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Abstract

The propagation of a wave packet in a dispersive and dissipative medium is really complicated
(for a rigorous treatment we refer to [1]). We limit ourselves to an analysis deriving from series
expansions truncated to the first order. We will start from a one-dimensional De Broglie wave
packet relating to two special cases: 1) free particle; 2) particle in a periodic potential. In these
two cases we will refute the assertion according to which the energy is transported with the
group velocity, since the observable energy is not defined (the wave packet is a superposition of
eigenfunctions of the energy). We will show however that the expectation value of the energy
is transported with the group velocity.

The conclusions can be immediately generalized to the propagation of a packet of electro-
magnetic waves in a dispersive and dissipative medium, justifying the expression group delay of
a wave packet.

1 Non-relativistic one-dimensional quantum system

Sia Sq be a quantum system consisting of a particle of mass m constrained to move on the x-axis,
and subjected to a force field of potential energy V (x), for which the Hamiltonian operator is with
obvious meaning of the symbols:

Ĥ =
p̂2

2m
+ V (x̂) (1)

In particular, we consider the case where the spectrum σ
(

Ĥ
)

is purely continuous: σ
(

Ĥ
)

= σc

(

Ĥ
)

or at most given by the union of continuous intervals separated by gaps. So that the eigenket system
of the energy {|E〉}

Ĥ |E〉 = E |E〉
is a complete orthonormal system in the Hilbert space H associated with the system:

∫

σc(Ĥ)
dE |E〉 〈E| = 1̂, 〈E|E ′〉 = δ (E − E ′) (2)

Suppose that the initial state is a superposition of energy eigenstates; that is, t = 0:

|ψ0〉 =
∫

σc(Ĥ)
dE |E〉 〈E|ψ0〉 (3)

Let c(0) (E) = 〈E|ψ0〉, and taking into account the completeness relation of the eigenket system of
the position {|x〉}:

∫ +∞

−∞

dx |x〉 〈x| = 1̂,

we have

c(0) (E) = 〈E|
(∫ +∞

−∞

dx |x〉 〈x|
)

|ψ0〉 =
∫ +∞

−∞

dx 〈E|x〉 〈x|ψ0〉

〈x|ψ0〉 = ψ0 (x) is the initial state ket in the coordinate representation, i.e. the initial wave func-
tion, while 〈E|x〉 = 〈x|E〉∗ = u∗E (x) where uE (x) is the eigenfunction of the energy corresponding
to the eigenvalue E. Therefore: c(0) (E) =

∫ +∞

−∞
ψ0 (x) u

∗
E (x) dx. Writing (3) in the coordinate

representation, we get ψ0 (x) =
∫

σc(Ĥ) c
(0) (E) uE (x) dE.
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So

ψ0 (x) =

∫

σc(Ĥ)
c(0) (E) uE (x) dE (4)

c(0) (E) =

∫ +∞

−∞

ψ0 (x) u
∗
E (x) dx

which remind us of the Fourier transform.

2 Law of dispersion. Group velocity. Scattering

Incidentally, there is a class of quantum systems (free particle, particle in a periodic potential) for
which E = E(k) with k ∈ (−∞,+∞), where for the free particle it is k = p/ℏ where p is the
momentum, while in the case of the periodic potential ℏk is the crystalline momentum. In the case
of the free particle the energy eigenfunctions are written (leaving aside the normalization factor)

uk (x) = eikx (5)

while for the periodic potential they are Bloch waves i.e. plane waves modulated in amplitude whose
envelope is a periodic function with the same period as the potential. In both cases these are improper
eigenfunctions since they are not elements of L2 (R). For simplicity we approximate the Bloch waves
to (5). For the aforementioned class of systems the (4) become

ψ0 (x) =

∫ +∞

−∞

A (k) eikxdk (6)

A (k) =
1

2π

∫ +∞

−∞

ψ0 (x) e
−ikxdx

from which we see that A (k)
def
= c(0) (E (k)) is the Fourier transform1 of ψ0 (x). In accordance with

the intuitive concept of particle, we assume as the initial profile of the wave function, a sinusoidal
oscillation enveloped by a Gaussian:

ψ0 (x) =

√
α√
π
e−

α2

2
(x−x0)

2

eik0(x−x0) (7)

where α > 0 and the wave number k0 ∈ R are assigned. In the following calculations we will use the
following notable integrals (a > 0):

∫ +∞

−∞

e−ax
2

dx =

√
π

a
(8)

∫ +∞

−∞

x2e−ax
2

dx =
1

2

√
π

a3
∫ +∞

−∞

e−ax
2+bxdx =

√
π

a
e−

b2

4a

So the probability density

ρ0 (x) =
α√
π
e−α

2(x−x0)
2

1We have inserted the factor 1

2π
because we have omitted the normalization factor in (5).
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is a Gaussian distribution centered at x0 and it is normalized:

ρ0 (x) = |ψ0 (x)|2 ,
∫ +∞

−∞

ρ0 (x) dx = 1

The width of the distribution is the mean square deviation, which in quantum mechanics is called
the dispersion of the observable. x:

(∆x)t=0 =
〈
(x− x0)

2〉1/2 =

[∫ +∞

−∞

(x− x0)
2 ρ0 (x)

]1/2

=

[
α√
π

∫ +∞

−∞

(x− x0)
2 e−α

2(x−x0)
2

]1/2

But ∫ +∞

−∞

(x− x0)
2 e−α

2(x−x0)
2

=
y=x−x0

∫ +∞

−∞

y2e−α
2y2dy =

1

2

√
π

α3

i.e.

(∆x)t=0 =
1

α
√
2

Thus the dispersion of the observable position in the initial state ψ0 (x) decreases as a increases. α.
In Fig. 1 we report the behavior of Reψ0 (x).

x0

x

ReHΨ0L

Figure 1: Trend of Reψ0 (x).
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Let’s determine A (k):

A (k) =
1

2π

∫ +∞

−∞

ψ0 (x) e
−ikxdx

=
1

2π

√
α√
π

∫ +∞

−∞

e−
α2

2
(x−x0)

2

eik0(x−x0)e−ikxdx

=
1

2π

√
α√
π

∫ +∞

−∞

exp

[

−α
2

2
(x− x0)

2 + ik0 (x− x0)− ik (x− x0)

]

dx

=
1

2π

√
α√
π
e−ikx0

∫ +∞

−∞

exp



−α
2

2
(x− x0)

2 −i (k − k0) (x− x0)
︸ ︷︷ ︸

=b



 dx

=
1

2π

√
α√
π
e−ikx0

√
π

α
e−

(k−k0)

4α2

In the last step we used the third of the (8). Finally:

A (k) =

√
π

2απ
e−

(k−k0)

4α2 e−ikx0 (9)

from which we see that |A (k)|2 is a Gassian distribution centered at k0, and with width proportional
to α. This result does not surprise us because it is a property of Gaussian distributions that are
invariant under the Fourier transform, with widths in inverse proportion. More precisely, for α
sufficiently small, the |A (k)|2 is extremely peaked around k0, so that the dominant contribution
to ψ0 (x) comes from the monochromatic components of wavenumber k ∈ (k0 −∆k, k0 +∆k) with
∆k
|k0|

≪ 1.

Applying the time evolution operator to the initial state ψ0 (x):

ψ (x, t) =

∫ +∞

−∞

A (k) ei(kx−ω(k)t)dk (10)

where ω (k) = E(k)
ℏ

, which defines the dispersion law. Precisely:

ω (k) =

{
ℏk2

2m
, V (x) = 0

periodic function of period 2π
a
, where a is the period of V (x)

If ω (k) it does not vary rapidly, taking into account that A(k) is strongly peaked around k0, we can
develop ω (k) in power series around k0, truncating the development at the end of the first order:

ω (k) = ω0 + vg (k − k0) (11)

where

ω0 = ω (k0) , vg =
dω (k)

dk

∣
∣
∣
∣
k=k0

(12)

Replacing (12) in (10)

ψ (x, t) =

∫ +∞

−∞

A (k) exp {kx− [ω0 + vg (k − k0)] t} dk

=

∫ +∞

−∞

A (k) exp (kx− ω0t− vgtk + vgtk0) dk

=

∫ +∞

−∞

A (k) eik(x−vgt)e−i(ω0−vgk0)tdk
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So

ψ (x, t) = ei(k0vg−ω0)t

∫ +∞

−∞

A (k) eik(x−vgt)dk

Taking into account the first of the (6)

∫ +∞

−∞

A (k) eik(x−vgt)dk = ψ0 (x− vgt)

so
ψ (x, t) = eiΩ0tψ0 (x− vgt) (13)

where
Ω0 = k0vg − ω0 (14)

From (13) we see that the wave packet translates rigidly and uniformly with velocity vg, which is
called the group velocity (while vp (k) = ω (k) /k is the phase velocity). If vg > 0 i.e. if the function
ω (k) is increasing in k0, the packet translates in the positive direction of the x-axis (progressive
propagation, as in Fig. 2). Vice versa, if ω (k) is decreasing in k0 (regressive propagation).

x0

x

ReHΨ0L,ReHΨL

vg

Figure 2: Progressive propagation of a wave packet.

Furthermore:
vg = 0 =⇒ ψ (x, t) = eiΩ0tψ0 (x)

which describes a standing wave. It is common to come across the following statement: ≪energy
transport occurs at the group velocity≫. In reality, in the quantum mechanical state described by
(3) the energy is not defined, since the initial state is a superposition of energy eigenstates. And
such will be the state at all times:

ψ (x, t) =

∫

σc(Ĥ)
c(0) (E) uE (x) e−

i
ℏ
EtdE (15)

To define the energy we must perform a measurement operation, determining the ”reduction” of
the wave packet into one of the component monochromatic waves. If at t = t1 we perform the
measurement:

ψ (x, t) =

∫

σc(Ĥ)
c(0) (E) uE (x) e−

i
ℏ
EtdE −→

mis
uE (x) e−

i
ℏ
E1t1
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That is, the packet is reduced to the standing wave uE (x) e−
i
ℏ
E1t1 and the result of the measurement

is the eigenvalue E1. We can still determine the expectation value of the energy on the state (15):

〈E〉ψ(t) =
〈

ψ (t)
∣
∣
∣ Ĥ

∣
∣
∣ψ (t)

〉

=
〈

ψ0

∣
∣
∣ e

i
ℏ
tĤĤe

i
ℏ
tĤ
∣
∣
∣ψ0

〉

=
〈

ψ0

∣
∣
∣ Ĥ

∣
∣
∣ψ0

〉

= 〈E〉ψ0
, ∀t ≥ 0 (16)

This result is not surprising because the expectation value of any observable that commutes with the
Hamiltonian does not depend on time. Regarding the group velocity:

vg =
1

ℏ

dE (k)

dk

∣
∣
∣
∣
k=k0

(17)

so the greater the rate of variation of E as a function of k, the greater will be |vg|. Of course, E is
the energy of the single component of the wave packet and not the transported energy. All this in
linear approximation. But if the medium is highly dispersive, i.e. if ω (k) varies rapidly even in a
sufficiently small neighborhood of k0, we cannot neglect the terms of order higher than the first in
the series expansion of ω (k). In this case the packet does not translate rigidly and uniformly, and
it is not possible to define a group velocity. This propagation process is known as scattering. This
suggestive definition arises from the fact that the component waves have velocities so different from
each other that they appear to propagate independently.

3 Dissipative effects

In this section we are no longer referring to a quantum system of the free particle type or subject
to a periodic potential. The results we have reached in the previous section apply to other types of
waves, such as packets of electromagnetic waves propagating in a dispersive medium. Here it makes
physical sense to introduce dissipative effects, which are usually schematized by an exponential
damping controlled by a coefficient β > 0:

ψ (x, t) = e−βx
∫ +∞

−∞

A (k) ei(kx−ω(k)t)dk (18)

However, in this schematization the individual monochromatic components undergo the same damp-
ing; it is more realistic, instead, to consider a damping that depends on k and therefore on ω through
the dispersion law ω (k). In this framework, dispersion and dissipation are intertwined processes.
Furthermore, since in the theory of wave propagation, the phase plays a key role, we have to consider
a complex attenuation factor:

τ (k) = |τ (k)| eiφ(k), |τ (k)| < 1 (19)

So

ψ (x, t) =

∫ +∞

−∞

|τ (k)|A (k) ei(kx−ω(k)t+φ(k))dk (20)

Recall that |A(k)| is a Gaussian centered at k0 and sufficiently peaked. If ω (k) and φ (k) do not
vary rapidly in a suitable neighborhood of k, we can develop these functions there in a Taylor series
truncated to first order:

ω (k) ≃ ω0 + vg (k − k0) , ω0
def
= ω (k0) , vg

def
=

dω (k)

dk

∣
∣
∣
∣
k=k0

(21)

φ (k) ≃ φ0 + Λ0 (k − k0) , φ0
def
= φ (k0) , Λ0

def
=

dφ (k)

dk

∣
∣
∣
∣
k=k0
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Note that Λ0 has the dimensions of a length. In this order of approximation

ψ (x, t) = exp [i (−ω0t+ k0vgt− Λ0k0 + φ0)]

∫ +∞

−∞

|τ (k)|A (k) exp [ik (x− vgt+ Λ0)] dk

Rearranging the various terms:

ψ (x, t) = ei(Ω0t+φ0−Λ0k0)

∫ +∞

−∞

B (k) eik(x−vg(t−T0))dk

where B (k) = |τ (k)|A (k), while

T0 =
Λ0

vg
(22)

which physically represents the time taken by the packet to travel a length Λ0. From (22)

T0 =

dφ(k)
dk

∣
∣
∣
k=k0

dω(k)
dk

∣
∣
∣
k=k0

=
dφ

dω

∣
∣
∣
∣
ω=ω0

(23)

In other words, the linear approximation returns three characteristic quantities: 1) the group velocity
vg which takes into account the dispersive effects; 2) the characteristic length Λ0 which takes into
account the dissipative effects; 3) the characteristic time T0 which arises from a mix of the dispersive
and dissipative effects. The time T0 is called group delay. This expression derives from the fact that
it expresses a phase delay or advance. Incidentally from (23), we have a delay T0 > 0 if the function
φ (ω) is increasing in ω0. Instead, we have a group advance T0 < 0, if φ (ω) is decreasing in ω0.
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