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Abstract

We integrate the nonlinear Schrödinger differential equation, looking for ”lone wave” so-

lutions, and then use the method of indeterminate coefficients. The integration is in closed

form for the free particle, and then we integrate numerically for the particle subject to a weak

periodic potential. In both cases, the system is one-dimensional.

1 The problem of initial conditions for the Schrödinger equa-

tion

Let us write the Schrödinger equation for a particle of mass m (without spin) constrained to move
on the x-axis and subjected to a conservative force field of potential energy V (x):

− ℏ
2

2m

∂2ψ

∂x2
+ V (x)ψ (x, t) = iℏ

∂ψ

∂t
(1)

The cases that interest us are: 1) free particle (V (x) ≡ 0); 2) particle in a one-dimensional lattice
(periodic potential energy of period a: V (x+ na) ≡ V (x)).

(1) is a linear partial differential equation of the second order in the derivative with respect to x,
and of the first order in the time derivative. This last circumstance implies that a solution is uniquely
determined by the initial condition ψ (x, 0) = ψ0 (x), where ψ0 (x) is a given function (element of
L2 (R)). This can be seen by writing (1) in operational form:

Ĥ |ψ (t)〉 = iℏ
∂ |ψ (t)〉
∂t

(2)

Here Ĥ = p̂2

2m
+ V (x̂) is the Hamiltonian operator of the particle. Given the initial state |ψ0〉, (2)

admits the unique solution

|ψ (t)〉 = e−
i

ℏ
tĤ |ψ0〉 (3)

(3) can be made explicit by expressing the initial state |ψ0〉 as a combination of the energy eigenkets.
For the hypotheses made on the potential V (x), we have that the spectrum of Ĥ is purely continuous
or at most given by the union of continuous bands separated by gaps. Therefore

|ψ0〉 =
∫

σc(Ĥ)
dE |E〉 〈E|ψ0〉

︸ ︷︷ ︸

c(0)(E)

Taking into account the completeness of the {|x〉} system of position autokets.
∫ +∞

−∞
dx |x〉 〈x| = 1̂

c(0) (E) = 〈E|
(∫ +∞

−∞

dx |x〉 〈x|
)

|ψ0〉 =
∫ +∞

−∞

ψ0 (x) u
∗

E (x) dx

where uE (x) = 〈x|E〉 are the eigenfunctions of energy. From (3)

|ψ (t)〉 = e−
i

ℏ
tĤ

∫

σc(Ĥ)
dE |E〉 〈E|ψ0〉 =

∫

σc(Ĥ)
dEe−

i

ℏ
Et |E〉 〈E|ψ0〉
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In x-representation i.e. by switching to the wave function:

ψ (x, t) =

∫

σc(Ĥ)
c(0) (E) uE (x) e−

i

ℏ
EtdE (4)

In the case of the free particle, we find a wave packet. Again in this case, the (1) can be solved
directly by looking for solutions of the monochromatic plane wave type:

ψk (x, t) = Aei(kx−ωt), ∀k ∈ R

After simple steps:

ψk (x, t) = Aei(kx−ω(k)t), con ω (k) =
ℏk2

2m

The linearity of the equation allows us to superimpose infinite solutions:

ψ (x, t) =

∫ +∞

−∞

A (k) ei(kx−ω(k)t)dk (5)

where A (k) is such that the integral converges. For the above, the (5) is a particular case of the (4).
From (5) the initial profile follows:

ψ0 (x) =

∫ +∞

−∞

A (k) eikxdk (6)

By the Fourier integral theorem:

A (k) =
1

2π

∫ +∞

−∞

ψ0 (x) e
−ikxdk

So A (k) is the Fourier transform of ψ0 (x). So if we want to determine the temporal evolution of
the wave function, it is necessary (and sufficient) to assign the initial profile of the wave packet
(quantumly speaking this means assigning the initial state). Usually a Gaussian profile G(x − x0)
centered at a given point x0 is used as the modulation envelope of a sinusoidal oscillation. So

ψ0 (x) = G (x− x0) e
ik0x (7)

In this case the Fourier transform A(k) is still a Gaussian, centered at k0 which therefore represents
the dominant wave number. It follows that setting k0 = 0 i.e. considering only the Gaussian as the
initial impulse, implies that the Fourier transform A(k) is centered at k = 0, and this is exactly what
is expected because ψ0 (x) does not contain sinusoidal oscillations (zero wave number). The widths
of the respective Gaussians are such that ∆x∆k = 1/2, where the first member is the uncertainty
product relative to position x and wave number k (hence the impulse p = ℏk). In other words,
the Gaussian wave packet is the packet of minimum uncertainty. In fact, any other initial profile
ψ0 (x) = f (x) eik0x is characterized by an uncertainty product ∆x∆k ≥ 1/2.

2 The nonlinear Schrödinger equation

(1) can be interpreted as the result of a linearization process of a nonlinear equation of the type:

− ℏ
2

2m

∂2ψ

∂x2
+ V (x)ψ (x, t)− β |ψ (x, t)|2 ψ (x, t) = iℏ

∂ψ

∂t
(8)
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where β is a non-zero real constant. This can be due to one of two factors: 1) interaction with other
particles; 2) spontaneous local symmetry breaking [1].

In an attempt to integrate the (8) we start from the simplest case (V (x) ≡ 0), after which we
consider a weak periodic potential V (x), integrating numerically. For V (x) ≡ 0

ℏ
2

2m

∂2ψ

∂x2
+ iℏ

∂ψ

∂t
+ β |ψ (x, t)|2 ψ (x, t) = 0 (9)

We look for solutions of the “solitary wave” type (i.e. soliton):

ψ (x, t) =
1

cosh (x− V t)
ei(Kx−Ωt) (10)

having denoted with capital letters the typical quantities that characterize the waves, to distinguish
them from the case of so to speak, usual waves. We note incidentally that the nonlinearity of the (9)
prevents linearly superimposing the solutions for different K. More specifically, the initial profile

ψ0 (x) =
1

cosh x
(11)

can be developed in Fourier integral, so that ψ0 (x) is a superposition of infinite monochromatic
components of wavenumbers k ∈ (−∞,+∞) . However, we cannot determine the time evolution
ψ (x, t) from this Fourier integral expansion because the differential equation is nonlinear.

Differentiating the (10) with respect to x:

∂ψ

∂x
= F (x, t) ei(Kx−Ωt) (12)

where

F (x, t)
def
=

G (x, t)

cosh2 (x− V t)
; G (x, t)

def
= iK cosh (x− V t)− sinh (x− V t) (13)

So
∂2ψ

∂x2
=

[
∂F

∂x
+ iKF (x, t)

]

ei(Kx−Ωt) ≡ χ (x, t) ei(Kx−Ωt) (14)

having defined:

χ (x, t)
def
=

∂F

∂x
+ iKF (x, t) (15)

Differentiating the (13):
∂F

∂x
=

φ (x, t)

cosh3 (x− V t)
(16)

where
φ (x, t)

def
= 2 sinh (x− V t)− cosh2 (x− V t)− iK sinh (x− V t) cosh (x− V t) (17)

Replacing (13)-(16) in (15):

χ (x, t) =
φ (x, t) + iKG (x, t) cosh (x− V t)

cosh3 (x− V t)
(18)

So
∂2ψ

∂x2
=
φ (x, t) + iKG (x, t) cosh (x− V t)

cosh3 (x− V t)
ei(Kx−Ωt) (19)
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Let’s move on to the derivative with respect to time:

∂ψ

∂t
=
V sinh (x− V t)− iΩcosh (x− V t)

cosh2 (x− V t)
ei(Kx−Ωt) (20)

Replacing (19)-(20)-(10) in (9):

ℏ
2

2m

φ (x, t) + iKG (x, t) cosh (x− V t)

cosh3 (x− V t)
+ iℏ

V sinh (x− V t)− iΩcosh (x− V t)

cosh2 (x− V t)
+

β

cosh3 x
= 0 (21)

If in (21) we set (x, t) = (0, 0)

β =
ℏ
2K2

2m
− ℏΩ (22)

from which we see that in the linear case β = 0 we have Ω = ℏK2

2m
which is precisely the dispersion

law of the wave packet for the free particle. Therefore our procedure is correct. To determine the
quantity V , we proceed in a similar way by setting (x, t) = (x0, 0) where x0 = ln

(
1 +

√
2
)
=⇒

sinh x0 = 1, cosh x0 =
√
2. By doing the necessary steps you get:

V =
Ω

K

which is the (constant) speed of the wave described by (10).
If we now add a weak periodic potential:

V (x) = V0

(

1− cos

(
2π

a
x

))

with V0 = 0.1 (unità adimensionali). (dimensionless units). Integrating with Mathematica, we obtain
the behavior of fig. 1 in the (t, x) plane.
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Figure 1: Trend of the solution with periodic potential, found with Mathematica.

4



References

[1] Davydov A. S., Solitons in Molecular Systems. Springer

[2] M. D. Kruskal, R. M. Miura, C. S. Gardner and N. I. Zabusky: 1970, J. Math. Phys. 11, 1970

[3] L. Landau: 1933, Phys. Z. Sowjetunion Bd3, 644.

[4] P.D. Lax: 1968, Comm. Pure and Appl. Math. 21, 467, 1975.

5


	The problem of initial conditions for the Schrödinger equation
	The nonlinear Schrödinger equation
	Bibliografia

