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Abstract

This document proves that the Collatz Conjecture is true for the
Natural numbers excluding zero. Use is made of the probability
distribution of even and odd numbers in supposed diverging Collatz
sequences to establish that Collatz sequences do not diverge, having
a finite number of terms, and are bounded. Finally proof by
contradiction, the pigeon hole principle and proof by induction are
used to prove that the Collatz Conjecture is true via two theorems.
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1 Introduction

The Collatz Conjecture is named after the mathematician Lothar Collatz,

who introduced it in 1937. Current and past research is presented in [1], [2],

[3]. The solution has proved elusive and the famous mathematician P.

Erdos remarked that “Mathematics may not be ready for such
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2 DEFINITIONS

problems.”[4] By 2020, the conjecture had been verified by computer for all

starting values up to 268.[5] However a mathematical proof that would

prove that the conjecture is true for all Natural numbers greater than zero

has yet to be proven.

2 Definitions

Definition 2.1 (Natural Numbers) The set of Natural numbers, N

referred to in this document does not include zero.

The Collatz function, C : N → N, n ∈ N is shown in Equation 2.1.

C(n) =


n/2, if 2 | n.

3n+ 1, otherwise.

(2.1)

Definition 2.2 (generates) The phrase n generates denotes the Collatz

sequence of numbers iteratively calculated with a starting value of n where

the next term in the sequence is obtained by using the Collatz function on

the proceeding one.

Definition 2.3 (Collatz Conjecture) The Collatz Conjecture asserts

that Collatz sequences generated from the set of Natural numbers has a term

equal to 1 or phrased differently reaches 1. A Collatz sequence as defined

herein is deemed terminated upon reaching 1.
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3 PROBABILITY THAT THE PARITY OF C∞(n) IS EVEN

Definition 2.4 (The kth term of a Collatz sequence)

Ck(n) where k, n ∈ N is defined as the kth term of a sequence generated

from n.

Definition 2.5 (cycling) A Collatz sequence which repeats one of the

numbers in the sequence will cycle through numbers already in the sequence

and is defined as cycling.

As an example Equation 2 shows the number 7 generating a Collatz

sequence that reaches 1. Therefore this accords with the Collatz Conjecture.

(7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1) (2.2)

3 Probability that the Parity of C∞(n) is

Even

Lemma 3.1 If n ∈ 2N is randomly chosen then P{n/2 ∈ 2N} is 1
2
.

Proof

Consider the set of even numbers, {2, 4, 6, 8..}. Upon dividing the elements

of this set by 2 the result is {1, 2, 3, 4, ...}. Note that half of the terms are

even and half are odd. Thus for a randomly selected even number n, this

implies that the probability that n
2
is even or odd is 1

2
. □

The following Theorem is developed from [6].
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3 PROBABILITY THAT THE PARITY OF C∞(n) IS EVEN

Theorem 3.2 P{C∞(n) ∈ 2N} is 2
3
.

Proof

The top portion of Figure 1 shows a probability tree for even and odd

terms that are generated from a random starting number n in a Collatz

sequence. P{C(n) ∈ 2N} is the probability that C(n) is even. This will be

written simply as P{C(n)}. This implies the probability of an odd C(n) is

1− P{C(n)}. Also note that P{C(n)} = 1
2
by lemma 3.1.

The next level of the tree represents C2(n).
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3 PROBABILITY THAT THE PARITY OF C∞(n) IS EVEN

Fig 1. Probability Tree of the Parity of terms in a Collatz sequence.

P{C2(n) ∈ 2N} which will be written simply as P{C2(n)} is calculated as

P{C2(n)} = (1− P{C(n)}).1 + 1

2
.P{C(n)}

= 1− 1

2
P{C(n)}

(3.1)

Or in general, from observation of the lower portion of Figure 1,

P{Ck(n)} = 1− 1

2
P{Ck−1(n)}

(3.2)

where again it is understood that the probability being calculated is for an

even number. Applying Equation 3.2 in a recursive manner,

P{Ck(n)} = 1− 1

2
(1− 1

2
P{Ck−2(n)})

= 1− 1

2
+

1

4
− 1

8
+ ...+

P{C(n)}
2k−1

(3.3)

Taking the limit as k approaches infinity,

lim
k→∞

P{Ck(n)} = lim
k→∞

[
1− 1

2
+

1

4
+

1

8
+ ...+

P{C(n)}
2k−1

]
(3.4)

Noting that the PC(n) term disappears and that the remaining rhs terms

form a geometric series with a = 1 and r = −1
2
.
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4 PROOF THAT THE COLLATZ CONJECTURE IS TRUE ∀ n ∈ N

P{C∞(n)} =
a

1− r

=
1

1− {−1
2
}

=
1

1 + 1
2

=
1
3
2

=
2

3

(3.5)

Therefore P{C∞(n) ∈ 2N} is 2
3
. □

Corollary 3.3 In an infinitely long Collatz sequence, assuming it exists, 2
3

of the terms are even and 1
3
are odd. This is obtained by applying the

Fundamental Theorem of Probability in reverse. This presumes that there

are no powers of 2 encountered, otherwise the sequence does not have an

infinite number of terms.

4 Proof that the Collatz Conjecture is True

∀ n ∈ N

Theorem 4.1 If the numbers from 1 to n generate Collatz sequences that

reach 1, this implies that n+1 generates a sequence that reaches 1.

Proof

Assumption 4.1 All of the numbers from 1 to n generate Collatz

sequences that reach 1.
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4 PROOF THAT THE COLLATZ CONJECTURE IS TRUE ∀ n ∈ N

Remark 4.1 If the numbers from 1 to n can be shown to generate Collatz

sequences that reach 1 then if any number larger than n in the course of the

generation of the sequence results in a term that is between 1 to n then it

will continue along an already established Collatz sequence and will reach 1.

There are 4 possibilities with regard to a Collatz sequence generated from

n+1:

(1) The sequence generated from n+1 diverges.

(2) The sequence generated from n+1 does not diverge but cycles at a

number greater than n such that no term in the sequence is below n+1.

(3) The sequence generated from n+1 does not diverge and does not cycle

above n but does not reach 1.

(4) The sequence reaches 1.

Remark 4.2 If (1) , (2) and (3) are false then the only option left is (d),

and thus Theorem 4.1 is true.

Proposition 4.2 The sequence generated from n+1 diverges.

Proof

If a Collatz sequence diverges then it is infinitely long. This implies in such

a sequence, if it exists, there are no numbers that are a power of 2,

otherwise on encountering this term the sequence would proceed directly to

1 and thus not be divergent. Encountering a power of 2 would upset the

probabilities that were calcuated in Theorem 3.2 therefore it is important
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4 PROOF THAT THE COLLATZ CONJECTURE IS TRUE ∀ n ∈ N

to point out that this situation does not exist in the case of an infinite

sequence.

Consider a Collatz sequence where α is the fraction of the terms that are

odd and 1-α is the fraction of those that are even. Each odd term increases

the first number in the sequence by approximately 3 and each even term

decreases the initial term by 2. Assume that the odd terms instead of

increasing the first term by approximately 3, instead increases it by 3.9

without the addition of 1. This simplifies the algebra and allows an upper

bound to be calculated. Note that for n > 1 (trivial Collatz sequence)

3.9n > 3n+ 1. We can then form an upper bound for the kth term. As

there are k terms, (n+1) is multiplied by 3.9 αk times and divided by two

(1− α)k times. This can be written as

Ck(n+ 1) < (n+ 1)× 3.9α·k

2(1−α)·k (4.1)

Taking limits as k approaches infinity and noting by Theorem 3.2 that α

the proportion of odd terms approaches 1− 2
3
= 1

3
.

lim
k→∞

Ck (n+ 1) < lim
k→∞

(n+ 1)× 3.9
1
3
·k

2
2
3
·k

= (n+ 1)× lim
k→∞

(
3.9

4

) 1
3
·k

= (n+ 1)× 0 = 0 where k, n ∈ N

(4.2)

This is a contradiction. The term at infinity is /∈ N. Therefore the reverse
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4 PROOF THAT THE COLLATZ CONJECTURE IS TRUE ∀ n ∈ N

of what we assumed is true. A Collatz sequence has a finite number of

terms. It also implies that Collatz sequences are bounded. Without loss of

generality assume the number of terms are even. Odd terms are always

followed by even terms so at most k/2 terms can be odd. Each odd even

pair has the net effect of increasing the starting number n+1 by 3/2

approximately. Therefore certainly (n+ 1)2k/2 exceeds any term in the

sequence and is therefore an upper bound. If the number of terms are odd

then (n+ 1)2(k+1)/2 can be used as an upper bound.

We can conclude that a Collatz sequence does not diverge, has a finite

number of terms, and is bounded.

Therefore proposition 4.2 is false. □

Proposition 4.3 The sequence generated from n+1 does not diverge but

cycles at a number greater than n such that no term in the sequence is

below n+1.
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4 PROOF THAT THE COLLATZ CONJECTURE IS TRUE ∀ n ∈ N

Proof

If n+1 is even then upon dividing by 2 the next term in the sequence is less

than n+1 which implies the sequence reaches 1 proving for even n+1 the

sequence does not cycle above n.

Consider odd n+1. Note Figure 2 where it is seen that C(n+1) = 3n+4 as

n+1 is odd. The next term is (3n+4)/2 as the preceeding term is even.

Then there are two possibilities: (3n+4)/4 and the term (9n+14)/2. This

implies that odd n+1 generates terms of the form

αn+ β

2δ
where α, β, δ, n ∈ N (4.3)

For proposition 4.2 to be true

Ck(n+ 1) = Cj(n+ 1) where j, k, n ∈ N and j > k > 2 (4.4)
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4 PROOF THAT THE COLLATZ CONJECTURE IS TRUE ∀ n ∈ N

Fig 2. Tree structure showing terms that n+1 may generate

Say Ck(n+ 1) = p and s cycles later produces p again.

Ck(n+ 1) = p = Ck+s where k, n, p, s ∈ N (4.5)

From observation of equations 5,6 and 7

p =
αp+ β

2δ
where p, α, β, δ ∈ N (4.6)
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4 PROOF THAT THE COLLATZ CONJECTURE IS TRUE ∀ n ∈ N

Comparing terms from Equation 8

1 =
α

2δ
(4.7)

0 =
β

2δ
(4.8)

The only solution which satisfies equations 9 and 10 is when β = 0 and α is

a power of 2, which implies p is a power of 2 which generates subsequent

terms that monotonically decrease to 1 contradicting proposition 4.3.

Therefore proposition 4.3 is false. □

Proposition 4.4 The sequence does not diverge and does not cycle above n

but does not reach 1.

Proof We have proven that Collatz sequences are bounded. Assume t

equals the number of Natural numbers greater than n but less than an

upper bound M and let any number in this range be equal to q. Then

generate q to term t+1. Because no number repeats above n, as there is no

cycling, in a worst case scenario where all the t numbers in the range were

exhausted then by the pigeonhole principle term t+1 has to be in the range

from 1 to n which, from remark 4.1 means that the sequence reaches 1.

This is in contradiction to Proposition 4.4 which is then false. □

As propositions 4.2 ,4.3 and 4.4 are false then the only conclusion that can
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4 PROOF THAT THE COLLATZ CONJECTURE IS TRUE ∀ n ∈ N

be reached is that Theorem 4.1 is true. □

Theorem 4.5 Collatz sequences which are generated from the Natural

numbers reach 1.

Proof

The Collatz sequence for a starting value of 1 is as follows

(1) (4.9)

As n = 1 generates a Collatz sequences that reaches 1, by Theorem 4.2 this

implies that n+1 = 2 also generates a Collatz sequence that reaches 1.

Continuing in this manner then by induction n generates a Collatz sequence

that reaches 1 ∀ n ∈ N. Therefore Theorem 4.5 is true. □

Corollary 4.6 There are no repeated numbers in a Collatz sequence

otherwise there would be a cycle and the sequence would never reach 1.

Corollary 4.7 At some point in a Collatz sequence a term is encountered

for the first time such that

Ck(n) = 2j where j, n, k ∈ N (4.10)

In other words eventually a term in a generated sequence is a power of 2.

This is the only way that the sequence could eventually reach 1.
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5 Conclusion

For all n ∈ N:

(a) Collatz sequences reach 1 starting from any Natural number.

(b) Collatz sequences do not diverge, have a finite number of terms and are

bounded.

(c) Collatz sequences have distinct terms.

(d) Collatz sequences eventually reach a term that is a power of 2.
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