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Abstract

Textbooks tell us that the coupling constant of Dirac
magnetic monopoles is 34.259. Here I show by using
the quark hypothesis that at zero temperature the
coupling constant is as high as 308.331. Moreover I
show that it is a running coupling constant and is
smaller than 0.5 at the Planck temperature.
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1 Introduction

In 1904 Thomson [1] has shown that the angular mo-
mentum generated by the Lorentz force between an
electric charge and a magnetic charge is independent
of their distance. As intrinsic spin and orbital angular
momentum are quantized in units of (half-)integers
times the reduced Planck constant h̄, Dirac [2] con-
cluded in 1931, that these conditions can be satis-
fied only if both electric charge and magnetic charge
appear in discrete units only. Since then textbooks
tell us that the coupling constant of Dirac magnetic
monopoles is 34.259. Here I show that this conclusion
is not correct. Electric charge appears not in multi-

ples of the positron charge e, but in multiples of the
quark charge e/3. At zero temperature the coupling
constant of Dirac magnetic monopoles is 308.331. By
using the weak energy condition I show that this cou-
pling is a running coupling constant and becomes
smaller than 0.5 at the Planck temperature.

2 Classical Dirac Magnetic
Monopoles

I will use the natural units

h̄ = c = ε0 = 1 (1)

where h̄ = h/2π denotes the reduced Planck con-
stant, c the speed of light, and ε0 the electric field
constant.

The electric field strength generated by an electric
charge Q resting in the center of the coordinate frame
is

E =
Q

4πr2
r̂ (2)

where r̂ ≡ r/r denotes the unit position vector, r the
position vector, and r ≡ ‖r‖ its absolute value.

By analogy, the magnetic field strength generated
by a magnetic charge q resting in the center of the
coordinate frame is

B =
q

4πr2
r̂ (3)
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In the classical (non-quantum mechanical) case the
Lorentz force on a moving electric charge Q in the
static magnetic field generated by a resting magnetic
charge q is

mr̈ = Qṙ×B (4)

Here ṙ ≡ ∂tr is the speed of the electric charge and
r̈ ≡ ∂tṙ = ∂2t r is its acceleration. The rest mass of
the electric charge is denoted by m. The rest mass
of the magnetic charge is assumed to be much larger
(infinity) than that of the electric charge, so that the
magnetic charge can rest in the center of the coordi-
nate frame.

By using

∂tr̂ = ∂t
(
r/
√
r · r

)
=

rṙ−
(

1
2r2ṙ · r

)
r

r2

=
r2ṙ− (ṙ · r)r

r3

=
r× (ṙ× r)

r3
(5)

the orbital angular momentum of the electric charge
generated by the Lorentz force

L ≡ r×mṙ (6)

gives

∂t L = L̇ = r×mr̈

= Qr×
(
ṙ× qr

4πr3

)
=

Qq

4π
∂tr̂ (7)

Subtraction gives

0 = ∂t

(
L− Qq

4π
r̂

)
(8)

Total angular momentum J is the sum of orbital an-
gular momentum L and intrinsic spin S,

J = L + S (9)

Moreover it is conserved,

0 = ∂tJ = ∂t(L + S) (10)

Comparison of equations (8) and (10) gives

S = −Qq
4π

r̂ (11)

Intrinsic spin is quantized in units of half-integers
times the reduced Planck constant,

‖S‖ =
n

2
(12)

where n denotes an arbitrary integer. Hence,

Qq = 2πn (13)

This is the Dirac quantization condition. It requires
that Q and q cannot have arbitrary values.

In the days of Dirac [2], that is is 1931, quarks
were not known. So he assumed that electric charge
is quantized in units of the positron charge e. There-
fore he assumed the unit magnetic charge g′ so as to
satisfy

eg′ = 2π (14)

By using the Sommerfeld fine-structure constant

αE ≡
e2

4π
' 1

137.036
(15)

this gives the coupling constant

g′2

4π
=

1

4π

(
2π

e

)2

=
1

4αE
' 34.259 (16)

However, since the prediction [3] and observation [4,
5] of quarks we know that electric charge is quantized
in units of e/3. Hence, the unit magnetic charge g is
given by

e

3
g = 2π (17)

This gives the magnetic coupling constant

αM ≡
g2

4π
=

1

4π

(
6π

e

)2

=
9

4αE
' 308.331 (18)

3 Non-Classical Dirac Mag-
netic Monopoles

Because of the introduction of the Lorentz force,
the calculation above was made for classical (non-
quantum mechanical) objects with electric and mag-
netic charge. However, since 1997 I am argueing [6,
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7] that the quantum field theoretical interaction be-
tween electric and magnetic charges requires the in-
troduction of a velocity operator which allows the
definition of a Lorentz force. So the calculation above
is valid also for the quantum physical case.

More precisely, the introduction of the velocity op-
erator requires the existence of absolute speed which
is defined by the finite light cone generated by the
Hubble effect. The velocity operator is therefore an
effect not only of quantum field theory, but also of
gravitation theory. The velocity operator is therefore
an effect of quantum gravity.

Moreover the calculation above gives the Dirac
quantization condition only if equation (3) is used.
It requires that both the Einstein electric photon [8]
and the Salam magnetic photon [9] have zero rest
mass. A massive magnetic photon would require a
Yukawa potential whose exponential term would de-
stroy the Dirac quantization condition.

4 Running Coupling Constant

In 2024 I predicted [10] the existence of elemen-
tary fermions with magnetic charge q = g (called
hanselons and gretelons) and also with q = 2g
(gretelons). The binding energy of two gretelons with
opposite magnetic charge ±2g which are separated by
the distance r would become quite large,

Eb = − q2

4πr
= − (2g)2

4πr
(19)

The total energy of two bound gretelons would be

E 'M1 +M2 +
1

r
− g2

πr
− GM1M2

r
(20)

whereM1 andM2 are the rest masses of the gretelons,
1/r is their zero point energy given by the uncertainty
principle, −g2/πr is their magnetic binding energy,
and−GM1M2/r is their gravitational binding energy.
G denotes the Newtonian gravitational constant.

The weak energy condition states that there cannot
exist any negative energy densities. Hence, E ≥ 0.
Moreover the rest masses of elementary particles can-
not be larger than the Planck mass MP = G−1/2,
because otherwise their Schwarzschild radius would

become larger than the Planck length lP = 1/MP =
G1/2. Hence,

0 ≤ E ≤ 2MP +
1

r
− g2

πr
− GMPMP

r
(21)

In principle, the mutual distance of the two (elemen-
tary) gretelons can become as small as the Planck
length,

r ≥ lP = 1/MP (22)

Hence, in the case r = 1/MP it is

0 ≤ E ≤ 2MP −
g2

π
MP = MP

(
2− g2

π

)
(23)

This can be satisfied only if

αM (r = lP ) =
g2(r)

4π
≤ 1

2
(24)

Hence, αM (r) must be a running coupling constant.
It must decrease with distance and increase with en-
ergy. – That αE(r) is a running coupling constant is
known since the work of Gell-Mann and Low in 1954
[11].

5 Summary

By using the quark hypothesis I have shown that at
zero temperature the magnetic coupling constant is
as high as 308.331. By using the weak energy con-
dition and applying it on a system of two bound
magnetic charges, I have shown that the magnetic
coupling is a running coupling constant and becomes
smaller than 0.5 at the Planck scale.
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