
Training Neural Networks with {-1,1} Weights by

Evolution Strategy

Hidehiko Okada

Faculty of Information Science and Engineering, Kyoto Sangyo University, Japan.

hidehiko@cc.kyoto-su.ac.jp

Abstract: The author previously reported an experimental result of evolutionary reinforcement learning of

neural network controllers. In the previous study, a conventional multilayer perceptron was employed in which

connection weights were real numbers. In this study, the author experimentally applies an evolutionary

algorithm to the reinforcement training of binary neural networks. In both studies, the same task and the same

evolutionary algorithm are utilized, i.e. the Acrobot control problem and Evolution Strategy respectively. The

differences lie in the memory size per connection weight and the model size of the neural network. The findings

from this study are (1) the optimal number of hidden units for the binary MLP was 128 among the choices of

16, 32, 64, 128 and 256; (2) a larger population size contributed better for ES than a greater number of

generations; and (3) binary connection weights can achieve comparable control performance while reducing

memory size by half.

Keywords: evolutionary algorithm, evolution strategy, binary neural network, neuroevolution, reinforcement

learning.

1. Introduction

The author has been investigating a reinforcement learning approach for training neural networks using

evolutionary algorithms. For instance, the author previously reported an experimental result of evolutionary

reinforcement learning of neural network controllers for the Acrobot task [1]. In the previous study, a

conventional multilayer perceptron was employed in which connection weights were real numbers. On the

contrary, researchers are exploring neural networks in which the weights are discrete values rather than real

numbers, accompanied by the corresponding learning methodologies [2-9]. An advantage of discrete neural

networks lies in their ability to reduce the memory footprint required for storing trained models. To maximize

the effect of memory size reduction achieved through neural network discretization, it is essential to limit the

increase in model size while simultaneously minimizing the number of bits per connection weight.

In this study, the author experimentally applies an evolutionary algorithm to the reinforcement training of

binary neural networks and compares the result with the previous experimental result [1] in which real-valued

neural networks were employed. In both studies, the same task and the same evolutionary algorithm are

utilized, i.e. the Acrobot control problem and Evolution Strategy respectively. The differences lie in the

memory size per connection weight and the overall model size of the neural network.

2. Acrobot Control Task

As a task that requires reinforcement learning to solve, this study employs the Acrobot control task

provided at OpenAI Gym. Figure 1 shows a screenshot of the system. The webpage for this system describes

as follows1; The system consists of two links connected linearly to form a chain, with one end of the chain

1 https://www.gymlibrary.dev/environments/classic_control/acrobot/

fixed. The joint between the two links is actuated. The goal is to apply torques on the actuated joint to swing

the free end of the linear chain above a given height while starting from the initial state of hanging

downwards.

Figure 1: Acrobot system1.

Let py denote the height of the free end of the linear chain, where the minimum (maximum) value of py is

0.0 (1.0) as shown in Figure 2. The goal of the task is originally to achieve py≥0.5, and an episode is finished

when the goal is achieved or the time step reaches to a preset limit. In this study, the goal is changed so that

the free end of the linear chain is kept as high as possible (i.e., let the value of py as greater as possible)

throughout an episode, where an episode consists of 200 time steps. Besides, the author changed the system

so that (i) the control task starts with the state shown in Figure 2(a) where py=0.0, and (ii) the applicable

torque to the actuated joint is continuous within [-1.0, 1.0] while the torque is originally discrete (either of -

1, 0 or 1).

(a) initial state (b) best state

Figure 2: Initial and best states.

In each step, the controller observes the current state and then determines the action. An observation

obtains cos(θ1), sin(θ1), cos(θ2), sin(θ2), and the angular velocity of θ1 and θ2, where θ1 is the angle of the

first joint and θ2 is relative to the angle of the first link1. The ranges are -1.0 ≤ cos(θ1), sin(θ1), cos(θ2), sin(θ2)

≤ 1.0, −4𝜋 ≤ angular velocity of θ1 ≤ 4𝜋, and −9𝜋 ≤ angular velocity of θ2 ≤ 9𝜋 respectively.

In this study, the author defines the fitness of a neural network controller as shown in eq. (1). In eq. (1),

py(t) denotes the height py at each time step t. The fitness score is larger as py(t) is larger for more time steps.

Thus, a controller fits better as it can keep the free end of the linear chain as higher as possible.

Fitness =
1

200
∑ py(t)

200

t=1
 (1)

3. Neural Networks with Binary Connection Weights

In the previous study [1] the author employed a three-layered feedforward neural network known as a

multilayer perceptron (MLP) as the controller. An MLP with the same topology is utilized again in this study,

where connection weights are binary in this study while real numbers in the previous study. Figure 3

illustrates the topology of the MLP. The feedforward calculations are the same as those described in [1]. Note

that the unit activation function is the hyperbolic tangent (tanh), which is the same as in the previous study.

Thus, the MLP with binary weights outputs real numbers within the range [-1.0, 1.0].

In both of this study and the previous one, the MLP serves as the policy function: action(t) =

F(observation(t)). The input layer consists of three units (N=6 in Figure 3), each corresponding to the values

obtained by an observation. The output layer comprises one unit (L=1 in Figure 3), and its output value is

applied as the torque to the pendulum system.

Figure 3. Topology of the MLP.

4. Training of Binary Neural Networks by Evolution Strategy

A three-layered perceptron, as depicted in Figure 3, includes M+L unit biases and NM+ML connection

weights, resulting in a total of M+L+NM+ML parameters. Let D represent the quantity M+L+NM+ML. For

this study, the author sets N=6 and L=1, leading to D=8M+1. The training of this perceptron is essentially an

optimization of the D-dimensional binary vector. Let 𝐱 = (x1, x2, . . . , xD) denote the D-dimensional vector,

where each xi corresponds to one of the D parameters in the perceptron. In this study, each xi is a binary

variable, xi ∈{-1,1}. By applying the value of each element in 𝐱 to its corresponding connection weight or

unit bias, the feedforward calculations can be processed.

In this study, the binary vector 𝐱 is optimized using Evolution Strategy [10-12]. ES treats 𝐱 as a

chromosome (a genotype vector) and applies evolutionary operators to manipulate it. The fitness of 𝐱 is

evaluated based on eq. (1), which is the same as in the previous study [1]. Figure 4 illustrates the ES process.

The process is the same as that in the previous study [1]. In Step 1, D-dimensional binary vectors

𝒚1, 𝒚2, . . . , 𝒚𝐶 are randomly initialized where 𝐶 denotes the number of offsprings. A larger value of 𝐶

promotes explorative search more. In Step 2, values in each vector 𝒚𝑐 (𝑐 = 1,2, . . . , 𝐶) are applied to the MLP

and the MLP controls the Acrobot for a single episode with 200 time steps. The fitness of 𝒚𝒄 is then evaluated

with the result of the episode. Let 𝑓(𝒚𝑐) denote the fitness. In Step 3, the loop of evolutionary training is

finished if a preset condition is satisfied. A simple example of the condition is the limit number of fitness

evaluations. In Step 4, among the 𝑃 + 𝐶 vectors in the parent population (𝒛1, 𝒛2, . . . , 𝒛𝑃) and the offspring

population (𝒚1, 𝒚2, . . . , 𝒚𝐶), vectors with the top 𝑃 fitness scores survive as the parents in the next

reproduction, and the remaining vectors are deleted. 𝑃 denotes the number of parents. A smaller value of 𝑃

1 i

1

N

1

j

k L

M

promotes exploitive search more. Note that, for the first time of Step 4, the parent population is empty so that

vectors with the top 𝑃 fitness scores survive among the 𝐶 vectors in the offspring population (𝒚1, 𝒚2, . . . , 𝒚𝐶).

In Step 5, new 𝐶 offspring vectors are produced by applying the reproduction operator to the parent vectors

(𝒛1, 𝒛2, . . . , 𝒛𝑃) which are selected in the last Step 4. The new offspring vectors form the new offspring

population (𝒚1, 𝒚2, . . . , 𝒚𝐶). Figure 4 denotes the process of reproduction. This reproduction process is slightly

different from that in the previous study [1] because the genotype vectors are not real-valued vectors but

binary ones. In Step5-4, each of 𝑦1
𝑐, 𝑦2

𝑐, . . . , 𝑦𝐷
𝑐 is mutated under the probability 𝑝𝑚. Let denote bS (bG) is the

smaller (greater) value for the binary parameter, e.g. { bS, bG } = {-1, 1}. The mutation flips the value of 𝑦𝑑
𝑐

from bS to bG (or from bG to bS). A greater value of 𝑝𝑚 promotes explorative search more.

Figure 4. Process of Evolution Strategy.

Figure 5. Reproduction process in Evolution Strategy.

4. Experiment

In the previous study using MLPs with real-valued connection weights, the number of fitness evaluations

included in a single run was set to 5,000 [1]. The number of new offsprings generated per generation was

either of (a) 𝐶=10 and (b) 𝐶=50. The number of generations for each case of (a) or (b) was 500 and 100

respectively. The total number of fitness evaluations were 10 × 500 = 5,000 for (a) and 50 × 100 = 5,000 for

(b). The experiments in this study, using MLPs with binary connection weights, employ the same

configurations except that the number of generations are 1,000 for (a) and 200 for (b). Thus, the number of

fitness evaluations included in a single run was 10,000 for both of (a) and (b). The hyperparameter

configurations for ES are shown in Table 1. The number of parents, denoted as 𝑃, is set to 10% of the 𝐶

offsprings for both (a) and (b). The mutation probability 𝑝𝑚 is set to 0.01. The values of 𝑃 and 𝑝𝑚 were

adjusted based on preliminary experiments.

As the two values for the binary connection weights, {-1,1} is used in this study. In the previous study

using real-valued MLPs, it was found that, among 8, 16, or 32 hidden units, 8 units yielded the most desirable

results [1]. The binary MLPs used in this study are expected to require a greater number of hidden units to

achieve performance comparable to the real-valued MLP with 8 hidden units. Therefore, in this experiment,

the author tested five options: 16, 32, 64, 128 and 256. A binary MLP with either of 16, 32, 64, 128 or 256

hidden units underwent independent training 11 times.

Table 1. ES Hyperparameter Configurations.

Hyperparameters (a) (b)

Number of offsprings (𝐶) 10 50

Generations 1,000 200

Fitness evaluations 10×1,000=10,000 50×200=10,000

Number of parents (𝑃) 10×0.1=1 50×0.1=5

Mutation probability (𝑝𝑚) 0.01 0.01

Table 2 presents the best, worst, average, and median fitness scores of the trained MLPs across the 11

runs. Each of the two hyperparameter configurations (a) and (b) in Table 1 was applied. A larger value is

better in Table 2 with a maximum of 1.0.

Table 2. Fitness Scores among 11 Runs.

 M Best Worst Average Median

(a)

16 0.391 0.330 0.363 0.356

32 0.421 0.376 0.401 0.401

64 0.432 0.245 0.395 0.412

128 0.440 0.385 0.424 0.428

256 0.448 0.305 0.418 0.426

(b)

16 0.386 0.347 0.362 0.360

32 0.419 0.377 0.396 0.394

64 0.440 0.394 0.416 0.413

128 0.448 0.426 0.435 0.433

256 0.448 0.426 0.438 0.438

In order to investigate which of the two configurations (a) or (b) is superior, the Wilcoxon signed-rank

test was applied to the 20×2 data points presented in Table 2. This test revealed that configuration (b) is

better than configuration (a) with a statistical significance (p < .01). Thus, increasing the population size and

reducing the number of generations is more favorable than the opposite approach. ES excels in local

exploitation but struggle with global exploration. Increasing the population size can enhance the performance

of evolutionary algorithms on global exploration, thereby compensating for this weakness. Consequently, it

is posited that increasing the population size improves the balance between global and local search, resulting

in better performance compared to increasing the number of generations.

Next, the author examines whether there is a statistically significant difference in the performances among

the three MLPs with the different numbers of hidden units M. For each M of 16, 32, 64, 128 and 256, the

author conducted 11 runs using the configuration (b), resulting in 11 fitness scores. The Wilcoxon rank sum

test was applied to the 11×5 data points. The results showed that,

(1) M=16 was significantly worse than any of M=32, 64, 128 and 256 (p < .01),

(2) M=32 was significantly worse than any of M=64, 128 and 256 (p < .01), and

(3) M=64 was significantly worse than any of M=128 and 256 (p < .01).

M=128 was worse than M=256 but the difference was not statistically significant (p > .05). Therefore, from

the perspective of the trade-off between performance and memory size, the most desirable number of hidden

units was found to be 128.

Figure 6 presents learning curves of the best, median, and worst runs among the 11 runs where the

configuration (b) was applied. Note that the horizontal axis of these graphs is in a logarithmic scale. Figures

6(i)-(v) depict learning curves of MLPs with different numbers of hidden units respectively (M=16, 32, 64,

128 and 256). The five median curves depicted in Figures 6(i)-(v) exhibit similar shapes; however, it is

evident that the median curve in Figure 6(i) shows a slower increase in values compared to the others, while

the median curve in Figure 6(v) demonstrates a more rapid increase. As the number of hidden units increases,

the non-linear function approximation capability of the MLP improves. However, this also leads to a larger

length D of the binary vector that ES must optimize, thereby increasing the difficulty of the optimization

task. The observation that larger values of M correspond to a greater learning rate indicates that ES was able

to efficiently optimize even in high-dimensional vector spaces.

Figure 7(a) illustrates the actions by the MLP and the heights py(t) in the 200 steps prior to training, while

Figure 7(b) displays the corresponding actions and heights after training. In this scenario, the MLP employed

128 hidden units, and the configuration (b) was utilized. These figures exhibit a similarity to Figure 8 in the

previous report [1] that shows the results using real-valued MLPs. Thus, the binary MLP with a sufficient

number of hidden units can control the Acrobot as well as the real-valued MLP could. For the real-valued

MLP, the optimal number of hidden units was 8 [1], and the total number of parameters in this model is 65.

Each real parameter occupies 32 bits, and the memory requirement for this real-valued MLP amounts to

32×65=2080 bits. In contrast, the optimal number of hidden units for the binary MLP, as previously

mentioned, is 128, resulting in a total of 1025 parameters. Given that each binary parameter requires only 1

bit, the total memory size for the binary MLP is 1×1025=1025 bits. The memory requirement for the binary

MLP is approximately 49% of that needed for the real-valued MLP. This indicates that the binary MLP

achieves comparable control performance to the real-valued MLP while utilizing only half the memory size.

Supplementary videos2,3 are provided which demonstrate the motions of the chain controlled by the binary

MLP with 128 hidden units.

5. Conclusion

In this study, Evolution Strategy was applied to the reinforcement learning of a neural network controller

for the Acrobot task, where the connection weights in the neural network are not real numbers but binary.

The findings from this study are summarized as follows:

(1) The optimal number of hidden units for the binary MLP was found to be 128 among the choices of 16,

32, 64, 128 and 256.

(2) For the ES hyperparameters, the configuration (b) yielded superior results compared to the configuration

(a) in Table 1. The configuration (b) involved a larger population size and a smaller number of generations

compared to the configuration (a).

(3) The motion of the Acrobot controlled by a binary MLP with 128 hidden units was similar to that by a

real-valued MLP with 8 hidden units. The memory requirements for the binary MLP with 128 hidden

units were only 49% of those needed for the real-valued MLP with 8 hidden units. This indicates that

binary connection weights can achieve comparable control performance while making the memory size

a half.

The author plans to further apply and evaluate other evolutionary algorithms to the same task and compare

the performance.

2 http://youtu.be/zZq9iLo4pkc
3 http://youtu.be/IB-HgKuppHw

(i) M=16

(ii) M=32

(iii) M=64

(iv) M=128

(v) M=256

Figure 6. Learning curves of MLP with M hidden units.

(a) Before the training.

(b) After the training.

Figure 7. MLP actions and errors in an episode.

Acknowledgments: The author conducted this study under the Official Researcher Program of Kyoto

Sangyo University.

References

[1] Okada, H (2023). Evolutionary reinforcement learning of neural network controller for Acrobot task

— Part1: Evolution Strategy. Preprints.org. doi: 10.20944/preprints202308.0081.v1.

[2] Courbariaux, M., Bengio, Y., & David, J.P. (2015). BinaryConnect: training deep neural networks with

binary weights during propagations. Proceedings of the 28th International Conference on Neural

Information Processing Systems (NIPS'15), 2, MIT Press, 3123–3131.

[3] Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., & Bengio, Y. (2016). Binarized neural

networks: training deep neural networks with weights and activations constrained to +1 or -1. arXiv

preprint arXiv:1602.02830.

[4] Tang, W., Hua, G., & Wang, L. (2017). How to train a compact binary neural network with high

accuracy?. Proceedings of the AAAI Conference on Artificial Intelligence, 31(1).

[5] Lin, X., Zhao, C., & Pan, W. (2017). Towards accurate binary convolutional neural network.

Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17),

344–352.

[6] Bethge, J., Yang, H., Bartz, C., & Meinel, C. (2018). Learning to train a binary neural network. arXiv

preprint arXiv:1809.10463.

[7] Qin, H., Gong, R., Liu, X., Bai, X., Song, J., & Sebe, N. (2020). Binary neural networks: a survey.

Pattern Recognition, 105, 107281. doi.org/10.1016/j.patcog.2020.107281.

[8] Yuan, C., & Agaian, S.S. (2023). A comprehensive review of binary neural network. Artificial

Intelligence Review, 56, 12949–13013. doi.org/10.1007/s10462-023-10464-w.

[9] Sayed, R., Azmi, H., Shawkey, H., Khalil, A. H., & Refky, M. (2023). A systematic literature review

on binary neural networks. IEEE Access, 11, 27546–27578. doi: 10.1109/ACCESS.2023.3258360.

[10] Schwefel, H.P. (1984). Evolution strategies: a family of non-linear optimization techniques based on

imitating some principles of organic evolution. Annals of Operations Research, 1, 165–167.

[11] Schwefel, H.P. (1995). Evolution and Optimum Seeking. Wiley & Sons.

[12] Beyer, H.G., & Schwefel, H.P. (2002). Evolution strategies: a comprehensive introduction. Journal

Natural Computing, 1(1), 3–52.

