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In Quantificational Logic (QL), the direction of entailment that distin-
guishes the two forms of universal disjunction is a well known but poorly
understood asymmetry. We focus on formulae with just two predicates.

∀x(Bx ∨Rx) ⊣⊬ ∀x(Bx) ∨ ∀x(Rx). (1)

Eq 1 reminds us universal disjunction in prenex form does not entail
the disjunction of universally quantified formulae. Entailment in the other
direction is on the other hand valid. The asymmetry is a basic tenet of QL.
However, attempts to illuminate the inequality tend to be cursory. Lemmon,
for instance, considers existential conjunction. [1]

∃x(Bx) ∧ ∃x(Rx) ⊣⊬ ∃x(Bx ∧Rx). (2)

When the domain is the set of positive integers and B is even and R is
odd, the fact some integers are even and some are odd does not mean some
integers are both even and odd. In the case of universal quantification, from
the fact all the integers are either even or odd it does not follow all the inte-
gers are even or all the integers are odd. As we shall see, Lemmon’s example
leaves much out. Beyond Lemmon, elucidations are thin on the ground. This
paper explores a semantics to plug the lacuna.

Our investigation is limited to the following notation with the usual rules
for well formed formulae.

∀,∃, B,R, x, a,¬,∧,∨,→, (, ).
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This limited set of symbols is able to express both forms of universal dis-
junction. The same fragment also allows an infinite number of well formed
formulae of which the majority are logically equivalent. This leaves a finite
number of logically distinct propositions. A semantics is introduced to ac-
count for this finite set. To that end we introduce the idea of a semantic tile.
A tile is a semantic atom. The term ‘tile’ avoids confusion with another well
used term ‘atomic sentence’. Unlike an atomic sentence a semantic tile may
be syntactically complex. It is also an apt name given the mosaic system we
are about to introduce and we shall also refer to the shapes that form the
elements of a grid as tiles. Hopefully without introducing too much confu-
sion. The essential idea is that a semantic tile is a possibly true proposition
only entailed by logically equivalent sentences or those sentences that express
contradiction. Two or more possibly true and logically equivalent sentences
only entailed by contradiction are the same tile. No two tiles may be true
together. Every complex proposition constructed from a set of tiles is truth
functional.

We first introduce a 4 × 4 grid of tiles. A Boolean 1 is a white (ivory)
tile and a Boolean Zero is a black tile. The grid is able to express 216

possible meanings as syntactic combinations of the four propositions whose
grid patterns are as Figure 1. The four propositions are rudimentary and the
reader should be able to quickly determine the grids preserve the correct set
of logical relationships.

Ba ∀x(Bx) Ra ∀x(Rx)

Figure 1:

As we continue to make use of the basic 4 × 4 outline it may seem odd
that propositions about a specific element of the domain help to define a
categorical proposition, but this is a reality of QL.

An immediate problem is that the basic 4×4 grid is insufficient to express
universal disjunction in the prenex form; for this we need 32 tiles. The
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pattern of tiles shown in Figure 2 is the the grid form we shall use.

Figure 2:

The reader may prefer the grid to be laid out differently but this particular
pattern was settled upon sometime ago for reasons now partly forgotten.
Admittedly Figure 2 is something of a mosaic and we adopt the habit of
referring to grid patterns as mosaics. The center four squares of the original
4 × 4 grid are now a cell that consists of an additional five tiles. Take note
that the double triangle or hour glass shape is a single tile. The 32 tiles make
possible 232 different meanings (a number approaching 4.3 billion). However,
we are focused on the two forms of universal disjunction when both predicates
are positive. The mosaics for these are as Figure 3.

∀x(Bx) ∨ ∀x(Rx) ∀x(Bx ∨Rx)

Figure 3:

We take a closer look at the set of 12 tiles that form the pattern for
universal disjunction seen on the right hand image of Figure 3. The formula
with the simplest syntax is given for each tile, and its location on the grid is
noted. A natural language example helps illuminate the different meanings.
We consider the elements of the domain are flower stalks with red or blue
petals. The same point is also made with an illustration and a Venn diagram.
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In the more complicated propositions an arrow points out stalk a. The
full suite of illustrations and Venn diagrams make better sense once it is
recognised the arrow makes a negative claim when stalk a has petals of one
colour. The Venn diagrams also help keep track of the logical possibilities.

P1. ∀x(Bx) ∧ ∀x(Rx)

Every stalk has a blue petal and a red petal.

•
•
•

•
•

•

•

•

• B R

Figure 4:

P2. ∀x(Bx) ∧ ∀x(¬Rx)

Every stalk has a blue petal, none has a red petal.

•
•
•

•
•

•

•

•

• B R

Figure 5:

4



P3. ∀x(Rx) ∧ ∀x(¬Bx)

Every stalk has a red petal, none has a blue petal.

•
•
•

•
•

•

•

•

• B R

Figure 6:

P4. ∀x(Bx) ∧ ∃x(¬Rx) ∧Ra

Some stalks do not have a red petal, but stalk a does.
Every stalk has a blue petal.

•
•
•

•
•

•

•

•

•
a

•

a
B R

Figure 7:
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P5. ∀x(Rx) ∧ ∃x(¬Bx) ∧Ba

Some stalks do not have a blue petal, but stalk a does.
Every stalk has a red petal.

•
•
•

•
•

•

•

•

•
a

•

a
B R

Figure 8:

P6. ∀x(Bx) ∧ ∃x(Rx) ∧ ¬Ra

Some stalks have a red petal, but stalk a does not.
Every stalk has a blue petal.

•
•
•

•
•

•

•

•

•
a

•

a
B R

Figure 9:
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P7. ∀x(Rx) ∧ ∃x(Bx) ∧ ¬Ba

Some stalks have a blue petal, but stalk a does not.
Every stalk has a red petal.

•
•
•

•
•

•

•

•

•
a

•

a
B R

Figure 10:

P8. ∀x(Bx ∨Rx) ∧ ∃x(¬Bx) ∧ ∃x(¬Rx) ∧Ba ∧Ra

but stalk a has both.
and some do not have red,

Some stalks do not have a blue petal
Every stalk has a blue or red petal.

•
•
•

•
•

•

•

•

•
a

•

a
B R

Figure 11:
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P9. ∀x(Bx ∨Rx) ∧ ∃x(Bx ∧Rx) ∧ ∃x(¬Bx) ∧ ¬Ra

Stalk a does not have a red petal.
Some stalks do not have a blue petal.

Some stalks have both a blue petal and a red petal.
Every stalk has a blue petal or red petal.

•
•
•

•
•

•

•

•

•
a

•

a
B R

Figure 12:

P10. ∀x(Bx ∨Rx) ∧ ∃x(Bx ∧Rx) ∧ ∃x(¬Rx) ∧ ¬Ba

Stalk a does not have a blue petal.
Some stalks do not have a red petal.

Some stalks have both a blue petal and a red petal.
Every stalk has a blue or red petal.

•
•
•

•
•

•

•

•

•
a

•

a
B R

Figure 13:

N.B. It is easier to make sense of the next two propositions if the prenex
form is rendered as the logically equivalent universal implication.
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P11. ∀x(Bx → ¬Rx) ∧ ∀x(¬Bx → Rx) ∧ ∃x(¬Bx) ∧ ∃x(Rx) ∧ ¬Ra

Some stalks have a red petal, but stalk a does not.
Some stalks do not have a blue petal.

and if stalks do not have a blue petal they have a red petal.
If stalks have a blue petal then they do not have a red petal

•
•
•

•
•

•

•

•

•
a

•

a
B R

Figure 14:

.

P12. ∀x(Bx → ¬Rx) ∧ ∀x(¬Bx → Rx) ∧ ∃x(¬Rx) ∧ ∃x(Bx) ∧ ¬Ba

Some stalks have a blue petal, but stalk a does not.
Some stalks do not have a red petal.

and if they do not have a blue petal they have a red petal.
If stalks have a blue petal then they do not have a red petal

•
•
•

•
•

•

•

•

•
a

•

a
B R

Figure 15:

If we compare the pair P9 and P10 with P11 and P12 it is possible to see
just how much is left out by the original example of even and odd integers
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due to Lemmon. Admittedly the full set of 12 propositions are presented
dogmatically. However, for this account of universal disjunction to be correct
the following three statements hold true.

⊢ ¬(Pn ∧ Pm),

where Pn and Pm are any two propositions taken from P1 to P12.
(3)

∀x(Bx) ∨ ∀x(Rx) ⊣⊢ P1 ∨ ... ∨ P7. (4)

∀x(Bx ∨Rx) ⊣⊢ P1 ∨ ... ∨ P12. (5)

Given the chosen layout for the grid, the mosaics for the alternative universal
disjunctions, where one or both predicates is negated, point to their respec-
tive corners of the grid as shown by Figure 16.

∀x(Bx ∨ ¬Rx) ∀x(Bx ∨Rx)

∀x(¬Bx ∨ ¬Rx) ∀x(¬Bx ∨Rx)

Figure 16:

Through experimentation the reader will find the Figure 16 mosaics pre-
serve the correct set of logical relationships. Keeping to the monadic frag-
ment it is possible to introduce further apparatus such as additional names,
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variables, and predicates but things get very complicated very quickly. Any
initial advantage gained from being able to visualise fragments of monadic
predicate logic as a spatial pattern diminish rapidly. Nonetheless, in the
simpler case of two predicates the system of mosaics affords a deeper under-
standing of universal disjunction than usually attempted.
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