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Abstract. We develop the analysis of the theory of problem and their solu-

tion spaces. We adapt some classical concepts in functional analysis to study

problems and their corresponding solution spaces. We introduce the notion of
compactness, density, convexity, boundedness, amenability and the

interior. We examine the overall interplay among these concepts in theory.

1. Introduction and background

In [2], [3], [1], we introduced and systematically studied the theory of problems
and their corresponding solution spaces.
Let X denotes a solution (resp. answer) to problem Y (resp. question). Then we
call the collection of all problems to be solved to provide solution X to problem
Y the problem space induced by providing solution X to problem Y . We denote
this space with PY (X). If K is any subspace of the space PY (X), then we denote
this relation with K ⊆ PY (X). If the space K is a subspace of the space PY (X)
with K 6= PY (X), then we write K ⊂ PY (X). We say problem V is a sub-problem
of problem Y if providing a solution to problem Y furnishes a solution to problem
V . If V is a sub-problem of the problem Y , then we write V ≤ Y . If V is a
sub-problem of the problem Y and V 6= Y , then we write V < Y and we call V a
proper sub-problem of Y .
Let PY (X) be the problem space induced by providing the solution X to problem
Y . Then we call the number of problems in the space (size) the complexity of
the space and denote by C[PY (X)] the complexity of the space. We make the
assignment Z ∈ PY (X) if problem Z is also a problem in this space.
Let X denotes a solution (resp. answer) to problem Y (resp. question). Then we
call the collection of all solutions to problems obtained as a result of providing the
solution X to problem Y the solution space induced by providing solution X to
problem Y . We denote this space with SY (X). If K is any subspace of the space
SY (X), then we denote this relation with K ⊂ SY (X). We make the assignment
T ∈ SY (X) if solution T is also a solution in this space.
Let SY (X) be the solution space induced by providing the solution X to problem
Y . Then we call the number of solutions in the space (size) the index of the space
and denote by I[SY (X)] the index of this space.
Let Y and V be any two problems. Then we say problem Y is equivalent to problem
V if providing solution to problem Y also provides a solution to problem V and
conversely providing a solution to problem V also provides a solution to problem
Y . We denote the equivalence with V ≡ Y .
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Let V be a problem and Y a proper sub-problem of V . Then we say Y is the
maximal sub-problem of V if all other proper sub-problems of V are sub-problems
of Y . We say it is the minimal sub-problem of V if it is a sub-problem of all other
sub-problems of V .
Let PY (X) be a problem space. Then we say PY (X) is separable if and only there
exist some PV (U) ⊂ PY (X) and PK(L) ⊂ PY (X) such that

PV (U) ∪ PK(L) = PY (X)

with

PV (U) ∩ PK(L) = ∅
and F 6≡ G for any F ∈ PV (U) and G ∈ PK(L). Otherwise, we say the problem
space is inseparable. Similarly, we say a solution space SY (X) is separable if and
only if there exist some SV (U) ⊂ SY (X) and SK(L) ⊂ SY (X) such that

SV (U) ∪ SK(L) = SY (X)

with

SV (U) ∩ SK(L) = ∅
and R 6⊥ W for any R ∈ SV (U) and W ∈ SK(L). Otherwise, we say the solution
space is inseparable.
Let PY (X),PV (U) be problem spaces with

PV (U) ⊂ PY (X).

Then we say the quotient space induced by PV (U) in PY (X) regulated by a fixed
T ∈ PY (X), denoted by PY (X)/TPV (U), is the collection of problems

PY (X)/TPV (U) := {T} ∪ PV (U).

If PY (X)/TPV (U) := {T} ∪ PV (U) = PY (X) for some T ∈ PY (X) then we
say PV (U) is a principal subspace of the space PY (X). On the other hand, if
PY (X)/TPV (U) := {T} ∪ PV (U) = PV (U) for all T ∈ PY (X) (T 6= Y ) then we
say PV (U) is an ideal sub-space of the problem space PY (X).

2. Compact problems and solutions

In this section we study the notion of compactness of problems and their corre-
sponding solutions.

Definition 2.1. Let PX(Y ) and SX(Y ) denotes the problem and solutions spaces,
respectively, induced by providing solution X to problem Y . We say the problem
space PX(Y ) is compact if and only if there exists a finite number of problem spaces
PU1

(V1),PU2
(V2), . . . ,PUk

(Vk) such that

PX(Y ) ⊂ PU1
(V1) ∪ PU2

(V2) ∪ · · · ∪ PUk
(Vk).

Similarly, we say the solution space SX(Y ) is compact if and only if there exists a
finite number of solution spaces SU1(V1),SU2(V2), . . . ,SUk

(Vk) such that

SX(Y ) ⊂ SU1
(V1) ∪ SU2

(V2) ∪ · · · ∪ SUk
(Vk).

Proposition 2.1. Let PX(Y ) be a problem space induced by providing solution Y
to problem X. If PX(Y ) is compact, then the problem space PXi

(Yi) with PXi
(Yi)

is also compact.
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Proof. Suppose PX(Y ) is compact, then it follows that for a finite k ∈ N there
exists problems spaces PU1(V1),PU2(V2), . . . ,PUk

(Vk) such that

PX(Y ) ⊂ PU1(V1) ∪ PU2(V2) ∪ · · · ∪ PUk
(Vk).

The compactness of PXi(Yi) follows trivially since PXi(Yi) ⊂ PX(Y ). �

Proposition 2.2. Let PX(Y ) be the problem space induced by providing solution
Y to problem X and let PXi

(Yi) ⊂ PX(Y ). If PXi
(Yi) is compact and principal,

then PX(Y ) is compact.

Proof. Let PXi
(Yi) ⊂ PX(Y ) and suppose that PXi

(Yi), then there exists a sub-
problem Xj ≤ X such that we can write PX(Y ) = PXi(Yi) ∪ {Xj}. Under the
requirement that PXi(Yi) is compact, it follows that for a finite k ∈ N there exists
problems spaces PU1

(V1),PU2
(V2), . . . ,PUk

(Vk) such that

PXi
(Yi) ⊂ PU1

(V1) ∪ PU2
(V2) ∪ · · · ∪ PUk

(Vk)

and we have

PX(Y ) ⊂ {Xj} ∪ PU1(V1) ∪ PU2(V2) ∪ · · · ∪ PUk
(Vk).

This proves that the space PX(Y ) is also compact. �

Proposition 2.3. Let PX(Y ) be the problem space induced by providing solution
Y to problem X, where X is a regular problem. If Xi < X is the maximal proper
sub-problem of X and PXi(Yi) is compact, then PX(Y ) is also compact.

Proof. Suppose X is regular problem and let Xi be the maximal proper sub-problem
of X, then we can write X > Xj > Xj+1 > · · · where Xj+n > Xj+n+1 indicates
that Xj+n+1 is the maximal proper sub-problem of Xn+j for n = 1, 2, . . . , by
virtue of the regularity of the problem X. The sequence above contains all the sub-
problems of X so that we can put

⋃
n≥1

PXj+n
(Yj+n) ⊆ PXj

(Yj). Since a problem is

solved by providing a solution to each sub-problem and Xj is the maximal problem
sub-problem of X, we deduce that

⋃
n≥1

PXj+n
(Yj+n) ∪ {X} ⊆ PXj

(Yj) ∪ {X} =

PX(Y ) and it follows that

PX(Y ) ⊂ {X} ∪ PU1(V1) ∪ PU2(V2) ∪ · · · ∪ PUk
(Vk)

since PXj (Yj) was assumed to be compact. This proves that the space PX(Y ) is
compact. �

3. Dense problems and solution spaces

We study the concept of density of problems and their corresponding solution
spaces in this section.

Definition 3.1. Let PX(Y ) and SX(Y ) be the problem and solution spaces, re-
spectively, induced by providing solution Y to problem X. Let Xi ∈ PX(Y ) with
an induced sub-space PXi

(Yi) ⊂ PX(Y ) and corresponding solution space SXi
(Yi).

We say the subspace PXi(Yi) is dense in the space PX(Y ) if and only if for any
problem Z ∈ PX(Y ) with Z 6= X, there exists a proper subspace PXj (Yj) with
Z ∈ PXj

(Yj) such that PXi
(Yi) ∩ PXj

(Yj) 6= ∅. Similarly, we say the subspace
SXi

(Yi) is dense in the space SX(Y ) if and only if for any solution W ∈ PX(Y )
with W 6= Y , there exists a proper subspace SXj

(Yj) with W ∈ SXj
(Yj) such that

SXi(Yi) ∩ SXj (Yj) 6= ∅.
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Theorem 3.2 (Characterization theorem). Let PX(Y ) be the solution space in-
duced by providing solution Y to problem X. Then PX(Y ) is separable if and only
if it contains no dense subspace.

Proof. Suppose the problem space PX(Y ) is separable, then there exists subspaces
PXi

(Yi) and PXj
(Yj) such that PX(Y ) = PXi

(Yi)∪PXj
(Yj) with PXi

(Yi)∩PXj
(Yj) =

∅. Now let PXk
(Yk) ⊂ PX(Y ) then we must have one of these possibilities: PXk

(Yk) ⊂
PXi

(Yi) or PXk
(Yk) ⊂ PXi

(Yi). Suppose there exist problems Z,U ∈ PXk
(Yk)

such that Z ∈ PXi(Yi) and U ∈ PXj (Yj), then we have for their corresponding
problem spaces induced with, say, the solutions W and T the following proper-
ties PZ(W ) ⊂ PXi

(Yi) and PU (T ) ⊂ PXj
(Yj). We know that PU (T ) ⊆ PXk

(Yk)
and PZ(W ) ⊆ PXk

(Yk) so that we must have PXk
(Yk) ⊆ PXi

(Yi) and PXk
(Yk) ⊆

PXj
(Yj). Suppose without loss of generality that PXi

(Yi) ⊂ PXk
(Yk) then we will

have

PXi
(Yi) ∪ PXj

(Yj) = PX(Y ) ⊂ PXk
(Yk) ∪ PXj

(Yj) ⊂ PX(Y )

which is absurd. This implies that PXi
(Yi) ∩ PXj

(Yj) 6= ∅, which violates the
requirement that PX(Y ) is separable. Without loss of generality, we put PXk

(Yk) ⊆
PXi(Yi) and choose a problem V ∈ PXj (Yj) then PV (T ) ⊆ PXj (Yj). It follows that
PXk

(Yk) ∩ PV (T ) = ∅ and since V /∈ PXl
(Yl) ⊆ PXi(Yi) for subspace PXl

(Yl) of
PXi

(Yi), the problem space PXk
(Yk) cannot be dense in P(X)(Y ). Since PXk

(Yk)
was an arbitrary problem subspace, it follows that the space PX(Y ) contains no
dense sub-problem space. Conversely, suppose that the space PX(Y ) contains a
dense problem sub-space but that the space is separable, then there exists proper
sub-spaces PXi(Yi) and PXj (Yj) such that PXi(Yi) ∪ PXj (Xj) = PX(Y ) such that
PXi

(Yi) ∩ PXj
(Yj) = ∅. Let PXk

(Yk) ⊂ PX(Y ) be dense in PX(Y ) then for V ∈
PXi

(Yi) and U ∈ PXj
(Yj). Since these subspaces are the largest subspaces in the

space PX(Y ) containing the problems V and U , it follows by the density of the
subspace PXk

(Yk) that PXk
(Yk) ∩ PXi

(Yi) 6= ∅ and PXk
(Yk) ∩ PXj

(Yj) 6= ∅. This
contradicts the assumption that the space PX(Y ) is separable. �

4. Bounded problem and solution spaces

In this section we study the notion of bounded problem and solution spaces.

Definition 4.1. Let PX(Y ) be a problem space induced by providing solution Y to
problem X. We say the space PX(Y ) is bounded if and only if it has finite complex-
ity. If we denote the complexity of the space with C[PX(Y )], then we say PX(Y ) is
bounded if and only if C[PX(Y )] <∞. Similarly, we say the corresponding solution
space SX(Y ) is bounded if only if it has a finite index. If we denote the index of
this space with I[SX(Y )], then SX(Y ) is bounded if and only if I[SX(Y )] <∞.

Proposition 4.1. Let PX(Y ) be the problem space induced by providing solution
Y to problem X. If C[PX(Y )] <∞, then PX(Y ) contains a reducible problem.

Proof. Suppose each problem Xi ∈ PX(Y ) is irreducible, then we can construct the
infinite nested sequence of sub-problem spaces · · · ⊂ PX2

(Y2) ⊂ PX1
(Y1) ⊂ PX(Y )

with X1 > X2 > · · · , where Xj+1 < Xj indicates that Xj+1 is a proper sub-problem
of Xj . This implies that the space PX(Y ) contains infinitely many problems and
thus C[PX(Y )] =∞. �
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5. The interior of problem and solution spaces

In this section we study the topological notion of interior of problem and solution
spaces.

Definition 5.1. Let PX(Y ) and SX(Y ) be the problem and the solutions spaces
induced by providing solution Y to problem X. We say a problem Z ∈ PX(Y ) is
an interior problem if there is no problem space PS(T ) with PS(T ) 6⊆ PX(Y ) such
that Z ∈ PS(T ). We call the collection of all such problems in PX(Y ) the interior
of PX(Y ) and denote for this collection Int[PX(Y )]. We say the interior is non-
empty if Int[PX(Y )] 6= ∅; otherwise, we say the interior is empty. Similarly, we say
a solution W ∈ SX(Y ) is an interior solution if there is no solution space SR(T )
with SR(T ) 6⊆ SX(Y ) such that W ∈ PS(T ). We call the collection of all such
solutions in SX(Y ) the interior of SX(Y ) and denote for this collection Int[SX(Y )].
We say the interior is non-empty if Int[SX(Y )] 6= ∅; otherwise, we say the interior
is empty.

Theorem 5.2. Let PX(Y ) be the problem space induced by providing solution Y
to problem X. If Int[PX(Y )] = ∅ and C[PX(Y )] <∞, then PX(Y ) is compact.

Proof. Suppose C[PX(Y )] <∞, then PX(Y ) = {X,X1, . . . , Xk} for a finite k ∈ N.
Since Int[PX(Y )] = ∅, it follows that there exists problem spaces PT1

(R1), . . . ,PTk
(Rk)

with PTi
(Ri) 6⊆ PX(Y ) for i = 1, . . . , k such that Xi ∈ PTi

(Ri) for each i. It follows

that we can put PX(Y ) ⊂
k⋃

i=1

PTi
(Ri) ∪ {X}. This proves that the problem space

PX(Y ) is compact. �

6. Convex problem and solution spaces

We introduce and study the notion of convexity of problems and solution spaces
in this section.

Definition 6.1. Let PX(Y ) be the problem space induced by providing solution
Y to problem X. We say the space PX(Y ) is convex if for any problem Xi, Xj ∈
PX(Y ) (Xi, Xj 6= X), there exist a problem Xk ∈ PX(Y ) such that {Xi}∪{Xj} =
{Xk}. Similarly, We say the solution space SX(Y ) is convex if for any solution
Yi, Yj ∈ SX(Y ) (Yi, Yj 6= Y ), there exist a solution Yk ∈ SX(Y ) such that {Yi} ∪
{Yj} = {Yk}.

The notion of convexity of a problem (resp. solution) spaces suggest that each
problem in the convex problem space is a sub-problem of some problem in the space.
It worth noting that convexity of problem and solutions do not unconditionally
extend to convexity of sub-problem spaces.

Proposition 6.1. Let PX(Y ) be the problem space induced by providing solution
Y to problem X. If PX(Y ) is convex and bounded with C[PX(Y )] ≥ 4, then PX(Y )
has a principal subspace PXk

(Yk) with C[PXk
(Yk)] ≥ 3.

Proof. Suppose PX(Y ) is bounded, then C[PX(Y )] < ∞ so that PX(Y ) contains
finitely many problems. Let Xi, Xj ∈ PX(Y ) then under the requirement that
PX(Y ) is convex, then {Xi} ∪ {Xj} = {Xk}, where Xk ∈ PX(Y ). That is, we
can merge to problems in the space to produce another problem in the space. It
follows that Xi ≤ Xk and Xj ≤ Xk. That is, Xi and Xj are sub-problems of
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Xk. By the minimality of the complexity of the space C[PX(Y )] ≥ 4, we can
repeat this construction by using the newly constructed problems Xk with some
Xs ∈ PX(Y ) with Xs 6= Xi, Xj to produce a sub-problem space which is principal
and has complexity ≥ 3. �

The next result purports that each subspace of a problem space must be dense
in their mother space.

Theorem 6.2. Let PX(Y ) be the problem space induced by providing solution Y
to problem X. If PX(Y ) is convex then every subspace PXi

(Yi) ⊂ PX(Y ) is dense
in PX(Y ).

Proof. Suppose the problem space PX(Y ) is convex and put PXi(Yi) ⊂ PX(Y ).
Next pick a arbitrarily a problem V ∈ PX(Y ), then under the convexity of the
space there exists a problem W ∈ PX(Y ) such that {Xi} ∪ {V } = {W}. This
implies that Xi < W and V < W ; that is, Xi and V are proper sub-problems
of W . Since W ∈ PX(Y ), it has a solution so let T ∈ SX(Y ) be the solution to
W and we obtain the induced problem space PW (T ) ⊂ PX(Y ) with V ∈ PW (T ).
Because Xi < W and is the maximal sub-problem in the space PXi(Yi), it follows
that PXi(Yi) ⊂ PW (T ). We find that PXi(Yi) ∩ PW (T ) 6= ∅ with V ∈ PW (T ).
Since V was chosen arbitrarily in the space PX(Y ), it follows that PXi

(Yi) is dense
in PX(Y ). Because the sub-problem space was chosen arbitrarily, it follows that
each sub-problem space is dense problem space PX(Y ). This completes the proof
of the claim. �

7. Amenable problem spaces

In this section, we study the notion of amenability of problem spaces.

Definition 7.1. Let PX(Y ) be the problem space induced by providing solution
solution Y to problem X. We say the problem space PX(Y ) is partially amenable if
there exist proper sub-problem Xi, Xj ∈ PX(Y ) such that Xi and Xj are equivalent
problems (Xi ≡ Xj). We say the space PX(Y ) is totally amenable if for any sub-
problem Xi, Xj ∈ PX(Y ) then Xi ≡ Xj . We say a problem is amenable if it is a
problem in some totally amenable problem space.

Amenable problems are naturally easily tractable. This notion hold much sig-
nificance, because if we can identify some totally amenable space that contains a
specific problem then finding a solution will reduce to finding a solution to much
easier problem in the same space. Subsequent studies will be devoted to a detail
and much more specialized study of this important concept and its overall interplay
with the theory. Next we launch a result that basically purports the compactness
of a space provided one can identify a compact sub-problem space.

Theorem 7.2. Let PX(Y ) be a totally amenable problem space. If there exists a
sub-problem space PXi

(Yi) such that PXi
(Yi) is compact, then PX(Y ) is compact.

Proof. Put PXi
(Yi) ⊂ PX(Y ) and suppose PX(Y ) is an amenable space. This

implies that for any problem Xj ∈ PX(Y ) then Xj ≡ Xi. The induced problem
space PXj (Yj) contains the problem Xj and it is the maximal sub-problem of this
space. Since PXj

(Yj) ⊂ PX(Y ), it follows by amenability of the space that we
can replace Xj with Xi and Yj with Yi, since problem and solution spaces remain
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invariant on replacement with equivalent problems and alternative solutions, so
that under the requirement that PXi(Yi) is compact, we can put

PXj
(Yj) = PXi

(Yi) ⊂
k⋃

s=1

PSs
(Ts)

for a fixed k ∈ N. It follows that⋃
i≥1

PXi(Yi) ∪ {X} = PX(Y ) ⊂
k⋃

s=1

PSs(Ts) ∪ {X}

for a fixed k ∈ N. This proves that the problem space PX(Y ) is compact. �

8. Further discussions

The current study introduces and studies - in a carefully adaptive manner -
some fundamental topological concepts. Although there are some slight variations
of these interpretations and meaning of these concepts in functional analysis, most
of the notions carry over to the theory of problems and solution spaces. It is
our next goal to study various maps between problem and solution spaces spaces
and corresponding analogue of a norm - perhaps with a different terminology - in
our subsequent studies. The developments of this theory is a long-term endeavour
to study the P vs NP problem in computer science by laying down a rigorous
foundation for future work. We end this discussion by stating a claim which can
be easily verified.

Proposition 8.1. Let PX(Y ) and SX(Y ) be the problem and the solution space
induced by providing solution Y to problem X. Then the following assertions hold

(i) The problem space PX(Y ) is bounded if and only if the solution space SX(Y )
is bounded.

(ii) The problem space PX(Y ) is compact if and only if the solution space SX(Y )
is compact.

(iii) A sub-problem space PXi
(Yi) ⊂ PX(Y ) is dense in PX(Y ) if and only if

the sub-solution space SXi
(Yi) ⊂ SX(Y ) is dense in SX(Y ).

1.
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