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Abstract Physical phenomena, sometimes with the exception of gravity, are usually assumed to be described by
Lorentz transformation covariant theories, and the validity of the Lorentz transformation has been empirically verified
to very high accuracy. The Einstein equation of gravity theory, however, has an infinite set of metric solutions, an
infinite subset of which aren’t Lorentz covariant, and one of the latter might be taken as valid, e.g., the Robertson-
Walker metric for cosmology. But if all of nongravitational physics is in fact Lorentz covariant, it would almost
certainly be physically inconsistent for gravity theory not to be Lorentz covariant as well. The solution ambiguity
of the Einstein equation is a consequence of its important symmetry of general coordinate transformation covari-
ance. However the four-vector potential form of electromagnetic theory has an analogous solution ambiguity as a
consequence of its important symmetry of gauge transformation invariance, but in that case it is standard practice
to break this symmetry by imposing the retarded Lorentz gauge condition, the simplest gauge condition which is
Lorentz covariant and causal. Here we show that both gauge transformation invariance in electromagnetic theory
and general coordinate transformation covariance in gravity theory arise spontaneously from fully Lorentz covariant
initial assumptions. These subsidiary dynamic symmetries crucially affect the structure of the equations of their re-
spective theories, but any solutions they happen to admit which aren’t fully Lorentz covariant are ipso facto excluded
by the fully Lorentz covariant initial assumptions.
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1. Lorentz-covariant extension of electrostatic phenomena to dynamic electromagnetism

Electromagnetism is taken to be the result of a conserved scalar entity Q called charge. The four-vector
density-flux of charge Q, i.e., the current density jλ(x), is the source of the four-vector electromagnetic
potential Aµ(x). Local charge conservation implies that,

∂jλ(x)/∂xλ = 0. (1.1)

In the static limit jλ(x) → (cρ(x),0), where ρ(x) is the static charge density, and in that limit A0(x) is
assumed to be the electrostatic potential that follows from ρ(x) by Coulomb’s Law,

−∇2
xA0(x) = 4πρ(x) = 4π(j0(x)/c). (1.2)

The nonrelativistic equation of motion of a test body of mass m and charge e in the electrostatic potential
A0(x) is of course,

md2x/dt2 = −e∇xA0(x). (1.3a)

The Eq. (1.3a) nonrelativistic equation of motion corresponds to the nonrelativistic Lagrangian,

L(dx/dt, A0(x)) = (m/2)|dx/dt|2 − eA0(x), (1.3b)

which, when the electrostatic potential A0(x) vanishes, of course becomes the free nonrelativistic mass-m
test-body Lagrangian L(dx/dt) = (m/2)|dx/dt|2.

Making use of the Lorentz invariance of differential proper time dτ
def
= dt

√
1− |(dx/dt)/c|2, and assuming

the Lorentz covariance of the dynamic electromagnetic four-vector potential Aµ(x), we readily extend the
nonrelativistic Eq. (1.3b) Lagrangian to a Lorentz-invariant Lagrangian, i.e.,

L(dxµ/dτ,Aν(x)) = −(m/2)ηµν(dxµ/dτ)(dxν/dτ)− (e/c)Aν(x)(dxν/dτ), (1.4a)

where ηµν is the Minkowski metric,

η00 = 1, η11 = η22 = η33 = −1 and ηµν = 0 if µ 6= ν. (1.4b)

In the nonrelativistic regime where |dx/dt| � c the Eq. (1.4a) Lorentz-invariant Lagrangian plus the
dynamically-inert constant term (m/2)c2 goes over into the Eq. (1.3b) nonrelativistic Lagrangian. When the
electromagnetic four-vector potential Aµ(x) vanishes, the Eq. (1.4a) Lorentz-invariant Lagrangian of course
becames the Lorentz-invariant Lagrangian for the free mass-m test body, namely,

L(dxµ/dτ) = −(m/2)ηµν(dxµ/dτ)(dxν/dτ). (1.4c)

An unexpected feature of the Eq. (1.4a) Lorentz-invariant Lagrangian L(dxµ/dτ,Aν(x)) is that if Aν(x) is
modified by adding a term of the form ∂χ(x)/∂xν to it, where χ(x) is an arbitrary scalar field, the dynamics
of the mass-m, charge-e test body is unaffected. That is so because,

L(dxµ/dτ,Aν(x) + ∂χ(x)/∂xν)− L(dxµ/dτ,Aν(x)) =

−(e/c)(∂χ(x)/∂xν)(dxν/dτ) = d[−(e/c)χ(x)]/dτ , (1.4d)

and terms of a Lagrangian which thus are a derivative of an entity with respect to τ don’t contribute to the
dynamics. The property of dynamic electromagnetism that adding a term of the form ∂χ(x)/∂xµ to Aµ(x)
doesn’t alter its dynamics is called electromagnetic gauge transformation invariance. Since gauge transfor-
mation invariance is a spontaneous subsidiary effect of making dynamic electromagnetism Lorentz covariant,
any further consequences it has ipso facto don’t alter dynamic electromagnetism’s Lorentz covariance.

Upon applying the Lagrangian equation of motion d[∂L/∂(dxλ/dτ)]/dτ = ∂L/∂xλ to the Eq. (1.4a) L =
−(m/2)ηµν(dxµ/dτ)(dxν/dτ)− (e/c)Aν(x)(dxν/dτ), we obtain the Lorentz covariant dynamical equation,

mηλν(d2xν/dτ2) = (e/c)[(∂Aν(x)/∂xλ)− (∂Aλ(x)/∂xν)](dxν/dτ), (1.5a)

a gauge transformation invariant result. In the normal form for Lorentzian dynamics Eq. (1.5a) reads,

m(d2xµ/dτ2) = (e/c)ηµλ[(∂Aν(x)/∂xλ)− (∂Aλ(x)/∂xν)](dxν/dτ), (1.5b)

where ηµλ is the matrix inverse of the Minkowski metric ηλν defined by Eq. (1.4b); in fact, of course,
ηµλ = ηµλ. Eq. (1.5b) is the well-known gauge-invariant Lorentz Force Law of dynamic electromagnetism.
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We next search for the extension of the static-limit Coulomb’s Law expression −∇2
xA0(x) = 4π(j0(x)/c)

given by Eq. (1.2) which is Lorentz covariant and gauge invariant. In this regard we note that the Lorentz-
covariant entity ηαβ(∂2Aµ(x)/∂xα∂xβ) reduces to −∇2

xA0(x) in the static limit, and that its complementary
Lorentz-covariant entity ηαβ(∂2Aα(x)/∂xµ∂xβ) vanishes in the static limit. Thus the Lorentz-covariant
extension of −∇2

xA0(x) = 4π(j0(x)/c) is,

ηαβ(∂2Aµ(x)/∂xα∂xβ) +K ηαβ(∂2Aα(x)/∂xµ∂xβ) = (4π/c) ηµν j
ν(x), (1.6a)

where K is an arbitrary constant. To make Eq. (1.6a) gauge transformation invariant, however, K must
be chosen to be −1. Thus the Lorentz-covariant, gauge transformation invariant extension of the Coulonb’s
Law expression −∇2

xA0(x) = 4π(j0(x)/c) is the dynamic electromagnetic field equation,

ηαβ(∂2Aµ(x)/∂xα∂xβ)− ηαβ(∂2Aα(x)/∂xµ∂xβ) = (4π/c) ηµν j
ν(x). (1.6b)

We now multiply Eq. (1.6b) through by the operator (∂/∂xλ)ηλµ and sum over the index µ. Since when
the expression ηλµηµν is summed over the the index µ, the result is δλν , and since ηλµ = ηµλ, the upshot of
doing this is to turn Eq. (1.6b) into,

ηαβηµλ(∂3Aµ(x)/∂xλ∂xα∂xβ)− ηλµηαβ(∂3Aα(x)/∂xβ∂xλ∂xµ) = (4π/c) δλν (∂jν(x)/∂xλ), (1.6c)

which implies that,

0 = ∂jλ(x)/∂xλ, (1.6d)

so the gauge transformation invariant Eq. (1.6b) dynamic electromagnetic equation for Aµ(x) compels the
local charge conservation of Eq. (1.1). The Eq. (1.6d) result is a particular instance of the fact that imposing
the subsidiary dynamic symmetry of gauge transformation invariance produces locally conserved currents;
e.g., the structure of the coupling of the electromagnetic four-potential Aµ(x) to a charged particle’s quantum
wave function ψ(x) is subject to the imposition of gauge transformation invariance in order to ensure the
existence of a locally conserved current constructed from ψ(x).

However, the very fact that Eq. (1.6b) is gauge transformation invariant implies that it has an infi-
nite number of solutions: given any solution for Aµ(x) and any scalar function χ(x) whatsoever, Aµ(x) +
∂χ(x)/∂xµ is also a solution that is by no means guaranteed to be Lorentz covariant when, for example, χ(x)
is independent of x0. But since gauge transformation invariance is a spontaneous subsidiary consequence of
making dynamic electromagnetism fully Lorentz covariant, any further consequences that gauge transforma-
tion invariance itself happens to have ipso facto don’t alter the fully Lorentz covariant nature of dynamic
electromagnetism. Therefore the gauge transformation invariance of Eq. (1.6b) is necessarily broken in a way
which ensures that Aµ(x) is Lorentz covariant. The simplest way to ensure that Aµ(x) is Lorentz covariant
is to impose the Lorentz condition,

ηαβ(∂Aα(x)/∂xβ) = 0, (1.7a)

on Aµ(x), which reduces Eq. (1.6b) to,

ηαβ(∂2Aµ(x)/∂xα∂xβ) = (4π/c) ηµν j
ν(x). (1.7b)

Although the operator ηαβ(∂2/∂xα∂xβ) doesn’t have a unique inverse, only its retarded inverse is physically
appropriate to the causality of Aµ(x) with respect to jν(x). That together with Eq. (1.7b) implies that,

Aµ(x) = (4π/c) [ηγδ(∂2/∂xγ∂xδ)]−1
ret (ηµν j

ν(x)). (1.7c)

The Eq. (1.7c) causal and Lorentz covariant result for the dynamic electromagnetic potential Aµ(x) is the
consequence of breaking the gauge transformation invariance of Eq. (1.6b) by applying the retarded Lorentz
gauge condition [1] to it. The Eq. (1.7c) result for Aµ(x) can readily be shown to be consistent with the
Eq. (1.7a) Lorentz condition because jλ(x) satisfies the local charge conservation condition ∂jλ(x)/∂xλ = 0.

2. Lorentz-covariant extension of static Newtonian gravity to dynamic metric gravity

Gravity is taken to be the result of conserved energy-momentum, a four-vector Pµ. The second-rank
symmetric-tensor density-flux of energy-momentum Pµ, i.e., the energy-momentum tensor Tµν(x), is the
source of the second-rank symmetric-tensor gravitational potential φµν(x). Gravity itself, however, also con-
tributes to the total conserved energy-momentum, a nonlinear effect that can be neglected in the weak-gravity
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static limit, where it is assumed that the static energy density T 00(x) divided by c2 is an effective mass
density which acts as the source of the gravitational potential component φ00(x) in accord with the static
differential Newtonian Law of Gravity,

∇2
xφ00(x) = 4πG (T 00(x)/c2). (2.1)

The nonrelativistic equation of motion of a test body of mass m in the static Newtonian gravitational
potential φ00(x) is of course,

md2x/dt2 = −m∇x φ00(x). (2.2a)

The Eq. (2.2a) nonrelativistic equation of motion corresponds to the nonrelativistic Lagrangian,

L(dx/dt, φ00(x)) = (m/2)|dx/dt|2 −mφ00(x), (2.2b)

which, exactly as the Eq. (1.3b) nonrelativistic Lagrangian leads to its corresponding Eq. (1.4a) Lorentz-
invariant Lagrangian, leads to the following corresponding Lorentz-invariant Lagrangian,

L(dxµ/dτ, φµν(x)) = −(m/2)ηµν(dxµ/dτ)(dxν/dτ)− (m/c2)φµν(x)(dxµ/dτ)(dxν/dτ), (2.3a)

which can be reexpressed in the astonishingly simple dynamic gravitational metric form,

L(dxµ/dτ, gµν(x)) = −(m/2)gµν(x)(dxµ/dτ)(dxν/dτ), (2.3b)

where,

gµν(x)
def
= ηµν + (2/c2)φµν(x). (2.3c)

The Eq. (2.3b) Lorentz-invariant Lagrangian −(m/2)gµν(x)(dxµ/dτ)(dxν/dτ) for a test body in the Lorentz-
covariant dynamic gravitational metric gµν(x) merely swaps the Minkowski metric ηµν in the Eq. (1.4c)
Lorentz-invariant Lagrangian −(m/2)ηµν(dxµ/dτ)(dxν/dτ) of a free test body for the Lorentz-covariant
dynamic gravitational metric gµν(x). Thus gravity is very simply and precisely characterized as a Lorentz-
covariant distortion of the Minkowski metric of space-time.

The Eq. (2.3b) Lagrangian −(m/2)gµν(x)(dxµ/dτ)(dxν/dτ), in addition to being Lorentz-invariant has
the form of an invariant under general coordinate transformations when it is assumed that gµν(x) transforms
as a covariant second-rank symmetric tensor under general coordinate transformations. Thus, just as gauge
transformation invariance is a spontaneous subsidiary consequence of making dynamic electromagnetism
Lorentz covariant, general coordinate transformation covariance is a spontaneous subsidiary consequence of
making dynamic gravitation Lorentz covariant.

We note that Eq, (2.3c) implies that φµν(x) = (c2/2)(gµν(x)− ηµν), which permits the Eq. (2.1) static
differential Newtonian Law of Gravity to be reexpressed entirely in terms of g00(x) and T00(x),

∇2
xg00(x) = (8π/c4)GT 00(x). (2.4)

Applying the Lagrangian equation of motion d[∂L/∂(dxλ/dτ)]/dτ = ∂L/∂xλ to the Eq. (2.3b) gravita-
tional metric Lagrangian L = −(m/2)gµν(x)(dxµ/dτ)(dxν/dτ) yields the following Lorentz covariant result,

mgλν(x)
(
d2xν/dτ2

)
= −(m/2)

[
∂gλµ(x)/∂xν + ∂gλν(x)/∂xµ − ∂gµν(x)/∂xλ

]
(dxµ/dτ) (dxν/dτ). (2.5a)

Because of the matrix metric factor gλν(x) on its left side, Eq. (2.5a) isn’t in the normal form for Lorentzian
dynamics. However, if for all x the metric gλν(x) has the matrix inverse gκλ(x) such that, when summed
over the index λ, the product gκλ(x)gλν(x) yields δκν , then Eq. (2.5a) can be put into the following normal
form for Lorentzian dynamics,

m
(
d2xκ/dτ2

)
= −(m/2) gκλ(x)

[
∂gλµ(x)/∂xν + ∂gλν(x)/∂xµ − ∂gµν(x)/∂xλ

]
(dxµ/dτ) (dxν/dτ), (2.5b)

which is the gravitational geodesic equation for the motion of a test body in the metric gµν(x). The Eq. (2.5b)
gravitational geodesic equation’s usual presentation [2] is,

d2xκ/dτ2 + Γκ
µν(x) (dxµ/dτ) (dxν/dτ) = 0, (2.5c)

where the affine connection Γκ
µν(x) [3] is defined as,

Γκ
µν(x)

def
= (1/2) gκλ(x)

[
∂gλµ(x)/∂xν + ∂gλν(x)/∂xµ − ∂gµν(x)/∂xλ

]
. (2.5d)
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We’ve noted that when the metric gµν(x) transforms as a a second-rank symmetric covariant tensor under
general coordinate transformations, the Eq. (2.3b) Lagrangian which yields the gravitational geodesic equa-
tion is a general invariant. Therefore it isn’t at all surprising that under those circumstances the gravitational
geodesic equation itself transforms as a generally contravariant vector [4].

Just as in electromagnetic theory the Eq. (1.2) static Coulomb’s Law is parlayed into the Eq. (1.6b)
gauge transformation invariant equation for the electromagnetic four-vector potential Aµ(x), so in gravity
theory the Eq. (2.4) weak-gravity static differential Newtonian Law of Gravity is parlayed into the general
coordinate transformation covariant Einstein equation for the metric gµν(x). Since the Einstein equation
must imply the Eq. (2.4) differential Newtonian Law of Gravity in the weak-gravity static limit, its left
side necessarily involves second derivatives with respect to space-time. Also, its left side is a second-rank
symmetric tensor in order to match that property of its energy-momentum source. These requirements,
along with general coordinate transformation covariance, pretty much pin down the left side of the Einstein
equation as a linear combination of the product of the curvature scalar with the metric and the Ricci
curvature tensor, both of which are nonlinear in the metric. The final details of the Einstein equation arise
from the vanishing of the generally covariant divergence of its left side in order to match that property of
its energy-momentum source, and of course also from the requirement that the Einstein equation implies
Eq. (2.4) in the weak-gravity static limit.

Because the Einstein equation is generally covariant, every general coordinate transformation of any
of its metric solutions is also a metric solution, so it appears to present a daunting solution ambiguity.
However, we have seen that its general covariance is a spontaneous subsidiary effect of the search for a
Lorentz covariant theory of gravity, just as the gauge transformation invariance of four-vector potential
electromagnetism is a spontaneous subsidiary effect of the search for a Lorentz covariant four-vector potential
theory of electromagnetism. Therefore we ipso facto only need to consider Lorentz covariant solutions of
the Einstein equation. Furthermore, the Riemann and Ricci curvature tensors and the curvature scalar are
all constructed from the affine connection and its first derivatives with respect to space-time, but the affine
connection isn’t well defined unless the metric has a matrix inverse for all values of x (see Eq. (2.5d)). Thus
we must require that det(gµν(x)) 6= 0 for all values of x. It turns out that this requirement can be combined
with an affirmation of the Lorentz covariance of the metric gµν(x) in an astonishingly simple way by requiring
that det(gµν(x)) = k for all values of x, where k is a fixed nonzero constant. But because det(ηµν) = −1,
the only value that the fixed nonzero constant k can have is −1.

In 1915 Einstein also arrived at this coordinate condition det(gµν(x)) = −1 for all x, but via a temporary
foray into the idea that physics is covariant under linear coordinate transformations of unit determinant [5]

in place of his 1913 “general relativity” idée fixe that physics is covariant under general coordinate transfor-
mations. Because of his very different mode of arrival at the coordinate condition det(gµν(x)) = −1 for all
x, Einstein apparently was oblivious to the twin facts that it crucially guarantees the existence of the matrix
inverse of the metric gµν(x) and is consistent with the Lorentz covariance of gµν(x). Regardless, Einstein’s
application of the coordinate condition det(gµν(x)) = −1 for all x in his landmark November 18, 1915 paper
produced the correct values for both Mercury’s remnant perihelion shift and the deflection of starlight by the
sun’s gravity [5], but before he adopted the coordinate condition det(gµν(x)) = −1 for all x, Einstein had
spent approximately two years struggling with results for Mercury’s perihelion shift which were substantially
too small [5]. Furthermore, the correct result for the deflection of starlight by the sun’s gravity which results
from application of the coordinate condition det(gµν(x)) = −1 for all x contradicts the result previously
firmly predicted by Einstein’s highly-touted Principle of Equivalence.

In spite of these hard facts, Einstein in November 1915 renewed his adherence to his 1913 “general
relativity” idée fixe and incredibly absolved the coordinate condition det(gµν(x)) = −1 for all x of having
any particular significance whatsoever! Consequently the coordinate condition det(gµν(x)) = −1 for all x,
which is central to the tremendous achievements of Einstein’s landmark November 18, 1915 paper, isn’t
mentioned at all in gravity textbooks! Einstein’s bizarrely precipitous abandonment of his spectacularly
successful November 18, 1915 coordinate condition det(gµν(x)) = −1 for all x paved the way for Alexandre
Friedmann’s promotion, starting in 1922, of his alternate coordinate condition g00(x) = 1 for all x, which flatly
rules out gµν(x) being Lorentz covariant and totally eliminates the extremely well-established phenomenon of
gravitational time dilation because that effect is given by [6],

[(the tick rate of a clock at x2)/(the tick rate of a clock at x1)] =
√
g00(x2)/g00(x1) . (2.6)
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In spite of these unphysical characteristics, Friedmann’s coordinate condition g00(x) = 1 for all x was, without
a rational justification for doing so, incorporated into the standard Robertson-Walker metric form which is
almost universally used in cosmology, i.e.,

(c dτ)2 = (c dt)2 − (R(t))2{(1/(1− kr2))(dr)2 + r2[(dθ)2 + (sin θ dφ)2]}. (2.7a)

It is realized that metrics of the form of Eq. (2.7a) impose Newtonian gravity on cosmological models [7], a
consequence of which is a Big Bang singularity wherein R(t) was equal to zero at a past finite time t [8]. At
that past finite time t when R(t) was equal to zero, the matrix inverse of the Eq. (2.7a) Robertson-Walker
metric form was obviously undefined, so at that past finite time t the affine connection (the gravitational
field) was undefined, as were the curvature tensors!

The albatross of Newtonian gravity which Friedmann’s coordinate condition g00(x) = 1 for all x imposes
on cosmological models is, however, completely unnecessary. For example, in the special case that k = 0, the
Newtonian-gravity Robertson-Walker metric which satisfies Friedmann’s coordinate condition g00(x) = 1 for
all x, i.e.,

(c dτ)2 = (c dt)2 − (R(t))2{(dr)2 + r2[(dθ)2 + (sin θ dφ)2]}, (2.7b)

is very easily coordinate-transformed to the metric,

(c dτ)2 = (1/S(t))6 (c dt)2 − (S(t))2{(dr)2 + r2[(dθ)2 + (sin θ dφ)2]}, (2.7c)

which clearly satisfies the Lorentz-covariant coordinate condition det(gµν(x)) = −1 for all x that is non-
Newtonian and obviously doesn’t permit a Big Bang singularity.

The very simplest expanding-dust-sphere cosmological model has recently been studied in detail both in
Friedmann coordinates, where g00(x) = 1 for all x, and in Einstein coordinates, where det(gµν(x)) = −1 for
all x [9]. The deceleration of cosmic expansion in Friedmann coordinates is changed in Einstein coordinates
to its acceleration, and the Big Bang in Friedmann coordinates is swapped in Einstein coordinates for a peak
in that inflation.
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