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Abstract  

Contrary to the claims by Elisha S Loomis in his famous book and popular belief, several 

approaches towards proving the Pythagorean theorem using trigonometry exists. These approaches 

essentially use trigonometric identities and concepts that can be derived independent of the identity 

𝑠𝑖𝑛2𝑥 + 𝑐𝑜𝑠2𝑥 =  1, to avoid any circular reasoning. Crucial to the trigonometric approaches 

are the law of sines, trigonometric angle sum and difference identities and modern definitions of 

trigonometric functions using the power series and Euler’s formula. This article describes these 

trigonometric proofs of the theorem. 

 

1. Introduction 

 

Elisha Scott Loomis (1852-1940) had claimed in his book, The Pythagorean Proposition, 

containing over 250 proofs of the Pythagorean theorem, that no trigonometric proof of the theorem 

could exist. His argument was simple: since all fundamental trigonometric formulas are based on 

the Pythagorean Theorem (𝑠𝑖𝑛2𝜃  +  𝑐𝑜𝑠2𝜃 =  1), using trigonometry to prove the theorem 

would be circular reasoning.[1] Lately, Calcea Johnson and Ne’Kiya Jackson, high school students 

from St. Mary's Academy, New Orleans challenged the long held belief by providing a proof of 

the theorem that used the Brahmagupta’s law of sines. Although, details of their proof could not 

be found in the public domain, a brief outline is provided here.[2] 

 

This recent discovery, has opened new possibilities of proving the Pythagorean theorem using tools 

from trigonometry, without any circular reasoning. It is thus, reasonable to believe that Johnson 

and Jackson’s proof is not the last of its kind, and other trigonometric proofs of the theorem can 

exist. Such a proof must essentially use trigonometric results, formulas or identities that can be 

derived independent of the Pythagorean relation (𝑠𝑖𝑛2𝑥 + 𝑐𝑜𝑠2𝑥 =  1). These include the 

trigonometric functions (defined as ratios of the different sides of a right triangle, or using power 

series or exponential functions), the angle sum and difference identities (as proven by Jason 
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Zimba),[3] derivatives of the trigonometric functions (can be derived from taking limits of the 

functions for angle (𝑥 + 𝑑𝑥), the Brahmagupta law of sines (proven using triangle similarities).[4]  

The following sections present different trigonometric proofs of the Pythagorean theorem. 

 

1. Proof 1: Using angle subtraction identity (method 1) 

Figure 1 

Consider ∆ABC with ∠𝐴𝐶𝐵 = 90˚, ∠𝐵𝐴𝐶 = 𝛼, ∠𝐴𝐵𝐶 = 𝛽 (for 𝛼 ≥ 𝛽) and sides 𝐵𝐶 = 𝑎, 𝐴𝐶 =

𝑏 and 𝐴𝐵 = 𝑐. Construct line from AO (where O is a point on line BC), such that ∠𝐵𝐴𝑂 = 𝛽. 

Also, construct 𝑂𝑃 ⊥  𝐴𝐵 𝑎𝑡 𝑃, as in figure 1. Thus, it is required to prove: 𝑐2 =  𝑎2 + 𝑏2. 

 

We have, ∆AOB an isosceles triangle with ∠ABO = ∠BAO =β and OA = OB (= 𝑥). 

In ∆OAC, ∠𝑂𝐴𝐶 = (𝛼 − 𝛽) and  
OC

𝑂𝐴
= sin(α − β), or  OC =  𝑥. sin(α − β) 

Now, BC  =  OB  +  OC  ⇒  a = x +  x.   sin(α − β)  

⇒ 𝑥 =
𝑎

1 + sin(α − β)
(1) 

In the isosceles triangle ∆AOB:  

𝐴𝐵 = 𝐴𝑃 + 𝐵𝑃 ⇒ 𝐴𝐵 = 2𝐵𝑃 = 2(OB) ∙ cos β (𝑏𝑦 𝑡𝑟𝑖𝑔𝑜𝑛𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛𝑠) 

⇒ 𝑐 =
2𝑎 ∙ cos β

1 + sin(α − β)
(𝑓𝑟𝑜𝑚 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1) 

By using the angle subtraction identity: sin(α − β) = sin 𝛼 ∙ cos 𝛽 − cos𝛼∙ sin 𝛽, we get: 

𝑐 =
2𝑎 ∙ cos β

1 + sin 𝛼 ∙ cos 𝛽 − cos 𝛼∙ sin 𝛽
 

⇒ 𝑐 ∙ (1 + sin 𝛼 ∙ cos 𝛽 − cos𝛼∙ sin 𝛽) =  2𝑎 ∙ cos β 

C B 
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⇒ 𝑐 (1 +
𝑎2

𝑐2
−
𝑏2

𝑐2
) =

2𝑎2

𝑐
(𝑏𝑦 𝑡𝑟𝑖𝑔𝑜𝑛𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛𝑠) 

⇒ 𝑐2 = 𝑎2 + 𝑏2 (ℎ𝑒𝑛𝑐𝑒, 𝑝𝑟𝑜𝑣𝑒𝑑) 

 

2. Proof 2: Using angle subtraction identity (method 2) 

 Figure 2 

Consider ∆ABC with ∠𝐴𝐶𝐵 = 90˚, ∠𝐵𝐴𝐶 = 𝛼, ∠𝐴𝐵𝐶 = 𝛽 (for 𝛼 ≥ 𝛽) and sides 𝐵𝐶 = 𝑎, 𝐴𝐶 =

𝑏 and 𝐴𝐵 = 𝑐. Construct line from AOP (where O is a point on line AC), such that ∠𝑂𝐴𝐶 = 𝛽. 

Also, construct 𝐵𝑃 ⊥  𝐴𝑃 𝑎𝑡 𝑃, as in figure 2. Thus, it is required to prove: 𝑐2 =  𝑎2 + 𝑏2. 

 

In ∆OAC,  

𝑂𝐴 =
𝑏

cos 𝛽
𝑎𝑛𝑑 𝑂𝐶 = (𝑂𝐴) ∙ sin 𝛽 =

𝑏 ∙ sin 𝛽

cos 𝛽
(𝑏𝑦 𝑡𝑟𝑖𝑔𝑜𝑛𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛𝑠) 

Now, 

𝑂𝐵 = 𝐵𝐶 − 𝑂𝐶 = 𝑎 −
𝑏∙sin𝛽

cos𝛽
(2) 

In ∆AOB, ∠OBP = (90° − 𝛼) =  𝛽 

Therefore, by law of sines: 

𝐵𝑃

sin 𝛼
=
𝑂𝑃

sin 𝛽
=

𝑂𝐵

sin 90°
(3) 

∴  𝐵𝑃 = (𝑂𝐵) ∙ sin 𝛼 = ( 𝑎 − 𝑏 tan𝛽) ∙ sin 𝛼 (𝑓𝑟𝑜𝑚 2) 

⇒ 𝐵𝑃 =
𝑎2 − 𝑏2

𝑐
(4) 

Also, 

𝑂𝑃 = (𝑂𝐵) ∙ sin 𝛽 = ( 𝑎 − 𝑏 tan𝛽) ∙ sin 𝛽 =
𝑏(𝑎2 − 𝑏2)

𝑎𝑐
(5) 
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In ∆ABP, by law of sines: 

𝐵𝑃

sin(α − β)
=

𝐴𝑃

sin 2𝛽
 

⇒ (𝐵𝑃) ∙ sin 2𝛽 =  (𝑂𝐴 + 𝑂𝑃) ∙ sin(α − β) 

⇒ (𝐵𝑃) ∙ 2 sin 𝛽 cos 𝛽 = (𝑂𝐴 + 𝑂𝑃) ∙ (sin 𝛼 ∙ cos 𝛽 − cos 𝛼∙ sin 𝛽) (𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠) 

⇒  2 (
𝑎2 − 𝑏2

𝑐
) (
𝑎𝑏

𝑐2
) = (

𝑏𝑐

𝑎
+
𝑏(𝑎2 − 𝑏2)

𝑎𝑐
) (
𝑎2 − 𝑏2

𝑐2
) 

⇒  2 (
𝑎𝑏

𝑐
) = (

𝑏𝑐2 + 𝑏(𝑎2 − 𝑏2)

𝑎𝑐
) 

⇒ 𝑐2 = 𝑎2 + 𝑏2 (ℎ𝑒𝑛𝑐𝑒, 𝑝𝑟𝑜𝑣𝑒𝑑) 

 

 

3. Proof 3: Johnson and Jackson’s proof (simpler version) 

 

Consider ∆ABC with ∠𝐴𝐶𝐵 = 90˚, ∠𝐴𝐵𝐶 = 𝛼, ∠𝐵𝐴𝐶 = 𝛽 and sides 𝐵𝐶 = 𝑎, 𝐴𝐶 = 𝑏 and 𝐴𝐵 =

𝑐. Construct ∆AB′C and rays 
AO 
→  and 

𝐵𝑂
→  such that ∠𝐵𝐵′𝑂 = 𝛼, as in figure 3. Thus, it is required 

to prove: 𝑐2 = 𝑎2 + 𝑏2. 

(The construction is like the one Johnson and Jackson had originally used, but omits the infinite 

chain of similar triangles.) 

Figure 3 

We have, using law of sines: 
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In ∆BOB′, 

sin(180° − 𝛽)

𝐵𝑂
=
sin(90° − 2𝛼)

𝐵𝐵′
=
sin𝛼

𝑂𝐵′
 

⇒ 𝐵𝑂 =
2𝑎 ∙ sin 𝛽

cos 2𝛼
 𝑎𝑛𝑑 𝑂𝐵′ =

2𝑎 ∙ sin 𝛼

cos 2𝛼
(6) 

 

In ∆ABO, 

sin 90°

𝐴𝑂
=
sin(90° − 2𝛼)

𝐴𝐵
 

⇒ (𝐴𝐵′ + 𝑂𝐵′) ∙ cos 2𝛼 = 𝑐 

⇒ (𝑐 +
2𝑎 ∙ sin 𝛼

cos 2𝛼
) ∙ cos 2𝛼 = 𝑐 (𝑓𝑟𝑜𝑚 6) 

 ⇒ 𝑐 ∙ cos 2𝛼 + 2𝑎 ∙ sin 𝛼 = 𝑐 

⇒ 𝑐 ∙ (cos2 𝛼 − sin2 𝛼) + 2𝑎 ∙ sin 𝛼 = 𝑐 (𝑒𝑥𝑝𝑎𝑛𝑑𝑖𝑛𝑔 cos 2𝛼) 

⇒ 𝑐 ∙ (
𝑏2

𝑐2
−
𝑎2

𝑐2
) + 2𝑎 ∙

𝑎

𝑐
= 𝑐 

⇒ 𝑐2 = 𝑎2 + 𝑏2 (ℎ𝑒𝑛𝑐𝑒, 𝑝𝑟𝑜𝑣𝑒𝑑) 

 

4. Proof 4: Simplest proof (without any need for additional construction) 

Figure 4 

 

Let, in ∆ABC with ∠𝐴𝐶𝐵 = 90˚, ∠𝐴𝐵𝐶 = 𝛼, ∠𝐵𝐴𝐶 = 𝛽 and sides 𝐵𝐶 = 𝑎, 𝐴𝐶 = 𝑏 and 𝐴𝐵 =

𝑐. To prove: 𝑐2 = 𝑎2 + 𝑏2. 

 

∆ABC, using the law of sines we get: 

C 

A 

B 
a 

b 
c 

α 

β 
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𝑎

sin 𝛼
=

𝑏

sin 𝛽
=

𝑐

sin 90°
(7) 

⇒
𝑎

sin(90° − 𝛽)
=

𝑏

sin(90° − 𝛼)
=

𝑐

sin 90°
 

⇒
𝑎

cos 𝛽
=

𝑏

cos 𝛼
= 𝑐 (8) 

From equations 7 and 8: 

𝑎2 = 𝑐2 ∙ sin 𝛼 cos 𝛽 (9) 

𝑏2 = 𝑐2 ∙ cos 𝛼 sin 𝛽 (10) 

Adding 9 and 10: 

𝑎2 + 𝑏2 = 𝑐2 ∙ (sin𝛼 cos 𝛽 + cos𝛼 sin 𝛽) 

= 𝑐2 ∙ sin(𝛼 + 𝛽) (𝛼 + 𝛽) = 90° 

⇒ 𝑎2 + 𝑏2 = 𝑐2 (ℎ𝑒𝑛𝑐𝑒, 𝑝𝑟𝑜𝑣𝑒𝑑) 

 

5. Proof 5: Using Euler’s formula for trigonometric functions 

We have,  

𝑒𝑖𝑥 = cos 𝑥 + 𝑖 sin 𝑥 (11) 

𝑒−𝑖𝑥 = cos 𝑥 − 𝑖 sin 𝑥 (12) 

 

Solving the equations 11 and 12 we get,  

sin 𝑥 =
𝑒𝑖𝑥 − 𝑒−𝑖𝑥

2𝑖
(13) 

cos 𝑥 =
𝑒𝑖𝑥 + 𝑒−𝑖𝑥

2
(14) 

Squaring and adding equations 13 and 14 we get, 

𝑠𝑖𝑛2𝑥 + 𝑐𝑜𝑠2𝑥 = (
𝑒𝑖𝑥 − 𝑒−𝑖𝑥

2𝑖
)

2

+ (
𝑒𝑖𝑥 + 𝑒−𝑖𝑥

2
)

2

 

= −
1

4
(𝑒2𝑖𝑥 + 𝑒−2𝑖𝑥 − 2𝑒𝑖𝑥

1

𝑒𝑖𝑥
) +

1

4
(𝑒2𝑖𝑥 + 𝑒−2𝑖𝑥 + 2𝑒𝑖𝑥

1

𝑒𝑖𝑥
) = 1 (15) 

This is true for all values of x, real or complex. In ∆ABC (Figure 4) for 0 ≤ α ≤ 90˚ equation 15 

can be rewritten using basic trigonometric definitions: 

𝑠𝑖𝑛2𝛼 + 𝑐𝑜𝑠2𝛼 = 1 ⇒
𝑎2

𝑐2
+
𝑏2

𝑐2
= 1 ⇒ 𝑎2 + 𝑏2 = 𝑐2 (ℎ𝑒𝑛𝑐𝑒, 𝑝𝑟𝑜𝑣𝑒𝑑) 
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6. Discussion 

 

Proof 1 and 2 used the angle-subtraction trigonometric identity and the law of sines at important 

steps. Proof 3, shortened the original version of Johnson and Jackson’s proof by bypassing the 

need for computing infinite geometric series for finding the sides of the larger right triangle. Use 

of the law of sines and angle sum identity for cos 2𝛼 was instrumental in this process. Proof 4 

showed that the law of sines can directly be related with the Pythagorean theorem. Jason Zimba in 

2016 had provided a derivation of the angle sum and subtraction identities using triangle similarity 

(without using 𝑠𝑖𝑛2𝑥 + 𝑐𝑜𝑠2𝑥 =  1).[5] He himself showed the Pythagorean theorem as a 

corollary to his discovery.[5] Similarly, the law of sines for any triangle can be derived using 

triangle similarity,[4] thus avoiding any risk of circular reasoning.  

 

Proof 5 differs from the rest as it uses Euler’s formula for defining trigonometric functions, and in 

a way expands the Pythagorean theorem to the complex plane. Euler’s formula can in turn be 

derived from the power series expansions of 𝑒𝑖𝑥, cos 𝑥 , 𝑎𝑛𝑑  sin 𝑥 and comparing the real and 

the imaginary terms. The Maclaurin series expansions of cos 𝑥 , 𝑎𝑛𝑑 sin 𝑥 uses serial derivatives 

of the terms, which do not depend on the Pythagorean theorem. Previously, De Villier in the 

conlusion to his article in 2023 had contemplated the possibility of a proof using the many different 

definitions of trigonometric functions. 

 

7. Conclusion 

 

Contrary to the popular belief, trigonometric proofs of the Pythagorean theorem had always 

existed. Proofs using newer constructions and solutions have been shown.  
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