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Abstract

In this paper we prove the fundamental contradiction about the Riemann Hypothesis, expressing a
function as a product and given the following summation, where R is the set of all solutions of R(x) = 0:

R′(x)

R(x)
=

∑
r∈R

(
1

x− r

)
(1)

And considering a regularization for hypertranscendental functions, then the expression applied in Rie-
mann Zeta function of 1

2
, or the logarithmic derivative, where Rt is the set of tirivial zeros:

ζ′( 1
2
)

ζ( 1
2
)
̸=

∑
r∈Rt

(
1

1
2
− r

)
(2)

1 Introduction

The Riemann Hypothesis, one of the most famous unsolved problems in mathematics, has profound implica-
tions for the distribution of prime numbers and connections to various areas of mathematics and physics [6].
Alongside this celebrated conjecture, the study of hypertranscendental functions represents another fascinat-
ing realm of mathematical inquiry, with deep connections to number theory and complex analysis [1].One of
the most well-known examples of a hypertranscendental function is the Gamma function Γ(z), which satisfies
the functional equation:

Γ(z + 1) = zΓ(z) (3)

The Riemann Hypothesis, proposed by Bernhard Riemann in 1859, states that all non-trivial zeros of the
Riemann zeta function ζ(s) have real part equal to 1

2 [4][p.9]. The zeta function is defined for complex s
with ℜ(s) > 1 as:

ζ(s) =

∞∑
n=1

1

ns
(4)

This function can be analytically continued to the entire complex plane, except for a simple pole at s = 1. The
Riemann Hypothesis has far-reaching consequences, including insights into the distribution of prime numbers
[5]. Hypertranscendental functions are a class of functions that cannot satisfy any algebraic differential
equation with coefficients that are rational functions [2]. These functions extend beyond the realm of
algebraic and even transcendental functions, exhibiting properties that make them both challenging and
intriguing to study.
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Theorem 1. Given the transcendental or hypertranscendental continuous and differentiable function y, we
can express in therms of a summation if it has a infinity multi valued inverse function for k, where R(x) is
the function minus a constant k, where R is the set of all the solutions.

R′(x)

R(x)
=
∑
r∈R

(
1

x− r

)
(5)

Proof. We can express a polynomial function as the following factorization see [7] ,where R is the set of all
roots of f(x):

f(x) =
∏
r∈R

(x− r) (6)

We can express the derivative of this function:

f ′(x) =
∑
s∈R

∏
r∈(R−{s})

(x− r) (7)

Then dividing both, because each therm of the summation hasn’t a element s then the division cancelates
all therms except 1

x−s , but s can be substituted by r because is only an auxuiliary variable:

f ′(x)

f(x)
=
∑
r∈R

(
1

x− r

)
(8)

The main problem in some transcendental functions like ex is that there isn’t any solution to ex = 0 or
functions like 1

x has not solution to 1
x = 0. Then to make a disctintion to describe functions without zeros.

By definition a trasncendental function is an analytic function that does not satisfy a polynomial finite
equation see [9]. But the key part is that any of this can be calculated an expressed with basic operations.
The second part is that the inverse function of a transcendental function if is multivalued we have the
following:

y−1
i (k) = ri =⇒ y(ri)− k = 0 (9)

Then we can construct a function R(x) as the product of all x− ri, then the function satisfies:

0 = R(ri) = y(ri)− k =⇒ y−1
i (k)− ri = 0 (10)

The function is factorized and returning to 6 and 7 and 8.

R′(x)

R(x)
=
∑
r∈R

(
1

x− r

)
(11)

It’s valid for all y(r)− k = 0 ∀r ∈ R, then if some a, and R(a) ̸= 0 =⇒ a /∈ R. The useless part is that we
must know all the values, and the values are a infinity. Notice it is valid for hypertranscendental see [2], that
is not a differential equation of this form in the case because the coefficients and solutions can be R ⊆ C.

Theorem 2. Riemann Hypothesis is false an exists non trivial roots with Re(r) ̸= 1
2

Proof. Then the special case for R(x) = f(x)− k = ζ(x)− 0 by supposing true that all non trivial zeros has
real part equal to 1

2 :
ζ ′(x)

ζ(x)
=
∑
r∈R

(
1

x− r

)
(12)

ζ ′( 12 )

ζ( 12 )
=
∑
r∈R

(
1

1
2 − r

)
(13)

We need to separate trivial zeros and non trivial zeros, then R0 is the set of non trivial zeros and Rt the set
of trivial zeros.

ζ ′( 12 )

ζ( 12 )
=
∑
r∈Rt

(
1

1
2 − r

)
+
∑
r∈R0

(
1

1
2 − Re(r)− Im(r)i

)
(14)
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ζ ′( 12 )

ζ( 12 )
=
∑
r∈Rt

(
1

1
2 − r

)
+
∑
r∈R0

(
1

1
2 − 1

2 − Im(r)i

)
(15)

ζ ′( 12 )

ζ( 12 )
=
∑
r∈Rt

(
1

1
2 − r

)
+
∑
r∈R0

(
1

−Im(r)i

)
(16)

We simplify 1
−i = i for non trivial zero summation.

ζ ′( 12 )

ζ( 12 )
=
∑
r∈Rt

(
1

1
2 − r

)
+ i

∑
r∈R0

(
1

Im(r)

)
(17)

Expanding the trivial zeros summation, are the negative even integers:

ζ ′( 12 )

ζ( 12 )
=

∞∑
k=1

(
1

1
2 − (−2k)

)
+ i

∑
r∈R0

(
1

Im(r)

)
(18)

ζ ′( 12 )

ζ( 12 )
=

∞∑
k=1

(
1

1
2 + 2k

)
+ i

∑
r∈R0

(
1

Im(r)

)
(19)

Notice the summation of the imaginary part is 0, the cancelation is because if s is a non-trivial zero, the 1−s
is a non trivial zero see [4][p.113-116]. If s is a non-trivial zero of the Riemann zeta function, then 1 − s is
also a non-trivial zero. This is known as the functional equation of the Riemann zeta function. According to
the Riemann hypothesis, all non-trivial zeros have a real part equal to 1

2 . If this is true, then the zeros occur
in conjugate pairs: 1

2 + σi and 1
2 − σi, where σ is some positive real number. When we sum the reciprocals

of these zeros, the imaginary parts cancel out:

ζ ′( 12 )

ζ( 12 )
=

∞∑
k=1

(
1

1
2 + 2k

)
(20)

Even if the non trivial zero summation is 0 or actually any value, it does not have effect over the divergent
summation because of is a special case of generalized harmonic series see [8].By evaluating the functions
numerically:

ζ(
1

2
) ≈ −1.46035 . . . (21)

ζ ′(
1

2
) ≈ −3.92265 . . . (22)

ζ ′( 12 )

ζ( 12 )
≈ 2.68609 . . . (23)

The number does not diverges, then the contradiction is evident, hence Riemann Hypothesis is false.

Theorem 3. The redefined equation is, where γ is the Euler-Mascheroni constant. Divide the groups of non
trivial zero’s over 1

2 and distinct real part denote the sets R0, 12
, and RC

0, 12
. The summation of the inverse of

the new roots is: ∑
r∈RC

0, 1
2

(
1

r

)
=

1

2
γ + lim

n→∞

[
ln

(
n

1
2

2π

)]
−

∑
r∈R

0, 1
2

(
2

1 + 4t2r

)
(24)

Proof. We can evaluate in x = 0 and the result is equivalent to the logarithmic derivative see [3][p.94], then
returning to equation (12):

ln(2π) =
ζ ′(0)

ζ(0)
=
∑
r∈R

(
1

0− r

)
= −

∑
r∈R

(
1

r

)
(25)
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Expanding the summation in zero’s sets Rt, R0:

ln(2π) = −
∑
r∈Rt

(
1

r

)
−
∑
r∈R0

(
1

σr + tri

)
(26)

ln(2π) = −
∞∑
k=1

(
1

−2k

)
−
∑
r∈R0

(
1

σr + tri

)
(27)

ln(2π) = −
∞∑
k=1

(
1

−2k

)
−
∑
r∈R0

(
σr − tri

σ2
r + t2r

)
(28)

ln(2π) =

∞∑
k=1

(
1

2k

)
+
∑
r∈R0

(
−σr + tri

σ2
r + t2r

)
(29)

ln(2π) =
1

2

∞∑
k=1

(
1

k

)
+
∑
r∈R0

(
−σr + tri

σ2
r + t2r

)
(30)

Using limit for harmonic series see [8]:

ln(2π) =
1

2
lim
n→∞

[ln(n)] +
1

2
γ +

∑
r∈R0

(
−σr + tri

σ2
r + t2r

)
(31)

We can get the imaginary part:

Im (ln(2π) + 0i) = Im

(
1

2
lim

n→∞
[ln(n)] +

1

2
γ +

∑
r∈R0

(
−σr + tri

σ2
r + t2r

))
(32)

0 =
∑
r∈R0

(
tr

σ2
r + t2r

)
(33)

And the real part:

Re (ln(2π) + 0i) = Re

(
1

2
lim
n→∞

[ln(n)] +
1

2
γ +

∑
r∈R0

(
−σr + tri

σ2
r + t2r

))
(34)

ln(2π) =
1

2
lim
n→∞

[ln(n)] +
1

2
γ +

∑
r∈R0

(
−σr

σ2
r + t2r

)
(35)

ln(2π)− 1

2
lim
n→∞

[ln(n)]− 1

2
γ =

∑
r∈R0

(
−σr

σ2
r + t2r

)
(36)

− ln(2π) +
1

2
lim
n→∞

[ln(n)] +
1

2
γ =

∑
r∈R0

(
σr

σ2
r + t2r

)
(37)

lim
n→∞

[
ln

(
n

1
2

2π

)]
+

1

2
γ =

∑
r∈R0

(
σr

σ2
r + t2r

)
(38)

Divide the groups of non trivial zero’s over 1
2 and disctint real part denote sets R0, 12

, and RC
0, 12

.

lim
n→∞

[
ln

(
n

1
2

2π

)]
+

1

2
γ =

∑
r∈R

0, 1
2

( 1
2

1
4 + t2r

)
+

∑
r∈RC

0, 1
2

(
σr

σr + t2r

)
(39)
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lim
n→∞

[
ln

(
n

1
2

2π

)]
+

1

2
γ =

4

4

∑
r∈R

0, 1
2

( 1
2

1
4 + t2r

)
+

∑
r∈RC

0, 1
2

(
σr

σr + t2r

)
(40)

lim
n→∞

[
ln

(
n

1
2

2π

)]
+

1

2
γ =

∑
r∈R

0, 1
2

(
2

1 + 4t2r

)
+

∑
r∈RC

0, 1
2

(
σr

σr + t2r

)
(41)

lim
n→∞

[
ln

(
n

1
2

2π

)]
+

1

2
γ −

∑
r∈R

0, 1
2

(
2

1 + 4t2r

)
=

∑
r∈RC

0, 1
2

(
σr

σr + t2r

)
(42)

From the functional equation see [4][p.113-116] we can get that if a non trivial zero r with real part disctint
to 1

2 then 1− r is a non-trivial zero, and the result of the summation for every peer is 0, the case is the same
in the non trivial zeros of R0, 12

.
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