
CHORD DIAGRAMS WITH DIRECTED CHORDS

RICHARD J. MATHAR

Abstract. Chord diagrams are cubic graphs with two types of edges: the

first set of edges comprise a subgraph which is a simple cycle (the frame); the

second type of edges (the chords) comprise disconnected 2-vertex subgraphs
incident to distinct vertices of the frame. We define associated cubic graphs

with directed chords (arcs) while keeping the edges of the frame undirected,

and plot all 1, 3, 13, and 121 of them for 2, 4, 6, and 8 vertices.

1. Chord Diagrams

The chord diagrams are graphs with two types of edges (i) the frame, a Hamil-
tonian cycle through the vertices, (ii) chords that connect two distinct vertices of
the frame such that the degree of each vertex is 3. The number of vertices, V ,
is even. The graphs are loopless and connected. Because the degree is 3 at each
vertex, the diagrams are regular, cubic graphs.

Because two distinct types of edges are considered, the diagrams are signed
graphs [11]. One might plot the two types by attaching a plus or a minus sign to
each edge. In this manuscript, the chords are painted green and the edges of the
frame black.

Remark 1. Because one chord and two edges of the frame are incident on each
vertex, the graphs are net-regular [13].

The standard plot of a chord diagram puts the vertices on a circle (or regular
V -gon) such that the V/2 chords run inside that circle/polygon. Enumeration [3,
A054499][15] yields 1 graph on V = 2 nodes:

,
2 graphs on V = 4 nodes:

,
and 5 graphs on V = 6 nodes:
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We refer to the basic graph interpretation where rotations or flips of a graph
do not create a different graph, i.e., look at the frame as a bracelet. Alternatively
one could look at the actual printout/embedding of a graph on/in a sheet of paper
and consider diagrams distinct if turning over is not a valid operation to match
graphs—necklaces [3, A007769]. For V ≥ 8 there are more necklaces.

Example 1. For V = 8 exist 17 strung bracelets but 18 strung necklaces because
the strung bracelet

does not have a mirror symmetry and is associated with 2 strung necklaces.

2. Diagrams with directed chords

2.1. Motivation. The incentive to replace the edges of the chords by directed
edges (arcs) is a re-interpretation of the chord diagrams as single-electron vacuum
polarization diagrams of quantum electrodynamics; the frame is the chain of prop-
agators of the fermion, the edges are the interaction lines. If the interaction is
refined to be a retarded interaction, the direction of time imposes a distinction of
the two vertices. Nevertheless we shall look at the diagrams as purely mathemati-
cal/combinatorial objects.

The edges of the frame will be kept undirected.

Remark 2. Because some of the edges are directed and others are not, these are
mixed graphs [6, §5.4].

Remark 3. Undirected frame edges are equivalent to assigning all frame edges
with a uniform clockwise or counter-clockwise orientation as long as the diagrams
are considered bracelets—because flipping them over would just map all clockwise
circulating frames to counter-clockwise circulating frames and vice versa in a 1-to-1
fashion.

2.2. Illustrations. Diagrams with V = 0, 2, 4, 6, . . . vertices are 1, 1, 3, 13, 121, . . .
graphs [3, A260847]—for bracelets, i.e., if flipping is ‘allowed’ to find matches.

One graph on 2 nodes.
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Three graphs on 4 nodes.

13 graphs on 6 nodes.

121 graphs on 8 nodes.
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2.3. Symmetries. The set of vertex-labeled fixed diagrams with directed chords
is based on a set of V/2 arcs labeled WLOG with odd numbers at the tails and
even numbers at their heads, and a frame with vertices labeled 1 to V (counter
clock-wise WLOG) along the Hamiltonian cycle. Glueing the chords into the frame
results in a unique representation as a permutation mapping labels 1, 2,. . .V of the
arcs vertices to labels of the frame. Each permutation of [1, . . . V ] represents one
vertex-labeled fixed diagram.

Example 2. An example for V = 6 and inception of the three chords permuted as
(3 1 5 4 6 2) in one-line notation is

1
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2
e.g.

Remark 4. Other representations are available: (i) The inverse permutation,
which collects the edge labels as one moves around the cycle of the frame, serves the
same purpose. (ii) One may invent a generalized Lederberg-Coxeter-Frucht LCF
notation for the distances between tails and heads along the cycle [4].

The following symmetry analysis matches broadly the counting of isomers in
organic chemistry [14, 10]; our frame is a kind of carbon skeleton of a molecule; the
chords are ligands that are attached to the carbons at the skeleton’s vertices. The
reduction to the unlabeled chord diagrams acknowledges symmetries of the frame
and of the chords:

• Cyclic permutation of the frame labels 1, 2,. . .V (rotation of the diagram)
does not generate distinct diagrams. The frame is equipped with the sym-
metry of the cyclic CV group of V elements. If we consider bracelets,
flipping the frame (generating a mirror image) does not generate distinct
diagrams either, and the symmetry is the dihedral D2V group—a larger
group if V > 2. We denote this group isomorphic to CV or D2V by A.
A generator of the group for the necklaces is (1, 2, 3, . . . , V ) (cycle nota-
tion for the permutations); the additional generator for the bracelets is
(1, V )(2, V − 1) . . . (V/2, V/2 + 1) (cycle notation for the permutation, the
mirror operation).
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• Permutations of the V/2 chords create indistinguishable unlabeled dia-
grams. This is isomorphic to the symmetry group SV/2, in our notation
any permutation of the odd labels of the arcs’ tails; the labels of the heads
must follow up accordingly. We denote this group isomorphic to the group
SV/2 by B. One possible set of V/2 − 1 generators are the star transposi-
tions {(1, 3)(2, 4), (1, 5)(2, 6), . . . , (1, V − 1)(2, V )} (cycle notation) [12, 7].
The first element in each permutation is the permutation of the odd labels
of the tails, the second element the permutation of the even labels of the
heads.

Remark 5. The symmetry group B of order (V/2)! regards relabeled arcs as equiv-
alent as long as the crossing pattern does not change. In the language of ligand
substitution, the entire set of (possibly intersecting) chords is considered a single
ligand.

A and B are subgroups of the full symmetric group SV . Adopting the theory of
counting isomers, the number of equivalence classes of the unlabeled diagrams with
directed chords is the number of double cosets of A\SV /B [2, §8.5][8, Th. 11.3][1].

Remark 6. The diagrams in the necklace interpretation (flipping not allowed to
find matches) are counted in [3, A260296].

Appendix A. GAP implementation

Construction of the double cosets is illustrated with the following GAP pro-
gram [5]. It provides one way to construct one representative of each coset as a
permutation similar to the one-line representation of Example 2.
#!/usr/bin/env gap

# GAP program: Generate double coset representation of directed chord diagrams
# with V vertices.
# @param V the positive even number, number of vertices
# The number of chords is V/2.
# @param isBracelet True if flips are allowed to find matches,
# false if only the necklace symmetry is considered.
# @param printRep True if a representative of each double coset is
# printed; false if only the number of cosets is reported
singleV := function(V,isBracelet,printRep)

local groupB,groupA,S,c,d,auxlist,idx,oneLcyc,oneLflip,oneLswap ;

if isBracelet then
Print("bracelet V = ",V,"\n") ;;

else
Print("necklace V = ",V,"\n") ;;

fi;

# The generator for the frame which is the cyclic group on [V]
# has the cyclic representation (1 2 3 ,... V)
# We use the one-line representation (2 3 .... V 1)
oneLcyc := [2..V] ;;
Add(oneLcyc,1) ;;

# The generator for the frame which allows flipping over
# has the one-line representation (V V-1 V-2 ... 3 2 1)
oneLflip := [V,V-1..1] ;
# The group A of the symmetries of the frame has the
# two generators oneLflip and oneLcyc if considering
# bracelets, else onlye oneLcyc (necklaces)
if isBracelet then

groupA := Group(PermList(oneLflip),PermList(oneLcyc));;
else

groupA := Group(PermList(oneLcyc));;
fi ;;
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# Print("A ", groupA,"\n") ;

# this is just 2*V, dihedral group
Print("# order A ",Size(groupA),"\n") ;;

auxlist :=[] ;;
# For the generators of the group of order V/2 swapping
# any two arcs, the generators have the cyclic representation
# (1,3)(2,4), (1,5)(2,6), ...(1,V-1)(2,V), as star transpositions
# Swapping the odd integers means swapping the tails, and swapping
# the even integers means swapping the attached heads of the arcs.
if V > 2 then

for idx in [3,5..V-1] do
# start with nothing swapped
oneLswap := [1..V] ;
# swap 1 <-> idx (odd integer, tail)
oneLswap[1] := idx ;
oneLswap[idx] := 1 ;
# swap 2 <-> idx+1 (even integer, head)
oneLswap[2] := idx+1 ;
oneLswap[idx+1] := 2 ;
# write generator number (idx-1)/2 as a permutation
auxlist[(idx-1)/2] := PermList(oneLswap) ;

od ;;
else

# if V=2, the group of swapping (the single arc) is the trivial group of order 1
auxlist[1] := PermList([1]) ;

fi ;;
groupB:= CallFuncList(Group,auxlist);;
# Print("B ", groupB,"\n") ;;

# this is just (V/2)!, symmetric group of swapping arcs
Print("# order B ",Size(groupB),"\n") ;

S:=SymmetricGroup(V);;

c:= CommutatorSubgroup(groupB,groupA);
Print("# order of commut subgroup B,A ",Size(c),"\n") ;

c:= ConjugateSubgroups(S,groupB);
Print("# order of conj subgroups B ",Size(c),"\n") ;
c:= ConjugateSubgroups(S,groupA);
Print("# order of conj subgroups A ",Size(c),"\n") ;

# Generate the double cosets
d := DoubleCosetRepsAndSizes(S,groupB,groupA) ;;
Print("Number of D-cosets ",Size(d),"\n") ;
if printRep then

for idx in [1..Length(d)] do
# Print the coset representativ in reduced cycle notation,
# number of elements, and in one-line representation
Print("Cos ",idx," ",d[idx]," ",ListPerm(d[idx][1]),"\n") ;

od;
fi ;

c := Normalizer(S,groupB) ;
Print("# Order of Normalizer B ",Size(c),"\n") ;
c := Normalizer(S,groupA) ;
Print("# Order of Normalizer A ",Size(c),"\n") ;

end;

# main loop over 1,..6 chords, i.e. 2,4,...,12 vertices
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for Vhalf in [1..6] do
V := 2*Vhalf ;
singleV(V,true,true) ; # bracelet
singleV(V,false,true) ; # necklace

od;

Appendix B. Outlook

Connected chord diagrams with one or more frames can be defined as in sequence
A323389 [3, A323389][9, §II]. Two of these exist with 2 vertices:

Five of these exist with 4 vertices (2 with 1 frame, 2 with 2 frames, 1 with 3
frames):

Nineteen of these exist with 6 vertices (5 with 1 frame, 7 with 2 frames, 5 with
3 frames, 2 with 4 frames):
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Refining chord edges to directed arcs could also be implemented for these.
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14. Ernst Ruch, Werner Hässelbarth, and Bernd Richter, Doppelnebenklassen als klassenbegriff
und nomenklaturprinzip für isomere und ihre abzählung, Theoret. Chim. Acta (Berl.) 19
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