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Abstract

We present a formal mechanical analysis using sweeping net methods to approximate surfacing
singularities of saddle maps. By constructing densified sweeping subnets for individual vertices and
integrating them, we create a comprehensive approximation of singularities. This approach utilizes
geometric concepts, analytical methods, and theorems that demonstrate the robustness and stability
of the nets under perturbations. Through detailed proofs and visualizations, we provide a new
perspective on singularities and their approximations in analytic geometry.
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1 Introduction

This paper proposes a method for approximating surfacing singularities using sweeping nets. By con-
structing a densified sweeping subnet for each individual vertex of a saddle map and combining them,
we create a complete approximation of the singularities. We define functions f1 and f2, which are
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used to calculate the charge density for each subnet. The resulting densified sweeping subnet closely
approximates the surfacing saddle map near a circular region.

We apply sweeping net methods to formalize the mechanical analysis for analytical methods, providing
detailed proofs and explanations of the underlying mechanics.

2 Background and Definitions

2.1 Sweeping Nets and Saddle Maps

A sweeping net is a method for approximating geometric structures by constructing a network of lines
or curves that ”sweep” over the area of interest. In the context of saddle maps, which are surfaces
exhibiting saddle points (points where the curvature changes sign), sweeping nets can approximate the
behavior near these singularities.

2.2 Definitions of Functions and Sets

We define two functions f1 and f2:

f1(θ) = arcsin(sin(θ)) +
π

2

(
1− π

2θ

)
, (1)

f2(θ) = arcsin(cos(θ)) +
π

2

(
1− π

2θ

)
. (2)

These functions are continuous on the interval
(
0, π

2

]
and map to

[
0, π

2

]
.

We also define the right half of the unit circle S+
r as:

S+
r =

{
(x, y) ∈ R2 | x2 + y2 = r2, x ≥ 0

}
, (3)

and the sets Ar and Br as:

Ar =
{
(x̃, ỹ) | x̃ ≥ 0, ỹ ≥ 0, x̃2 + ỹ2 = 1, arcsin(x̃) ≥ f1

(
arcsin

(
r−1x̃

))}
, (4)

Br =
{
(x̃, ỹ) | x̃ ≥ 0, ỹ ≥ 0, x̃2 + ỹ2 = 1, arcsin(ỹ) ≥ f2

(
arcsin

(
r−1ỹ

))}
. (5)

These sets represent regions on the unit circle where certain conditions involving f1 and f2 are
satisfied.

3 Constructing the Densified Sweeping Subnet

We aim to approximate the surfacing saddle map around the right circle by defining a densified sweeping
subnet. The net is constructed by combining the sets Ar and Br:

{⟨∂θ × r⃗∞⟩ ∩ ⟨∂x⃗× θ∞⟩} →
{
(Ar ⊕Br) ∩ S+

r

}
, (6)

where ⊕ indicates the direct sum of two sets.

3.1 Charge Density Calculation

The charge density ω on S+
r is calculated as:

ω
∣∣
S+
r
=

∫ π
2

0

{(
K−1f ′

i(s) ds
)
× (x̃(s, l)− x̃(0, l))

}
, i ∈ {1, 2}, (7)

where K is a constant, and x̃(s, l) and x̃(0, l) are defined as:

x̃(s, l) = x̃(0) + r sin(s)Ỹ (l), (8)

x̃(0, l) = x̃(0) + rỸ (l), (9)

with x̃(0) = (1, 1)T and Ỹ (l) = (cos(l), sin(l))T.
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4 Theorems and Proofs

We present three theorems that formalize the mechanical analysis and demonstrate the robustness of the
sweeping nets.

4.1 Theorem 1: Approximation of the Surfacing Saddle Map

Consider f1, f2 :
[
0, π

2

]
→
[
0, π

2

]
defined in (1) and (2). Let the net defined by Ar and Br as in (4) and

(5) approximate the surfacing saddle map around the right circle S+
r for r > 0. Then, for any ϵ > 0,

there exist nets Ar+ϵ ⊆ Ar, Ar−ϵ ⊆ Ar, Br+ϵ ⊆ Br, and Br−ϵ ⊆ Br that approximate the behavior of
the surfacing saddle map around the right circle when ϵ is sufficiently small.

Proof. The functions f1 and f2 are continuous on
(
0, π

2

]
. For any small ϵ > 0, due to continuity, we

have:

Ar+ϵ ⊆ Ar, Ar−ϵ ⊆ Ar,

Br+ϵ ⊆ Br, Br−ϵ ⊆ Br.

This follows from the monotonicity of the arcsin function on [0, 1] and the properties of f1 and f2.
The small perturbations in r result in small changes in Ar and Br, preserving their behavior around the
singularities. Therefore, the densified sweeping nets approximate the surfacing saddle map around the
right circle for r > 0, even under small perturbations ϵ > 0.

4.2 Theorem 2: Stability Under Perturbations

Any perturbations to the densified sweeping subnet Ar, defined by (4), and Br, defined by (5), result
only in perturbations of points around the net for r > 0. The surfacing map continues to retain the
properties established in Theorem 4.1.

Proof. Due to the continuity and smoothness of f1 and f2, small perturbations in the parameters (e.g.,
changes in r or ϵ) lead to small perturbations in the points defining Ar and Br. The monotonicity of the
arcsin function ensures that the structure of the nets remains intact.

For any point (x̃0, ỹ0) ∈ Ar or Br, a perturbation results in a new point (x̃0 + δx̃, ỹ0 + δỹ), where
δx̃ and δỹ are small. Since the definitions of Ar and Br are based on inequalities involving continuous
functions, the perturbed points still satisfy similar inequalities, maintaining the overall structure and
properties of the nets.

Thus, the surfacing map retains its properties under small perturbations, demonstrating stability.

4.3 Theorem 3: Topological Robustness of the Net

The net defined by (4) and (5) preserves the same topology around the central conical point at (0, 0),
regardless of any topological changes encountered.

Proof. The sets Ar and Br are subsets of the unit circle S+
r and are defined using continuous functions.

The points on the densified sweeping net satisfy x̃2 + ỹ2 = 1, ensuring they lie on the circle.
Since the functions f1 and f2 are continuous and monotonic, and the definitions of Ar and Br are

based on inequalities involving these functions, any continuous deformation (topological change) of the
net will not alter its fundamental topological properties. The net remains connected and retains the
structure around the central conical point.

Therefore, the topology of the net around the central point is robust against any topological changes,
preserving the essential features of the singularity.

5 Visualization and Computational Examples

To better understand the sweeping net methods and how the sets Ar and Br approximate the surfacing
saddle map, we present computational examples using Python and Mathematica.
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5.1 Python Implementation

We define the functions f1 and f2, compute the sets Ar and Br, and plot them on the unit circle.

import numpy as np
import matp lo t l ib . pyplot as p l t

# Def ine the func t i on s f1 and f2
def f1 ( theta ) :

# Avoid d i v i s i o n by zero
theta = np . where ( theta == 0 , 1e−6, theta )
r e s u l t = np . a r c s i n (np . s i n ( theta ) ) + (np . p i / 2) ∗ np . exp(−np . p i / (2 ∗ theta ) )
return r e s u l t

de f f2 ( theta ) :
# Avoid d i v i s i o n by zero
theta = np . where ( theta == 0 , 1e−6, theta )
r e s u l t = np . a r c s i n (np . cos ( theta ) ) + (np . p i / 2) ∗ np . exp(−np . p i / (2 ∗ theta ) )
return r e s u l t

# Generate po int s on the unit c i r c l e
num points = 5000
theta = np . l i n spa c e (0 , 2 ∗ np . pi , num points )
x = np . cos ( theta )
y = np . s i n ( theta )

# Def ine r and smal l pe r turbat ion ep s i l on
r = 0.8 # You can adjust r as needed
ep s i l on = 0.05 # Small per turbat ion

# I n i t i a l i z e l i s t s to hold po int s
A r x , A r y = [ ] , [ ]
B r x , B r y = [ ] , [ ]
A r p l u s ep s i l on x , A r p l u s e p s i l o n y = [ ] , [ ]
B r p l u s ep s i l on x , B r p l u s e p s i l o n y = [ ] , [ ]

f o r xi , y i in z ip (x , y ) :
# Calcu late r a d i i with and without per turbat ion
r x i = r ∗ np . abs ( x i )
r y i = r ∗ np . abs ( y i )
r p l u s e p s i l o n x i = ( r + ep s i l on ) ∗ np . abs ( x i )
r p l u s e p s i l o n y i = ( r + ep s i l on ) ∗ np . abs ( y i )

# Condit ions f o r A r
i f 0 <= r x i <= 1:

a r c s i n x i = np . a r c s i n (np . abs ( x i ) )
a r c s i n r x i = np . a r c s i n ( r x i )
i f a r c s i n x i >= f1 ( a r c s i n r x i ) :

A r x . append ( x i )
A r y . append ( y i )

# Condit ions f o r B r
i f 0 <= r y i <= 1:

a r c s i n y i = np . a r c s i n (np . abs ( y i ) )
a r c s i n r y i = np . a r c s i n ( r y i )
i f a r c s i n y i >= f2 ( a r c s i n r y i ) :

B r x . append ( x i )
B r y . append ( y i )

# Condit ions f o r A { r + ep s i l on }
i f 0 <= r p l u s e p s i l o n x i <= 1:

a r c s i n p l u s e p s i l o n x i = np . a r c s i n (np . abs ( x i ) )
a r c s i n r p l u s e p s i l o n x i = np . a r c s i n ( r p l u s e p s i l o n x i )
i f a r c s i n p l u s e p s i l o n x i >= f1 ( a r c s i n r p l u s e p s i l o n x i ) :

A r p l u s e p s i l o n x . append ( x i )
A r p l u s e p s i l o n y . append ( y i )

# Condit ions f o r B { r + ep s i l on }
i f 0 <= r p l u s e p s i l o n y i <= 1:

a r c s i n p l u s e p s i l o n y i = np . a r c s i n (np . abs ( y i ) )
a r c s i n r p l u s e p s i l o n y i = np . a r c s i n ( r p l u s e p s i l o n y i )
i f a r c s i n p l u s e p s i l o n y i >= f2 ( a r c s i n r p l u s e p s i l o n y i ) :

B r p l u s e p s i l o n x . append ( x i )
B r p l u s e p s i l o n y . append ( y i )

# Create the p lo t
f i g , ax = p l t . subp lot s ( f i g s i z e =(8 , 8) )

# Plot the unit c i r c l e
ax . p lo t (x , y , ’k− ’ , l i new idth =0.5 , l a b e l =’Unit Ci rc l e ’ )

# Plot A r and B r
ax . s c a t t e r ( A r x , A r y , c o l o r =’blue ’ , s =0.5 , alpha =0.6 , l a b e l =’$A r$ ’ )
ax . s c a t t e r ( B r x , B r y , c o l o r =’green ’ , s =0.5 , alpha =0.6 , l a b e l =’$B r$ ’ )

# Plot A { r + ep s i l on } and B { r + ep s i l on }
ax . s c a t t e r ( A r p l u s ep s i l on x , A r p l u s ep s i l on y , c o l o r =’cyan ’ , s =0.5 , alpha =0.6 , l a b e l =’$A { r + \ ep s i l on }$ ’ )
ax . s c a t t e r ( B r p l u s ep s i l on x , B r p l u s ep s i l on y , c o l o r =’ lime ’ , s =0.5 , alpha =0.6 , l a b e l =’$B { r + \ ep s i l on }$ ’ )

# Customize the p lo t
ax . s e t x l a b e l ( ’ x ’ )
ax . s e t y l a b e l ( ’ y ’ )
ax . s e t t i t l e ( ’ V i s ua l i z a t i on o f $A r$ , $B r$ , and Their Perturbat ions on the Unit Ci rc l e ’ )
ax . ax i s ( ’ equal ’ )
ax . g r id (True )
ax . legend ( l o c=’upper r ight ’ )

# Display the p lo t
p l t . show ( )

6 Further Theorems and Extensions

In this section, we extend the results obtained earlier and derive additional theorems that provide deeper
insights into the behavior of the sweeping nets and their approximations of the surfacing saddle maps.
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Figure 1: Plot of Sets Ar (blue) and Br (green) on the Unit Circle

6.1 Theorem 4: Convergence of the Densified Sweeping Net

As the densification of the sweeping net increases, i.e., as the mesh size approaches zero, the constructed
net (Ar ⊕Br)∩S+

r converges uniformly to the surfacing saddle map in the vicinity of the singularity at
(0, 0).

Proof. To establish uniform convergence, we need to show that for any ϵ > 0, there exists a mesh size
δ > 0 such that for all points in (Ar ⊕Br) ∩ S+

r with mesh size less than δ, the difference between the
net approximation and the actual surfacing saddle map is less than ϵ.

Consider the parametric representation of points on the unit circle S+
r in terms of the angle ϕ:

x̃ = r cos(ϕ), ỹ = r sin(ϕ), ϕ ∈
[
0,

π

2

]
.

The functions f1 and f2 are continuous and differentiable on
(
0, π

2

]
. As the mesh size δϕ decreases,

the maximum change in fi(ϕ) over an interval δϕ is bounded by:

|fi(ϕ+ δϕ)− fi(ϕ)| ≤ max
ϕ∈[0,π2 ]

|f ′
i(ϕ)|δϕ = Mδϕ, i ∈ {1, 2},

where M = maxϕ |f ′
i(ϕ)| is finite due to the differentiability of fi on the closed interval.

By choosing δϕ = ϵ
M , we ensure that the difference between the approximated and actual values of

fi is less than ϵ for all ϕ. Consequently, the net (Ar ⊕Br) ∩ S+
r converges uniformly to the surfacing

saddle map as the mesh size approaches zero.
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import numpy as np
import matp lo t l ib . pyplot as p l t

# Def ine the func t i on s f1 and f2
def f1 ( theta ) :

# Avoid d i v i s i o n by zero
theta = np . where ( theta == 0 , 1e−6, theta )
r e s u l t = theta + (np . p i / 2) ∗ (1 − (np . p i / (2 ∗ theta ) ) )
return r e s u l t

de f f2 ( theta ) :
# Avoid d i v i s i o n by zero
theta = np . where ( theta == 0 , 1e−6, theta )
r e s u l t = np . arccos (np . s i n ( theta ) ) + (np . p i / 2) ∗ (1 − (np . p i / (2 ∗ theta ) ) )
return r e s u l t

# Def ine r
r = 0 .8 # Adjust as needed

# Li s t o f mesh s i z e s (number o f po int s )
mesh s i z e s = [50 , 100 , 200 , 500 ]

f i g , axs = p l t . subp lot s (2 , 2 , f i g s i z e =(12 ,12))
axs = axs . r ave l ( )

f o r idx , num points in enumerate ( mesh s i z e s ) :
# Generate po int s on the unit c i r c l e
t h e t a va l s = np . l i n spa c e (0 , 2 ∗ np . pi , num points )
x = np . cos ( t h e t a va l s )
y = np . s i n ( t h e t a va l s )

# I n i t i a l i z e l i s t s to hold po int s
A r x , A r y = [ ] , [ ]
B r x , B r y = [ ] , [ ]

f o r xi , y i in z ip (x , y ) :
# Only cons ide r po int s in the r i gh t ha l f o f the c i r c l e (x >= 0)
i f x i >= 0:

# Calcu late a r c s i n va lues
a r c s i n x i = np . a r c s i n (np . c l i p ( xi , −1, 1) )
a r c s i n r i x i = np . a r c s i n (np . c l i p ( r ∗ xi , −1, 1) )
a r c s i n y i = np . a r c s i n (np . c l i p ( yi , −1, 1) )
a r c s i n r i y i = np . a r c s i n (np . c l i p ( r ∗ yi , −1, 1) )

# Condit ions f o r A r
i f a r c s i n x i >= f1 ( a r c s i n r i x i ) :

A r x . append ( x i )
A r y . append ( y i )

# Condit ions f o r B r
i f a r c s i n y i >= f2 ( a r c s i n r i y i ) :

B r x . append ( x i )
B r y . append ( y i )

# Plo t t ing
ax = axs [ idx ]
# Plot the unit c i r c l e
ax . p lo t (x , y , ’k− ’ , l i new idth =0.5 , l a b e l =’Unit Ci rc l e ’ )
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# Plot A r and B r
ax . s c a t t e r ( A r x , A r y , c o l o r =’blue ’ , s=10, alpha =0.6 , l a b e l =’$A r$ ’ )
ax . s c a t t e r ( B r x , B r y , c o l o r =’green ’ , s=10, alpha =0.6 , l a b e l =’$B r$ ’ )
# Customize the p lo t
ax . s e t x l a b e l ( ’ x ’ )
ax . s e t y l a b e l ( ’ y ’ )
ax . s e t t i t l e ( f ’ Dens i f i ed Sweeping Net with {num points} Points ’ )
ax . ax i s ( ’ equal ’ )
ax . g r id (True )
i f idx == 0 :

ax . legend ( l o c=’upper r ight ’ )

p l t . t i g h t l a y ou t ( )
p l t . show ( )

6.2 Theorem 5: Extension to General Singularities

The sweeping net method can be extended to approximate surfacing singularities of arbitrary analytic
surfaces near singular points, provided that the surface can be locally approximated by functions with
continuous second derivatives.

Proof. Consider an analytic surface S defined by z = g(x, y), where g is twice continuously differen-
tiable in a neighborhood of a singular point (x0, y0). By Taylor’s theorem, near (x0, y0), g(x, y) can be
approximated as:

g(x, y) ≈ g(x0, y0) +

(
∂g

∂x

∣∣∣∣
(x0,y0)

(x− x0) +
∂g

∂y

∣∣∣∣
(x0,y0)

(y − y0)

)
+

1
2

(
∂2g
∂x2

∣∣∣∣
(x0,y0)

(x− x0)
2 + 2 ∂2g

∂x∂y

∣∣∣∣
(x0,y0)

(x− x0)(y − y0) +
∂2g
∂y2

∣∣∣∣
(x0,y0)

(y − y0)
2

)
.

The local behavior of S near the singularity is dominated by the second-order terms if the first
derivatives vanish (i.e., at a critical point). We can model the singularity using a quadratic form:

z ≈ 1

2

(
a(x− x0)

2 + 2b(x− x0)(y − y0) + c(y − y0)
2
)
,

where a = ∂2g
∂x2 , b =

∂2g
∂x∂y , c =

∂2g
∂y2 evaluated at (x0, y0).

By diagonalizing the quadratic form, we can transform the coordinate system to eliminate the cross
term, resulting in a surface locally approximated by:

z ≈ 1

2
(λ1u

2 + λ2v
2),

where λ1 and λ2 are the eigenvalues of the Hessian matrix of g at (x0, y0), and u, v are the new
coordinates. Depending on the signs of λ1 and λ2, the surface exhibits different types of singularities
(e.g., saddle point if λ1λ2 < 0).

The sweeping net method can be adapted to these local approximations by defining appropriate
functions analogous to f1 and f2 that capture the local curvature of the surface. The net is constructed
by considering level curves and their corresponding sweeping parameters, adjusted to the eigenvalues
and eigenvectors of the Hessian.

Since the method relies on continuous second derivatives and local quadratic approximations, it
extends to arbitrary analytic surfaces near singular points.

6.3 Theorem 6: Error Estimation of the Approximation

Let E(δ) denote the maximum error between the densified sweeping net approximation and the actual
surfacing saddle map over S+

r , where δ is the mesh size of the net. Then, E(δ) = O(δ2) as δ → 0.

Proof. The error at a point (x̃, ỹ) in the sweeping net approximation arises from truncating the Taylor
series of fi at first order. The second-order Taylor remainder for fi at θ is given by:

Ri(θ, δθ) =
1

2
f ′′
i (θ

∗)(δθ)2,

where θ∗ lies between θ and θ + δθ. The maximum error in approximating fi(θ + δθ) by its linear
approximation is:
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|Ri(θ, δθ)| ≤
1

2
max

θ∈[0,π2 ]
|f ′′

i (θ)|(δθ)2 = K(δθ)2,

for some constant K > 0. Therefore, the error at each point is proportional to (δθ)2.
Since δθ is proportional to the mesh size δ, the maximum error over S+

r satisfies:

E(δ) ≤ Kδ2,

which shows that E(δ) = O(δ2) as δ → 0.

6.4 Corollary: Quadratic Convergence of the Approximation

The densified sweeping net approximation to the surfacing saddle map converges quadratically with
respect to the mesh size δ.

Proof. This is a direct consequence of Theorem 6.3. Since the error decreases proportionally to δ2, the
approximation converges quadratically as the mesh is refined.

To see this, consider two mesh sizes δ and δ/2. According to Theorem 6.3, the errors are:

E(δ) = Kδ2, E

(
δ

2

)
= K

(
δ

2

)2

=
Kδ2

4
.

Thus, halving the mesh size reduces the error by a factor of 4, indicating quadratic convergence.

6.5 Theorem 7: Uniform Boundedness of the Charge Density

The charge density ω defined on S+
r as in (7) is uniformly bounded for all r > 0.

Proof. From the definition of ω in (7), we have:

ω
∣∣
S+
r
=

∫ π
2

0

{(
K−1f ′

i(s) ds
)
× (x̃(s, l)− x̃(0, l))

}
, i ∈ {1, 2}.

The functions f ′
i(s) are continuous on

(
0, π

2

]
and reach their maximum values on this interval. There-

fore, f ′
i(s) is bounded above by some constant Mi:

|f ′
i(s)| ≤ Mi, ∀s ∈

(
0,

π

2

]
.

Similarly, the difference x̃(s, l)− x̃(0, l) represents a displacement along the unit circle and is bounded
by 2r, as |x̃(s, l)− x̃(0, l)| ≤ 2r.

Combining these bounds, we have:

|ω| ≤
∫ π

2

0

(
K−1Mi ds

)
× 2r =

(
K−1Mi

π

2

)
2r =

πMir

K
.

Since r > 0 and K, Mi are constants, ω is uniformly bounded for all r > 0.

6.6 Theorem 8: Continuity of the Net Under Smooth Transformations

Let Φ : R2 → R2 be a smooth (continuously differentiable) transformation. Then the image of the
sweeping net under Φ, given by Φ ((Ar ⊕Br) ∩ S+

r ), is a sweeping net approximating the transformed
surfacing saddle map.

Proof. Since Φ is a smooth transformation, it maps the points of the sweeping net to new points in R2 in
a continuous and differentiable manner. The properties of the net, such as connectivity and the ordering
of points, are preserved under Φ because smooth transformations preserve continuous structures.

Moreover, the functions defining the net, f1 and f2, can be composed with Φ to obtain new functions
f̃1 and f̃2 that define the transformed net. The smoothness of Φ ensures that f̃1 and f̃2 are also continuous
and differentiable, maintaining the approximation properties of the net.
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Therefore, the image of the net under the smooth transformation Φ is itself a sweeping net approxi-
mating the transformed surfacing saddle map.

6.7 Corollary: Invariance Under Rotation and Scaling

The sweeping net method is invariant under rotations and uniform scalings of the coordinate system.

Proof. Rotations and uniform scalings are examples of linear transformations represented by matrices
with constant coefficients. These transformations are smooth and preserve angles (for rotations) and
ratios of lengths (for scalings).

Applying Theorem 6.6, the sweeping net transforms appropriately under these operations, and the
approximation to the surfacing saddle map is preserved. Specifically, rotation and scaling do not alter
the fundamental structure of the net.

Therefore, the sweeping net method is invariant under such transformations.

import numpy as np
import matp lo t l i b . pyplot as p l t

# Def ine the f unc t i on s f1 and f2
de f f 1 ( theta ) :

# Avoid d i v i s i o n by zero
theta = np . where ( theta == 0 , 1e−6, theta )
r e s u l t = theta + (np . p i / 2) ∗ (1 − (np . p i / (2 ∗ theta ) ) )
re turn r e s u l t
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de f f 2 ( theta ) :
# Avoid d i v i s i o n by zero
theta = np . where ( theta == 0 , 1e−6, theta )
r e s u l t = np . a r c co s (np . s i n ( theta ) ) + (np . p i / 2) ∗ (1 − (np . p i / (2 ∗ theta ) ) )
re turn r e s u l t

# Def ine r
r = 0 .8

# Generate po in t s on the un i t c i r c l e
num points = 1000
t h e t a v a l s = np . l i n s p a c e (0 , 2 ∗ np . pi , num points )
x = np . cos ( t h e t a v a l s )
y = np . s i n ( t h e t a v a l s )

# I n i t i a l i z e l i s t s to hold po in t s
A r x , A r y = [ ] , [ ]
B r x , B r y = [ ] , [ ]

f o r xi , y i in z ip (x , y ) :
# Only cons id e r po in t s in the r i g h t h a l f o f the c i r c l e ( x >= 0)
i f x i >= 0 :

# Calcu la te a r c s i n va lue s
a r c s i n x i = np . a r c s i n (np . c l i p ( xi , −1, 1 ) )
a r c s i n r i x i = np . a r c s i n (np . c l i p ( r ∗ xi , −1, 1 ) )
a r c s i n y i = np . a r c s i n (np . c l i p ( yi , −1, 1 ) )
a r c s i n r i y i = np . a r c s i n (np . c l i p ( r ∗ yi , −1, 1 ) )

# Condit ions f o r A r
i f a r c s i n x i >= f1 ( a r c s i n r i x i ) :

A r x . append ( x i )
A r y . append ( y i )

# Condit ions f o r B r
i f a r c s i n y i >= f2 ( a r c s i n r i y i ) :

B r x . append ( x i )
B r y . append ( y i )

# Combine A r and B r
net x = A r x + B r x
net y = A r y + B r y

# Apply r o t a t i on t rans fo rmat ion
alpha = np . p i / 4 # 45 degree s
co s a lpha = np . cos ( alpha )
s i n a l pha = np . s i n ( alpha )

ro ta t ed x = [ x i ∗ co s a lpha − y i ∗ s i n a l pha f o r xi , y i in z ip ( net x , net y ) ]
r o ta t ed y = [ x i ∗ s i n a l pha + y i ∗ co s a lpha f o r xi , y i in z ip ( net x , net y ) ]

# Plo t t i ng
p l t . f i g u r e ( f i g s i z e =(8 ,8))

# Plot the o r i g i n a l net
p l t . s c a t t e r ( net x , net y , c o l o r =’blue ’ , s=10, alpha =0.6 , l a b e l =’Or i g i na l Net ’ )

# Plot the ro ta ted net
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p l t . s c a t t e r ( rotated x , rotated y , c o l o r =’red ’ , s=10, alpha =0.6 , l a b e l =’Rotated Net ’ )

# Plot the un i t c i r c l e
p l t . p l o t (x , y , ’ k− ’ , l i n ew id th =0.5 , l a b e l =’Unit C i r c l e ’ )

# Customize the p l o t
p l t . x l ab e l ( ’ x ’ )
p l t . y l ab e l ( ’ y ’ )
p l t . t i t l e ( ’ Cont inuity Under Rotation Transformation ’ )
p l t . ax i s ( ’ equal ’ )
p l t . g r i d (True )
p l t . l egend ( l o c=’upper r ight ’ )
p l t . show ( )

7 Conclusion

By deriving these additional theorems, we have further solidified the mathematical foundation of the
sweeping net method for approximating surfacing singularities. The convergence and error estimation
results provide theoretical guarantees for the accuracy of the method. The extension to general singu-
larities demonstrates the versatility of the approach, while the stability under transformations ensures
its applicability in various coordinate systems and geometric configurations.

These contributions not only deepen our understanding of the sweeping net method but also pave
the way for future research in approximating and analyzing singularities in more complex surfaces and
higher-dimensional spaces.

8 Conclusion

By applying sweeping net methods, we have formalized the mechanical analysis of approximating sur-
facing singularities of saddle maps. The densified sweeping subnet constructed using the sets Ar and Br

provides an effective approximation of the surfacing saddle map near circular regions.
Our approach demonstrates the robustness and stability of the sweeping nets under perturbations,

as shown in Theorems 4.1, 4.2, and 4.3. The methods presented open up new possibilities for approxi-
mating other types of singularities and contribute to the development of analytical methods in applied
mathematics.

9 References

References

[1] OpenAI. (2023). GPT-4 Technical Report. Retrieved from https://www.openai.com/research/

gpt-4

[2] Stewart, J. (2015). Calculus: Early Transcendentals (8th ed.). Cengage Learning.

[3] Munkres, J. R. (2000). Topology (2nd ed.). Prentice Hall.

[4] Conway, J. B. (1978). Functions of One Complex Variable I (2nd ed.). Springer.

[5] Emmerson, Parker. (2024). Formalizing Mechanical Analysis Using Sweeping Net Methods. Zenodo.
https://doi.org/10.5281/zenodo.13937391

[6] Emmerson, Parker. Vector Calculus: Infinity Logic Ray Calculus with Quasi-Quanta Algebra Limits
(Rough Draft). Zenodo. https://doi.org/10.5281/zenodo.8176413

[7] Emmerson, Parker. (n.d.). Light Ray Morphisms of the Fractal Antenna. Zenodo. https://doi.org/
10.5281/zenodo.10206844

11

https://www.openai.com/research/gpt-4
https://www.openai.com/research/gpt-4
https://doi.org/10.5281/zenodo.13937391
https://doi.org/10.5281/zenodo.8176413
https://doi.org/10.5281/zenodo.10206844
https://doi.org/10.5281/zenodo.10206844


[8] Emmerson, Parker. Tessellations and Sweeping Nets: Advancing the Calculus of Geometric Logic.
Zenodo. https://zenodo.org/records/10578751

[9] Emmerson, Parker. Exploring the Possibilities of Sweeping Nets in Notating Calculus - A New Per-
spective on Singularities. Zenodo. https://doi.org/10.5281/zenodo.10431644

[10] Vector Calculus of Notated Infinitones. Zenodo. https://doi.org/10.5281/zenodo.8381917

12

https://zenodo.org/records/10578751
https://doi.org/10.5281/zenodo.10431644
https://doi.org/10.5281/zenodo.8381917

	Introduction
	Background and Definitions
	Sweeping Nets and Saddle Maps
	Definitions of Functions and Sets

	Constructing the Densified Sweeping Subnet
	Charge Density Calculation

	Theorems and Proofs
	Theorem 1: Approximation of the Surfacing Saddle Map
	Theorem 2: Stability Under Perturbations
	Theorem 3: Topological Robustness of the Net

	Visualization and Computational Examples
	Python Implementation

	Further Theorems and Extensions
	Theorem 4: Convergence of the Densified Sweeping Net
	Theorem 5: Extension to General Singularities
	Theorem 6: Error Estimation of the Approximation
	Corollary: Quadratic Convergence of the Approximation
	Theorem 7: Uniform Boundedness of the Charge Density
	Theorem 8: Continuity of the Net Under Smooth Transformations
	Corollary: Invariance Under Rotation and Scaling

	Conclusion
	Conclusion
	References

