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Abstract. This article discusses the notion of uniform continuity, its
relation with the derivative of differentiable functions and Lipschitz
continuity or even more weakly Hölder continuity related in some way
to how wildly the function oscillates. It also discusses its connection
with compactness for the very large general class of functions - continu-
ous functions. Further, a few properties of uniform continuous function
especially with regards to unique continuous extension of functions are
discussed.

1. Introduction

If a function is uniformly continuous then the rate at which f(y) ap-

proaches f(x) as y → x does not depend upon x. One might expect that if

the function is differentiable and the derivative is bounded then the func-

tion is uniformly continuous because the rate at which f(y) approaches f(x)

as y → x is bounded. This is true and is proved below. However, due to a

remarkable theorem of Heine[1], continuity is all that one needs to impose

on a function defined on compact sets for it to be uniformly continuous.

All the functions in the following sections are defined on E ⊂ R and are

real valued unless stated otherwise.

Definition 1. Let f : E → R be a function. f is uniformly continuous if

for all ϵ > 0 there exists δ > 0 such that |f(x)− f(y)| < ϵ for all x,y ∈ E

for which |x− y| < δ[1][2].

2. A sufficient condition for uniform continuity of

differentiable functions

Theorem 2. If f is differentiable and f ′ is bounded on E then f is

uniformly continuous.

.
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Proof. Let x,y ∈ E. Using mean value theorem, there exists a c between x

and y such that |f(x)− f(y)| = |f ′(c)||x−y| ⩽ M|x−y| where |f ′| ⩽ M since

f ′ is bounded. Uniform continuity follows by choosing a 0 < δ < ϵ/M. □

Remark 3. A uniformly continuous function need not be differentiable

and thus need not have a bounded derivative. So, the above condition

is a sufficient condition and not a necessary condition. For example

f(x) = |x|1/2 is uniformly continuous on R and its slope goes to infinity

near the origin. The function is not differentiable at the origin. In

fact, every Hölder continuous function and thus every Lipschitz con-

tinuous function is uniformly continuous(next theorem).

The function f(x) = x2 is uniformly continuous on any bounded in-

terval but not uniformly continuous on R since the derivative is un-

bounded as x → ∞.

3. Another Sufficient condition or uniform continuity

Theorem 4. If f : E → R is a function such that |f(x)− f(y)| ⩽ C|x−y|λ

for all x,y ∈ E for some positive constants C and λ then f is uniformly

continuous. Such functions are called Hölder continuous.

Proof. Similar to the above theorem. Let 0 < δ < (ϵ/C)1/λ. □

4. A rather surprising connection between compactness and

uniform continuity

Theorem 5 (Heine). If E is compact and f is continuous then f is

uniformly continuous on E.

1[2]. Let ϵ > 0 be given. Since f is continuous at each point x ∈ E, there

exist δ(x) > 0 such that |f(y) − f(x)| < ϵ/2 whenever |y − x| < δ(x). Let

E(x) be the set of all points y such that |y − x| < 1

2
δ(x). {E(x)|x ∈ E}

is an open cover of E since x ∈ E(x) and each E(x) is open. Since E is

compact this open cover has a finite subcover, say {E(x1),E(x2), ...,E(xn)}.

Let δ = 1

2
min1⩽i⩽n δ(xi). Of course δ is positive since it is a minimum of

finitely many positive quantities.

Let x and y be points in E such that |y − x| < δ. x ∈ E(xm) for some
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integer m ∈ 1, 2, ...,n since x ∈ E and E(xi) is an open cover of E. So,

|x− xm| < 1

2
δ(xm). Also by the triangle inequality,

|y− xm| ⩽ |y− x|+ |x− xm| < δ+
1

2
δ(xm) < δ(xm).

Thus

|f(y) − f(x) ⩽ |f(y) − f(x)|+ |f(y) − f(x)| < ϵ/2+ ϵ/2 = ϵ.

So, f is uniformly continuous on E. □

2. Let f be not uniformly continuous so for every ϵ > 0 there exist a δ > 0

such that for all x,y ∈ E it is true that |x − y| < δ and |f(x) − f(y)| ⩾ ϵ.

Taking δ = 1, 1/2, 1/3, ..., (xk,yk) are obtained such that |xk − yk| < 1/k

for each k. Since {xk} is a sequence in a compact set, it has a limit point

and thus a convergent subsequence, say {xnk
} converging to, say a. So

the subsequence {ynk
} of {yk} also converges to a. Since f is continuous,

f(xnk
) − f(ynk

) → f(a) − f(a) = 0 which contradicts |f(xk) − f(yk)| ⩾ 1/k

for all positive integers k. So, f is uniformly continuous. □

5. Properties of uniformly continuous functions

Theorem 6. If E is bounded and f is uniformly continuous then f is

bounded.[2]

Proof. If f(E) is unbounded there exist a sequence f(xk) which diverges

to ±∞. So, |f(xk)| → ∞. Since E is bounded, every sequence in E has a

convergent subsequence. Let {xnk
} be such a convergent subsequence. {xnk

}

is Cauchy since E ⊂ R. Given any δ > 0 there exists N ∈ N such that for all

ni,nj ⩾ N |xni
−xnj

| ⩽ δ. ni can be chosen such that |f(xni
)| > 1+ |f(xnj

)|

and thus |f(xni
) − f(xnj

)| ⩾ 1. This contradicts the uniform continuity of

f since given ϵ = 1 there exists a δ > 0 such that xni
− xnj

| ⩽ δ and

|f(xni
) − f(xnj

)| ⩾ 1. So f is bounded. □

Theorem 7. Composition of uniformly continuous functions is uni-

formly continuous.[2]

Omitting the proof.
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Remark 8. However uniformly continuous function composed with

continuous function, continuous function composed with uniformly

continuous function or continuous function composed with continuous

function might not be uniformly continuous.

Theorem 9. Let f : X → Y where X and Y are metric spaces. If f

is uniformly continuous then f maps Cauchy sequences to Cauchy

sequences.[2]

Proof. Let {xn} be a Cauchy sequence in X and ϵ > 0 be given. Since f is

uniformly continuous there exists a δ > 0 such that dY(f(xn), f(xm)) < ϵ

whenever dX(xn, xm) < δ. There exists an N ∈ N such that dX(xn, xm) <

δ for all n,m ⩾ N. So, dY(f(xn), f(xm)) < ϵ for all n,m ⩾ N and thus the

sequence {f(xn)} is Cauchy. □

Remark 10. Uniform continuity implies continuity, however the met-

ric space might not be Cauchy complete.

Theorem 11. Let E be a dense subset of a metric space X. If f is

uniformly continuous then there exists a unique continuous extension

g from E to X.[2]

Proof. Let p ∈ X. If p ∈ E then g(p) = f(p). If p /∈ E then p is a limit

point of E since E is dense in X and thus there exists a sequence xn in E

such that xn → p. g(p) = limg(xn) = lim f(xn) since xn is a Cauchy

sequence and thus f(xn) is Cauchy since f is uniformly continuous. So,

f(xn) is convergent since R is Cauchy complete. It will be shown that g is

well defined, that is, if there are two sequences sn and tn in E converging

to x then limg(sn) = limg(tn) and g : X → R is continuous. Uniqueness

follows from the definition and continuity of g

Let f(sn) → q. Since f is uniformly continuous, given any ϵ > 0 there exists

a δ > 0 such that dX(a,b) < δ implies that |f(a)− f(b)| < ϵ. Since sn → p

there exists N1 ∈ N such that dX(sn,p) < δ/2 for all n ⩾ N1. Similarly,

there exists N2 ∈ N such that dX(tn,p) < δ/2 for all n ⩾ N2 since tn → p.

If N = max(N1,N2) then dX(sn, tn) ⩽ dX(sn,p) + dX(p, tn) < δ for all

n ⩾ N and thus |f(sn)−f(tn)| < ϵ. |f(tn−q)| ⩽ |f(tn)−f(sn)|+|f(sn)−q| <
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2ϵ for all n ⩾ N ′ where N ′ = max(N,N3) where |f(sn) − q| < ϵ for all

n ⩾ N3. Such N3 exists since f(sn) → q. So, f(tn) → q. Thus g is well

defined.

Let p ∈ E. Since f is uniformly continuous, given any ϵ > 0 there exists

a δ > 0 such that for all a,b ∈ E, dX(a,b) < δ implies |f(a) − f(b)| <

ϵ/2. Let x ∈ X such that dX(x,p) < δ/2. If x ∈ E then g(x) = f(x) so

|g(x) − g(p)| = |f(x) − f(p)| < ϵ/2 < ϵ. If x /∈ E then x is a limit point

of E and thus there is a sequence in E, say sn converging to x. So, there

exists N1 ∈ N such that dX(sn, x) < δ/2 for all n ⩾ N1. So, dX(sn,p) ⩽

dX(sn, x) + dX(x,p) < δ. So, |g(sn) − g(p)| = |f(sn) − f(p)| < ϵ/2. Since

g(x) = lim f(sn) = limg(sn) that is g(sn) → g(x) there exists N2 ∈ N
such that |g(sn) − g(x)| < ϵ/2 for all n ⩾ N2. Let N = max(N1,N2). So,

|g(x) − g(p)| ⩽ |g(x) − g(sn)| + |g(sn) − g(p)| < ϵ for all n ⩾ N. So, g is

continuous on E.

Let p /∈ E. p is a limit point of E. There is a sequence tn → p. Since

f is uniformly continuous, given any ϵ > 0 there exists a δ > 0 such

that dX(a,b) < δ implies that |f(a) − f(b)| < ϵ/3. Let x ∈ X such that

dX(x,p) < δ/3. If x ∈ E then g(x) = f(x) so |g(x)−g(p)| ⩽ |f(x)− f(tn)|+

|g(tn)−g(p)| < 2ϵ/3 < ϵ eventually since for large enough n, x and tn are

in δ/3 nbd of p and thus dX(x, tn) < δ/3 which implies |f(x)−f(tn)| < ϵ/3

and g(tn) → g(p). If x /∈ E then it is a limit point of E. There is a sequence

sn → x. sn → x and tn → p, so dX(sn, tn) < δ/3 for large enough n.

|g(x)−g(p)| ⩽ |g(x)−g(sn)|+ |f(sn)−f(tn)|+ |g(tn)−g(p)| < ϵ eventually

since g(sn) → g(x) and g(tn) → g(p). So, g is continuous on X. □

Corollary 12. Let f : E → Y where Y is a Cauchy complete metric

space. If f is uniformly continuous then there exists a unique contin-

uous extension f from E to E which is also uniformly continuous.

Proof. E is dense in E. Follows from the above theorem. □

A result on continuous extensions:

Theorem 13. If E ⊂ R is closed and f is continuous then there exists

continuous extensions from E to R.[2]
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Proof. Let g : R → R such that g(x) = f(x) for all x ∈ E. Let the graph

of g(x) be completed over R by joining the gaps in the graph of f(x) using

straight lines on R − E. g : R → R is continuous and is thus a continuous

extension of f : E → R from the closed set E to R. □

6. An example of a uniformly continuous function associated

with any subset of a metric space

A function associated with a metric space which is uniformly continuous:

Definition 14. Let E be a subset of the metric space (X,d). The dis-

tance function is defined as ρE(x) = infz∈E d(x, z) as x varies over X.

Distance between two sets is defined as the infimum of the distances

of points of one set to another.

Theorem 15. ρE is uniformly continuous.

Proof. ρE(x) ⩽ d(x, z) ⩽ d(x,y) + d(y, z) for all z ∈ E and so ρE(x) −

ρ(y) ⩽ ρE(x) − d(y, z) ⩽ d(x,y). Similarly, ρE(y) − ρE(x) ⩽ d(x,y). So,

|ρE(x) − ρE(y)| ⩽ d(x,y) and thus ρE is uniformly continuous. □

The distance function shows up in analysis. Here is an interesting ex-

ample:

Example 16. Distance between two disjoint closed sets of a metric

space may be zero. For example: set of positive integers E and the set

F = {n + 1/n}. Sets E and F are closed since they do not have limit

points. The distance between them is 0 since infn∈Z+ 1/n = 0.

If the space is Hausdorff(for example Rk), closed sets which are bounded

are compact. If one of the closed sets is compact in the above example then

the distance between them is always positive.

Theorem 17. Distance between a closed set F and a compact set K of

a metric space X is positive. In fact there exists a δ > 0 such that

dX(p,q) > δ for all p ∈ F and q ∈ K.[2]

First a lemma:
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Lemma 18. ρE(x) = 0 if and only if x ∈ E.

Proof. Let ρE(x) = 0. If x /∈ E then x ∈ X−E. X−E is open so there exists

r > 0 such that d(y, x) < r and y ∈ X−E. So, y /∈ E. Clearly z ∈ closureE

for all z ∈ E so d(z, x) ⩾ r > 0 and thus ρE(x) = infz∈E d(z, x) > 0 which

is a contradiction.

Let x ∈ E. If x ∈ E then ρE(x) = 0. If x /∈ E then x is a limit point of E.

Every nbd of x contains a point of E and thus ρE(x) = 0. □

Proof of the above theorem:

Proof. ρF(p) > 0 for all p ∈ K since if ρF(p) = 0 for some p ∈ K then

p ∈ F = F by the above lemma which is a contradiction since F and K are

disjoint. Since ρF is uniformly continuous it is continuous and the infimum

of ρF on K is attained since K is compact. So, there is a point q ∈ K such

that d(p,q) = infk∈K ρF(k). δ can be chosen to be less than d(p,q). □
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