of what 10+20 is equal to is not a question
of what some theory says, but a question of how an experiment will be set up to test
what this value is equal to. In one experiment the result may be 30, in another 5 and
there is no theory that says that one experiment is more preferable than another.

Now let’s discuss the question of what p can be equal to in the theory
describing modern physics. Recently, an increasing number of works have appeared
in the literature that say that the universe works like a computer (see, for example,
[13]). From this point of view, the value of p is determined by the state of the universe
at a given stage. And, since the state of the universe is changing, it is natural to
expect that the number p describing physics at different stages of the evolution of the
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universe will be different at different stages. Therefore, by analogy with the discussion
of what 10+20 is equal to, we can say that p is not a number that is determined by
some fundamental theory, but a number that depends on the state of the universe at
a given stage.

We do not say that p changes over time for the following reasons. The
problem of time is one of the most fundamental problems of quantum theory. Every
physical quantity should be described by a self-adjoined operator but, as noted by
Pauli, the existence of the time operator is a problem (see e.g., the discussion in
[1]). One of the principles of physics is that the definition of a physical quantity is
a description how this quantity should be measured, and it is not correct to say that
some quantity exists but cannot be measured. The present definition of a second is the
time during which 9,192,631,770 transitions in a cesium-133 atom occur. The time
cannot be measured with absolute accuracy because the number of transitions is finite.
Then one second is defined with the accuracy 10−15s, and, e.g., [14] describes efforts
to measure time with the accuracy 10−19s. However, it is not clear how to define
time in early stages of the universe when atoms did not exist. So, treating time t as
a continuous quantity belonging to (−∞,+∞) can be only an approximation which
works at some conditions. In [1] it has been discussed a conjecture that standard
classical time t manifests itself because the value of p changes, i.e., t is a function of
p. We do not say that p changes over time because classical time t cannot be present
in quantum theory; we say that we feel changing time because p changes. As shown in
[15], with such an approach, the known problem of baryon asymmetry of the universe
(see the subsequent section) does not arise.

7 Examples when finite mathematics can solve

problems which standard mathematics cannot

In [1] we discussed phenomena where it is important that p is finite. They
cannot be described in SQT, by analogy with the fact that NM cannot describe cases
where it is important that c is finite. Below we describe several such phenomena.

Example 1: gravity. Theoretically, any result of CT should follow from
QT in semiclassical approximation. However, the Newton gravitational law cannot be
derived in QFT because the theory is not renormalizable. But the law can be derived
from FQT in semiclassical approximation [1]. Then the gravitational constant G is
not taken from the outside but depends on p as 1/ln(p). By comparing this result
with the experimental value, one gets that ln(p) is of the order of 1080 or more, and
therefore p is a huge number of the order of exp(1080) or more. One might think that
since p is so huge then in practice p can be treated as an infinite number. However,
since ln(p) is ”only” of the order of 1080, gravity is observable. In the formal limit
p → ∞, G becomes zero and gravity disappears. Therefore, in our approach, gravity
is a consequence of finiteness of nature.

Example 2: Dirac vacuum energy problem. In quantum electro-
dynamics, the vacuum energy should be zero, but in SQT the sum for this energy
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diverges, and this problem was posed by Dirac. To get the zero value, the artificial
requirement that the operators should be written in the normal order is imposed, but
this requirement does not follow from the construction of the theory. In Sec. 8.8
of [1], I take the standard expression for this sum and explicitly calculate it in FM
without any assumptions. Then since the calculations are modulo p, I get zero as it
should be.

Example 3: equality of masses of particles and their antiparticles.
This is an example demonstrating the power of finite mathematics. A discussion in
[1] shows that in QT, an elementary particle and its antiparticle should be considered
only from the point of view of IRs of the symmetry algebra. In SQT, the algebras
are such that their IRs contain either only positive or only negative energies. In the
first case the objects are called particles and in the second one – antiparticles. Then
the energies of antiparticles become positive after second quantization.

In SQT, the spectrum of positive energies contains the values (m1,m1 +
1,m1+2, · · ·∞), and for negative energies — the values (−m2,−m2−1,−m2−2, · · ·−
∞), where m1 > 0, m2 > 0, m1 is called the mass of a particle and m2 is called the
mass of the corresponding antiparticle. Experimentally m1 = m2 but in SQT, IRs
with positive and negative energies are fully independent of each other. It is claimed
that m1 = m2 because local covariant equations are CPT invariant. However, as
explained in [1], the argument x in local quantized fields does not have a physical
meaning because it is not associated with any operator. So, in fact, SQT cannot
explain why m1 = m2.

Consider now what happens in FQT. For definiteness, we consider the
case when p is odd, and the case when p is even can be considered analogously. One
starts constructing the IR with the value m1, and, by acting on the states by raising
operators, one gets the values m1 + 1,m1 + 2, · · ·. However, now we are moving
not along the straight line but along the circle in Figure 1. When we reach the
value (p − 1)/2, the next value is –(p − 1)/2, i.e., one can say that by adding 1
to a large positive number (p − 1)/2 one gets a large negative number –(p − 1)/2.
By continuing this process, one gets the numbers −(p − 1)/2 + 1 = −(p − 3)/2,
−(p−3)/2+1 = −(p−5)/2 etc. The explicit calculation [1] shows that the procedure
ends when the value −m1 is reached.

Therefore, FM gives a clear proof that m1 = m2 and shows that, instead
of two independent IRs in SM, one gets only one IR describing both, a particle, and
its antiparticle. The case described by SM is degenerate because, in the formal limit
p → ∞, one IR in FM splits into two IRs in SM. So, when p → ∞ we get symmetry
breaking. This example is a beautiful illustration of Dyson’s idea [16] that theory
A is more general than theory B if B can be obtained from A by contraction. The
example is fully in the spirit of this idea because it shows that SM can be obtained
from FM by contraction of the symmetry in the formal limit p → ∞. This example
also shows that standard concept of particle-antiparticle is only approximate and is
approximately valid only when p is very large. Consequently, constructing complete
QT based on FM should be based on new principles.

Example 4: the problem of baryon asymmetry of the universe.
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This problem is formulated as follows. According to the modern particle and cosmo-
logical theories, the numbers of baryons and antibaryons in the early stages of the
universe were the same. Then, since the baryon number is the conserved quantum
number, those numbers should be the same at the present stage. However, at this
stage the number of baryons is much greater than the number of antibaryons.

For understanding this problem, one should understand the concept of
particle-antiparticle. In SQT this concept takes place because IRs describing particles
and antiparticles are such that energies in them can be either only positive or only
negative but cannot have both signs. However, as explained in Example 3, IRs
in FQT necessarily contain both, positive and negative energies, and in the formal
limit p → ∞, one IR in FQT splits into two IRs in SQT with positive and negative
energies.

As noted above, the number p is different at different stages of the universe.
As noted in Example 1, at the present stage of the universe this number is huge,
and therefore the concepts of particles and antiparticles have a physical meaning.
However, arguments given in [1] indicate that in early stages of the universe the value
of p was much less than now. Then, in general, each object described by IR, is a
superposition of a particle and antiparticle (in SQT such a situation is prohibited),
and the electric charge and baryon quantum number are not conserved. Therefore,
in early stages of the universe, SQT does not work, and the statement that at such
stages the numbers of baryons and antibaryons were the same, does not have a physical
meaning. Therefore, the problem of baryon asymmetry of the universe does not arise.

Example 5: As argued in Sec. 6.8 of [1], the ultimate QT will be based on
a ring, not a field, i.e., only addition, subtraction and multiplication are fundamental
mathematical operations, while division is not.

The above examples demonstrate that there are phenomena which can be
explained only in FM because for them it is important that p is finite and not infinitely
large. So, we have an analogy with the case that SR can explain phenomena where c
is finite while NM cannot explain such phenomena.

8 Answers to arguments (a-c) in Sec. 1

As noted in Sec. 1, a fundamental problem in SQT is the problem of divergences.
To get around this problem, physicists usually do the following. In integrals over
the absolute values of momenta, the upper limit of integration is taken not ∞ as it
should be, but a certain value L called the Pauli-Villars cutoff. Then all integrals
formally become finite, but they depend on the nonphysical very large quantity L.
In renormalizable theories, various contributions to the S-matrix can be arranged in
such a way that the contributions with L cancel, but in non-renormalizable theories
it is not possible to get rid of L.

The idea of argument a) is such that, by analogy with SQT, where there
are divergent integrals that are cut off by the value of L, in FQT there are formally
no divergences but there are quantities depending on the enormous value p. However,
this analogy doesn’t work for several reasons.
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In Sec. 2 we noted that, from our experience in NM, we think that some
of the arguments are based on common sense. But these arguments only work at
speeds which are much less than c and often fail at speeds comparable to c. Likewise,
some arguments which, from our experience in SM, seem to come from common sense,
usually work in FM only for numbers much less than p, and often fail for numbers
comparable to p.

In FM there are no strict concepts of positive and negative and the con-
cepts of > and <. These concepts approximately work for numbers that are much
less than p and are in some neighborhood of zero on Figure 1.

In SM, when we add two positive numbers, we always get a positive number
that is greater than the original arguments. However, since in FM calculations are
carried out modulo p, situations are possible when we add two numbers that, from
the point of view of “common sense”, seem positive we get a number that, from the
point of view of “common sense”, seem negative. For example, in finite mathematics,
(p − 1)/2 + 1 = −(p − 1)/2, i.e., adding two numbers which in Figure 1 are in the
right half-plane, we get a number that in this figure is in the left half-plane.

In Example 2 in Sec. 7, we described an example when in SQT, as a result
of adding many positive values, a divergent expression is obtained, while in FQT the
result is 0 because the calculations are carried out modulo p. Thus, argument a) does
not always work in FQT.

The argument b) is unacceptable even because the theory with adeles is
not finite and therefore automatically has foundational problems. The arguments b)
and c) that it is not clear from what considerations p is chosen is not a refutation
of FQT for the following reason. As explained in Sec. 6, the value of p is not a
fundamental parameter that follows from some theory: this value is determined by
the state of the universe at the given stage of its development, and at different stages
the values of p are different.

To conclude this section, we note the following. One of the objections to
FQT is that the authors of these objections interpret p as the greatest possible number
in nature and invoke the argument attributed to Euclid that there can be no greatest
number in nature because if p is such a number then (p + 1) > p. Similarly, one can
say that c cannot be the greatest possible speed because 1.001c > c. As explained
above, these arguments arise because our experience at speeds which are much less
than c and numbers which are much less than p is extrapolated to situations when
speeds are comparable to c or numbers are comparable to p.

9 Conclusion

The purpose of this paper is to explain at the simplest possible level why FM is more
general (fundamental) than SM. As noted in Sec. 5, the belief of most mathematicians
and physicists that SM is the most fundamental arose for historical reasons. However,
as explained in Sec. 4, simple mathematical arguments show that SM (involving the
concept of infinities) is a degenerate case of FM: SM arises from FM in the degenerate
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case when operations modulo a number are discarded.
We call FQT a quantum theory based on FM. It is determined by a param-

eter p which is the characteristic of a ring in finite mathematics describing physics.
We note that in FQT there are no infinities and that is why divergences are absent
in principle. Probabilistic interpretation of FQT is only approximate: it applies only
to states described by numbers which are much less than p.

In Sec. 6 we have given arguments that p is not a fundamental quantity
that is determined by some theory, but depends on the state of the universe at a given
stage. Therefore, p is different at different stages of the universe.

The question of why p is this and not another is similar to the question
of why the values of (c, h̄) are such and not others. As explained in [1, 15], currently
they are such simply because people want to measure c in m/s and h̄ in kg · m2/s,
and it is natural to expect that these values at different stages of the universe are
different.

As noted in Sec. 7, at the present stage of the universe, p is an enormous
quantity of the order of exp(1080). Therefore, at present, SM almost always works
with very high accuracy. At the same time, in [1, 15] and Sec. 7 we argue that in
early stages of the universe, p was much less than now. Therefore, at these stages,
the finitude of mathematics played a much greater role than it does now. As a result,
the problem of baryon asymmetry of the universe does not arise.

The famous Kronecker’s expression is: ”God made the natural numbers,
all else is the work of man”. However, in view of the above discussion, I propose to
reformulate this expression as: ”God made only finite sets of natural numbers, all
else is the work of man”. For illustration, consider a case when some experiment
is conducted N times, the first event happens n1 times, the second one — n2 times
etc. such that n1 + n2 + ... = N . Then the experiment is fully described by a finite
set of natural numbers. But people introduce rational numbers wi = wi(N) = ni/N ,
introduce the concept of limit and define probabilities as limits of the quantities wi(N)
when N → ∞.

The above discussion shows that FM is not only more general (fundamen-
tal) than SM but, in addition, in FM there are no foundational problems because
every statement can be explicitly verified by a finite number of steps. The conclusion
from the above consideration can be formulated as:

Mathematics describing nature at the most fundamental level
involves only a finite number of numbers, while the concepts of limit,
infinitesimals and continuity are needed only in calculations describing
nature approximately.
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