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Abstract. In this paper, we investigate the interaction of two breathers in the

Sine-Gordon model. We derive an explicit analytic expression for the two-breather

solution of the Sine-Gordon equation and study its dynamics. We show that the

breathers behave like classical particles of equal masses upon collision, but with

the momentum continuously transferred via their fields. By suitably averaging

the oscillations of the solution we derive analytic expressions for the trajectories

of the two breathers. It is shown that in the non-relativistic limit, the interaction

potential between the two breathers has the same form as the velocity-dependent

interaction potentials used for Machian unified theories of gravity and inerita.
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1. Introduction

A breather soliton model of elementary particles [1] is suggested by Machian

unified theories of gravity and inertia[2-9]. In such a theory, particles are breather-

solitons in the gravitational field, or more generally, a unified field of which the

gravitational one is a part. The particles are then part of the field itself, namely the

breather soliton. A universe consisting of N particles is described by an N-breather

solution to the underlying non-linear field equation, which in the simplest possible

form reads

□φ+ V (φ) = 0. (1.1)

This N-breather solution then includes the N particles, the fields generated by them

as well as the resulting motion due to the fields. For such a breather soliton model

of elementary particles, it is necessary to show that all known properties of the

elementary particles are exhibited by the solitons. Especially, the correct behaviour

under collisions and the fact that indeed the mutual interaction due to the soliton’s

fields are included in the multi-soliton solutions, has to be demonstrated. Although

the correct three-dimensional soliton equations remain to be found, it is desirable

to study the collision and mutual interaction of breather solitons already in toy-

models, such as the 1 dimensional Sine-Gordon model. It is based on the Sine-

Gordon equation

□φ+
1

d2
sin(φ) = 0. (1.2)

This equation possesses breather and N-breather solutions [10], with the well-known

one-breather solution given by

φ(x, t) = 4 arctan

cot(q)
cos
(

γ sin(q)
d

(ct− xβ)
)

cosh
(

γ cos(q)
d

(x− vt)
)
. (1.3)

Here, v is the breather’s velocity and q is a real parameter. d is proportional to

the 1/e radius and thus the size of the breather. β = v/c and γ = 1/
√

1− β2

are defined in the usual way. In the following, we want to study the interaction

between two such breathers. This problem has so far only been studied for resting

breathers of constant relative phase, using approximate solutions for large separa-

tions between the breathers [11,12]. Those results are not applicable to the case

of two breathers moving with different velocities, since they necessarily oscillate at

different frequencies due to the relation

ω =
sin(q)γ

d
c (1.4)



3

between the breathers velocity and the oscillation frequency. This implies that their

relative phases wont stay constant during their motion. Further, the assumption of a

large separation between them is obviously invalid when a collision occurs. Instead,

we use exact two-breather solution of the Sine-Gordon equation, which is derived

in the appendix. Using the asymptotic expansion of this solution we will show that

the breathers behave like classical particles of equal masses under collision. We

will determine the trajectory of the breathers by averaging out the oscillations and

calculate the maxima of the two breather solution φ , as is described in the next

two sections.

Since a breather soliton nature of the elementary particles is suggested by

Machian unified theories of gravity and inertia [2-9], it is particularly interesting to

analyze the form of the interaction potential between the two breathers in the classi-

cal, non-relativistic limit. Those Machian theories are classical and non-relativistic,

including up to second order terms in β. They are built on velocity dependent grav-

itational potentials which only contain relative quantities, like the Weber-potential

[2-6]

VWeber = −Gm1m2

r12
(1− ṙ212

2c2
), (1.5)

or the Riemann-potential [8,9]

VRiemann = −Gm1m2

r12
(1− v2

12

2c2
). (1.6)

Here, r12 = |r1 − r2| and v12 = v1 − v2 , G is the gravitational constant and c

the speed of light. The velocity dependent part of the potentials then gives rise

to the phenomenon of inertia, instead of the usual Newtonian kinetic energy. It is

desirable to show that breather-breather interaction potentials in the classical, non-

relativistic limit (the lowest non-vanishing order in β ) reduce to the form exhibited

by (1.5-1.6), which is

V = f(r12)(1 + αβ2
12), (1.7)

with α some dimensionless parameter of order of unity. This, we want to show in

the fourth section of our paper for the interaction of two Sine-Gordon breathers.
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2. The averaging procedure

The one breather solution of the Sine-Gordon equation is given by (A.4)

φ(x, t) = 4 arctan

(
cot(q)

cos(b)

cosh(a)

)
(2.1)

with

a =
γ cos(q)

d
(x− vt− x0)

b =
γ sin(q)

d
(ct− xβ) + δ0

The trajectory of a breather (or particle) can be defined as the line on which the

successive maxima and minima of the oscillations lie.

Figure 1. The one-breather solution (2.1) for the parameters β =
0.6 , q = 1.2 , d = 0.2. The line on which the successive maxima and
minima lie can be defined as the trajectory of the breather

This line can be found by averaging out the oscillations, setting the oscillatory

function equal to a constant

cos(b) = ξ = const.

and then calculate the maxima via

∂φ

∂x
= 0 (2.2)

This yields the condition

x = vt+ x0 (2.3)

which is the free breather’s trajectory. Alternatively, if one would’ve have deter-

mined the maxima of (2.1) directly without setting the oscillatory function to a



5

constant, one would’ve obtained the equation

tan(q)β tan(b) = tanh(a) (2.4)

This transcendent equation gives the solutions of the discrete maxima and minima

of the breathers oscillations. The line, on which they lie is again (2.3). Indeed, if

we plug this in (2.4), the right side vanishes leaving us with an additional condition

which yields the discrete maxima and minima of the oscillations, given by

xn =
dβ

sin(q)
√

1− β2
(πn− δ0) +

x0
1− β2

If we are interested only in the trajectory (the line, on which these extrema lie), it

is sufficient to calculate (2.2) with the oscillatory functions set to a constant.

3. The trajectories of the two-breather solution

This procedure we now want to apply to the two-breather solution, which is

given by

φ = 4arctan

(
fi
fr

)
with fi and fr given by (A.7, A.8) (see appendix A for a derivation). Since two

breathers of different q1 ̸= q2 still behave like particles of the same masses under

collisions, we restrict ourselves to the case q1 = q2 =: q here. For simplicity, we also

set the initial positions of the two breathers (x0)1 = (x0)2 = 0; keeping a non-zero

value for them would only change the specific position of the collision, which doesn’t

impact our discussion. Because we’re only interested in the trajectories and not the

discrete positions of the single maxima, we again set the oscillatory functions to a

constant. Here, we will distinguish two cases: The case where both breathers move

in phase close to their collision point, and the one where they move out of phase

close to the collision point. Over the whole motion, one cannot specify a specific

relative phase, since, as was already pointed out, both breathers oscillate with

different frequencies, according to (1.4). Since the relative phase that impacts the

interaction most will be the one where the breathers are closest, we will distinguish

both cases by the relative phase at this point. An example of both an in-phase

(Fig. 2) and out-of-phase (Fig. 3) collision of two breathers is plotted below. In

both cases, one can see how the two breathers move in-phase and out of phase

respectively close to the collision point. The further one goes away from that point,

the more their relative phases change due to their different oscillation frequencies.
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Figure 2. The two-breather solution with both breathers being in
phase at the collision point. It is plotted for the parameters β1 = 0.7,
β2 = 0.3, d = 0.1 and q = 1.2.

Figure 3. The two-breather solution with both breathers being out
of phase at the collision point. It is plotted for the parameters β1 =
0.7, β2 = 0.3, d = 0.1 and q = 1.2.
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Now, both breathers will collide close to the origin, there we have

b1 ≈ δ1, b2 ≈ δ2

For in-phase oscillation at this point, we have δ2 = δ1 and thus we set

cos(b1) = cos(b2) = ξ (3.1)

For out-of-phase oscillation we have δ2 = δ1 + π and thus we set

cos(b1) = − cos(b2) = ξ (3.2)

3.1. Out-of-phase oscillation. We first deal with the case of out-of-phase os-

cillation. If we plug (3.2) into (A.7,A.8) and use the half-angle formulas for the

hyperbolic functions, we obtain the expressions

fi = sinh

(
a1 + a2

2

)
(2u1w2C

2ξ sinh

(
a1 − a2

2

)
−

8(u1w2)
2C
√
1− ξ2 cosh

(
a1 − a2

2

)
) (3.3)

fr = −E − F cosh(a1 + a2)−G cosh(a1 − a2) (3.4)

with

E = 2ξ2u1u2(D
2 −B) + 8(u1w2)

2D(1− ξ2) (3.5)

F = w1w2(D
2 +B)− 4(u1w2)

2D (3.6)

G = w1w2(D
2 +B) + 4(u1w2)

2D (3.7)

ak =
γk cos(q)

d
(x− vkt), k = 1, 2

Now, we can transform into the center of mass frame moving with

v =
γ1v1 + γ2v2
γ1 + γ2

In this frame, we have

a1 + a2 = ax (3.8)

a1 − a2 = bt (3.9)

with

a =
γ1 + γ2
γ

cos(q)

d

b =
2γ1γ2γ

γ1 − γ2

cos(q)

d
v12

and v12 = v1 − v2 , γ = 1/
√

1− β2 We can thus write

fi
fr

=
sinh

(
ax
2

)
g(t)

E + F cosh(ax) +G cosh(bt)
(3.10)
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Figure 4. The trajectory of the two breathers for the out-of-phase
case. It is plotted for the parameters β1 = 0.7, β2 = 0.3, d = 0.1 and
q = 1.2.

g(t) = −2u1w2C
2ξ sinh

(
bt

2

)
+ 8(u1w2)

2C
√

1− ξ2 cosh

(
bt

2

)
We can now calculate again (2.2). Taking into account that

∂φ

∂x
= 0 ↔ ∂fi/fr

∂x
= 0

since the arctan is a strictly monotonic function, and fi/fr given by (3.10), we

obtain1)

x±(t) = ±1

a
cosh−1(

G

F
cosh(bt) + k) (3.11)

k = 2 +
E

F
(3.12)

Eq. (3.11) is the trajectory of our two breathers in the center of mass frame. The

solution is plotted for the same values as in Fig. (3).

The asymptotics can be calculated using the formula cosh−1(x) ≈ ln(2x) as

|x| → ∞ giving

x+(t) ≈
b

a
|t|+ 1

a
ln

(
G

F

)
(3.13)

x−(t) ≈ − b

a
|t| − 1

a
ln

(
G

F

)
(3.14)

One can see that, like for classical particles the breathers move towards each other

with opposite velocities of equal magnitude

v∗ =
b

a
=

2γ1γ2γ
2

γ21 − γ22
v12

1A third solution is x=0, which corresponds to the minimum between both breathers along the
trajectory of the center of mass. This solution we don’t need here.
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before the collision, swap their velocities upon collision, and move away from each

other afterwards, again with opposite velocities of the same, equal magnitude. Un-

like classical particles, however, the collision is not a discrete process in time, but a

continuous transfer of momentum via the fields of the particles (the breathers), as

can be seen by (3.11). The fields generated by the particles transfer the momentum

from the faster particle to the slower one until they have swapped their velocities.

Multiplying (3.11) by a and transforming back into the lab frame with the

help of the equations (3.8-3.9) leads to an implicit equation for x given by

a1 + a2 = ± cosh−1(
G

F
cosh(a1 − a2) + k) (3.15)

This equation is not solvable analytically for x in general. It is plotted numerically,

again for the same values as in Fig. (3). The asymptotics can again be calculated

analytically using cosh−1(x) ≈ ln(2x), giving

x+(t) ≈
{
v2t+

d
2 cos(q)γ2

ln
(
G
F

)
t→ −∞

v1t+
d

2 cos(q)γ1
ln
(
G
F

)
t→ +∞

}
(3.16)

x−(t) ≈
{
v1t− d

2 cos(q)γ1
ln
(
G
F

)
t→ −∞

v2t− d
2 cos(q)γ2

ln
(
G
F

)
t→ +∞

}
. (3.17)

Those expressions could’ve also been obtained by directly transforming (3.13-3.14)

back to the lab frame. They agree with those obtained directly from the asymptotics

of the exact two-breather solution derived in appendix B (A.14-A.15). Indeed, using

the definitions (3.5-3.7) and the identity

1

2
ln

(
1 + x

1− x

)
= tanh−1(x)

we can write the phase shifts as

tanh−1(
4u1u2D

D2 +B
) =

1

2
ln

(
G

F

)
.

which agrees with (3.16-3.17).

3.2. In-phase oscillation. The derivation for this case is analogous to the out-of-

phase case. Plugging (3.1) into (A.7-A.8) yields

fi
fr

=
cosh

(
ax
2

)
g̃(t)

−E + F cosh(ax) +G cosh(bt)
(3.18)

g̃(t) = 2u1w2C
2ξ cosh

(
bt

2

)
− 8(u1w2)

2C
√
1− ξ2 sinh

(
bt

2

)
in the center of mass frame and from this one obtains for the trajectory

x±(t) = ±1

a
cosh−1(

G

F
cosh(bt)− k) (3.19)
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These solutions agree with the ones for the out-of-phase case, just with k → −k.
Therefore, also the asymptotics agree with the ones obtained for the out-of-phase

case. However, in this case, we also need to consider the solution with x=0. This is

because at some time t, the right side of (3.19) will vanish and both solutions de-

generate. At this point, both breathers merge and propagate as one single breather

along the trajectory of their common center of mass until at some time t, they

reemerge and propagate as two single breathers again. This behavior can be seen in

fig. 2 near the collision point: There no longer exist two separate maxima/minima

of the two breathers, but only one combined maximum/minimum due to construc-

tive interference between them. The points, at which the two breathers merge and

reemerge respectively can be found from the condition

cosh−1(
G

F
cosh(bt)− k) = 0

which, upon solving for t is equivalent to

t = ±1

b
cosh−1(

E + 3F

G
)

The ”lifetime” of the composite breather is thus

τ =
2

b
cosh−1(

E + 3F

G
)

In the lab frame, the corresponding expressions read

a1 + a2 = ± cosh−1(
G

F
cosh(a1 − a2) + k) (3.20)

for the (implicit) equation for the trajectory and

t = ± d

cos(q)

γ1 + γ2
2γ1γ2v12

cosh−1(
E + 3F

G
)

for the times of the merging and reemerging of the two breathers.

The discontinuity of the velocity of the breather trajectories at the two points

t is an artifact of our definition of the trajectories. When the two breathers approach

the point t, the minimum of the function φ between them will suddenly have a higher

value than the two former maxima. This point corresponds to the discontinuity in

the derivatives of the breather trajectories. Nevertheless, the breathers move with

a well-defined, finite velocity through these points. It is just the position of the

maximum that shifts discontinuously.
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Figure 5. The trajectory of the two breathers for the in-phase case.
It is plotted for the parameters β1 = 0.7, β2 = 0.3, d = 0.1 and
q = 1.2. The merge/reemerge points are at t = ±0.637 in the lab
frame and t = ±0.078 in the cms frame.

4. The classical, non-relativistic limit and connection to the

Machian theories

We now want to analyze the motion of the two breathers in the classical,

non-relativistic limit. This means we have β1, β2 << 1 and r >> d 2) with r the

relative separation between the two breathers

r := x1 − x2 (4.1)

We will show that the trajectory of the two breathers in this case corresponds to

the motion in a Machian interaction potential of the form

V = f(r)(1 + αβ2
12) (4.2)

with α some dimensionless parameter of the order of unity.

Since the in phase case only differs from the out-of-phase case by a sub-

stitution k → −k, we can just deal with the out-of-phase case and later make

this substitution in the result to get the formulas for the in-phase case. In the

non-relativistic limit we have γ1 ≈ γ2 ≈ 1 and thus

a1 + a2 = 2x− (v1 + v2)t

a1 − a2 = −v12t

2The second condition comes from the fact that we’re considering the classical limit, thus our two
particles have to be far enough away from each other so that their separation r is beyond a typical
quantum mechanical scale like the Bohr radius r >> a0. d is now the 1/e radius of the breather
and thus our particle. We therefore have d ≈ rp, with rp the radius of the proton. Both together
imply the claimed condition.
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Plugging this into (3.11) and solving for x yields for the trajectories in the lab frame

x±(t) =
v1 + v2

2
t± d

2
cosh−1(

G

E
cosh

(
v12t

d

)
+ k) (4.3)

For the relative separation (3.1) this gives

r = d cosh−1(
G

E
cosh

(
v12t

d

)
+ k) (4.4)

For the time derivative we obtain

ṙ =
1

sinh(r/d)
v12 sinh

(
v12t

d

)
(4.5)

Solving (4.4) for cosh(v12t/d) and plugging the result into the square of (4.5) yields

ṙ2 = v212(1 +
1 + k2 −G2/E2 − 2k cosh

(
r
d

)
sinh

(
r
d

)2 )

In this, we can identify the first term in the brackets as the total energy and the

second as the negative interaction potential

V (r) = −v212
1 + k2 −G2/E2 − 2k cosh

(
r
d

)
sinh

(
r
d

)2 (4.6)

Now, in the classical limit we have r >> d . Therefore, in the interaction potential

(4.6) we only have to keep the last term proportional to cosh(r/d) . Further, we

can approximate
cosh

(
r
d

)
sinh

(
r
d

)2 ≈ 2 exp
(
−r
d

)
leaving us with the far field

V (r) ≈ 4kv212 exp
(
−r
d

)
(4.7)

Finally, we have for k in the lowest non-vanishing order β

k = 2(1 +
cot(q)2

β2
12

)

Plugging this into (4.6) yields

V (r) ≈ 8c2 cot(q)2(1 + tan(q)2β2
12) exp

(
−r
d

)
which has the claimed form (4.2).

For the in-phase case we get accordingly

V (r) ≈ −4kv212 exp
(
−r
d

)
(4.8)

As we can see, this still has the same form, just with a different sign. We can see

from (4.7) and (4.8), and the fact that k > 0, that the potential is attractive for
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the in-phase case and repulsive for the out-of-phase case, in agreement with what

has already been found in [11,12]

5. Conclusion

We have analyzed the interaction between two Sine-Gordon breathers and

found analytic expressions for the trajectories they follow due to their mutual in-

teraction. We have seen that they behave like classical particles with equal masses:

They swap their velocities upon collision. However, the momentum transfer is not

discrete, but continuous, mediated via their fields. This shows how in a soliton

model indeed particles and fields have a unified description. The fields ”generated”

by the particles are part of the solitons themselves and are included in the soliton

solutions. As is the interaction due to these fields: The trajectories found for each

of the two breathers correspond to an accelerated motion, caused by the field of the

other.

In the classical, non-relativistic limit we’ve shown that the interaction po-

tential between the two breathers takes the same form as the interaction potentials

underlying the Machian unified theories of gravity and inertia. As we stated in the

beginning, the soliton model of elementary particles is suggested as a consequence

of those Machian theories. Here, we have shown that in turn the interaction poten-

tial between two breathers in the Sine-Gordon model indeed reduces to a velocity

dependent potential of the same form as used in the Machian theories. This is a

further indication that a breather soliton model of elementary particles is indeed the

correct quantum-relativistic generalisation of the classic, non-relativistic Machian

theories. To show, that the above said is also true for the full, 3 dimensional theory

remains a task to be done, once the correct soliton equations are found.

Appendix A (The two-breather solution of the Sine-Gordon

equation)

The N-soliton solution to the Sine-Gordon equation

□φ+
1

d2
sin(φ) = 0

is given by [10]

φ = arctan

(
fi
fr

)
(A.1)

f = fr + ifi = W (ψ1, ..., ψN)
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Here, fr, fi denote the real and imaginary part of f and W is the Wronskian with

the entry vector ψ = (ψ1, ..., ψN)
T

W (ψ1, ..., ψN) = |ψ(0), ψ(1), ..., ψ(N−1)|

=

∣∣∣∣∣∣∣∣∣∣∣

ψ
(0)
1 ψ

(1)
1 ... ψ

(N−1)
1

ψ
(0)
2 ψ

(1)
2 ... ψ

(N−1)
2

... ... ... ...

ψ
(0)
N ψ

(1)
N ... ψ

(N−1)
N

∣∣∣∣∣∣∣∣∣∣∣
(A.2)

with ψ
(j)
k = ∂jψk/∂X

j. The number N is the number of solitons in the solution.

The functions ψk are given by

ψk = ak exp

(
ζk
2

)
+ bk exp

(
−ζk

2

)
ζk = αkX +

1

αk

T + ζ
(0)
k

X = (x+ ct)/2d and T = (x− ct)/2d are the light cone coordinates. α, a and b are

complex parameters, ζ(0) a complex phase.

The N-breather solution is obtained from the 2N-soliton solution by setting

ψ = (ψ11, ψ12, ψ21, ψ22..., ψN1, ψN2)
T

with

ψk1 = ak exp

(
ζk
2

)
+ bk exp

(
−ζk

2

)
, ψk2 = a∗k exp

(
ζ∗k
2

)
− b∗k exp

(
−ζ

∗
k

2

)
Without loss of generality, we can set ak = bk = 1 by absorbing the constants into

the phase ζ
(0)
k .

proof:

By using ak = exp(ln(ak)) and bk = exp(ln(bk)) , we can write

ψk1 = exp

(
δk
2

)
(exp

(
ζ̃k
2

)
+ exp

(
− ζ̃k

2

)
) = exp

(
δk
2

)
ψ̃k1

with

δk = ln(akbk)

ζ̃
(0)
k = ζ

(0)
k + ln

(
ak
bk

)
The same can be done for ψk2 , giving

ψk2 = exp

(
δ∗k
2

)
(exp

(
ζ̃∗k
2

)
+ exp

(
− ζ̃

∗
k

2

)
) = exp

(
δ∗k
2

)
ψ̃k2
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Now, since δk doesn’t depend on X, it isn’t affected by the differentiations in the

Wronskian (A.2). Since the first line in W is proportional to exp(δ1/2), the second

to exp(δ∗1/2), and so on, we can pull each of these factors out of the determinant,

and write

W (ψ) = exp

(
N∑
k=1

Re(δk)

)
W (ψ̃)

Now, the factor standing by the new Wronskian on the right side is real and thus it

cancels out in the final solution (A.1), which is only dependent on the quotientfi/fr.

□

Thus we can write the functions ψk as

ψk1 = exp

(
ζk
2

)
+ exp

(
−ζk

2

)
, ψk2 = exp

(
ζ∗k
2

)
− exp

(
−ζ

∗
k

2

)
where we have suppressed the tilde symbols again for brevity.

The one-breather solution can now obtained by choosing N=1, which yields

the solution

fr = 2u cos(b) (A.3)

fi = −2w cosh(a) (A.4)

with

a = ζr =
γ cos(q)

d
(x− vt− x0), b = ζi =

γ sin(q)

d
(ct− xβ) + δ0

and we’ve set

x0 = − d

γ cos(q)
ζ(0)r , δ0 = ζ

(0)
i

Here, v is the velocity of the breather, β = v/c and γ = 1/
√

1− β2 . Further, we

have

|α|2 = 1− β

1 + β

and

u = αr = |α| cos(q)

w = αi = |α| sin(q)

with q a real parameter. Thus, we can write the one-breather solution with (A.1)

and (A.3, A.4) as

φ = 4arctan

(
cot(q)

cos(b)

cosh(a)

)
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where we have used the formula arctan(1/x) = π/2− arctan(x).

The two-breather solution is obtained by choosing N=2. Performing the

Wronskian with Mathematica one obtains

fi = −w1u2(C
2 − A) cosh(a1) cos(b2)− w2u1(C

2 + A) cosh(a2) cos(b1)

+4u1u2w1w2C(sinh(a1) sin(b2)− sinh(a2) sin(b1)) (A.5)

fr = −w1w2(D
2 +B) cosh(a1) cosh(a2) + u2u1(D

2 −B) cos(b2) cos(b1)

+4u1u2w1w2D(sinh(a1) sinh(a2) + sin(b2) sin(b1)) (A.6)

with

ak = (ζk)r =
γk cos(qk)

d
(x− vkt− (x0)k)

bk = (ζk)i =
γk sin(qk)

d
(ct− βkx) + δk

(x0)k = − d

γk cos(qk)
(ζ

(0)
k )r, δk = (ζ

(0)
k )i, k = 1, 2

Here, vk are the velocities of the two breathers 1 and 2, βk = vk/c and γk =

1/
√

1− β2
k . Further,

|αk|2 =
1− βk
1 + βk

and

uk = |αk| cos(qk)

wk = |αk| sin(qk)

as well as

C = −|α1|2 + |α2|2

D = |α1|2 + |α2|2

A = 2|α1|2|α2|2(cos(2q1)− cos(2q2))

B = 2|α1|2|α2|2(cos(2q1) + cos(2q2))

For two equal breathers with q1 = q2 =: q (but in general different velocities), we

have

A = 0

B = 4|α1|2|α2|2 cos(2q)

With this, we can write the solution as

fi = −u1w2C
2(cosh(a1) cos(b2) + cosh(a2) cos(b1))

+4(u1w2)
2C(sinh(a1) sin(b2)− sinh(a2) sin(b1)) (A.7)

fr = −w1w2(D
2 +B) cosh(a1) cosh(a2) + u2u1(D

2 −B) cos(b2) cos(b1)
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+4(u1w2)
2D(sinh(a1) sinh(a2) + sin(b2) sin(b1)) (A.8)

6. Appendix B: The asymptotics of the two breather solution

In this appendix we want to derive the asymptotic expressions of the two

breather solution (A.1) with (A.5, A.6). By dividing fi and fr by cosh(a1) cosh(a2)

we can write them as

fi = −w1u2(C
2 − A)z2 − w2u1(C

2 + A)z1

+4u1u2w1w2C(tanh(a1)y2 − tanh(a2)y1)

fr = −w1w2(D
2 +B) + u2u1(D

2 −B)z1z2

+4u1u2w1w2D(tanh(a1) tanh(a2) + y1y2)

with

zk =
cos(bk)

cosh(ak)
, k = 1, 2

yk =
sin(bk)

cosh(ak)
, k = 1, 2

In this form, we can now easily find the asymptotics. Without loss of generality

we assume v1 > v2 . This means, that before the collision, breather 1 is left of

breather 2, and vice versa after the collision. We can find the asymptotics now by

for example first looking at breather 1 before the collision. Here, breather 2 is far

enough away so that we have

z2 ≈ y2 ≈ 0

in the vicinity of 1. In addition, since 1 is left of 2, we have

tanh(a2) ≈ −1

This leaves us with

fi ≈ −w2u1(C
2 + A)z1 + 4u1u2w1w2Cy1

fr ≈ −w1w2(D
2 +B)− 4u1u2w1w2D tanh(a1)

Plugging both into (A.1) yields

φbefore
1 ≈ 4 arctan

(
w2u1(C

2 + A) cos(b1)− 4u1u2w1w2C sin(b1)

w1w2(D2 +B) cosh(a1) + 4u1u2w1w2D sinh(a1)

)
(A.9)

If we set

sin(δ) = 4u1u2w1w2C cos(δ) = w2u1(C
2 + A)

sinh(ϵ) = 4u1u2w1w2D cosh(ϵ) = w1w2(D
2 +B)
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we can use the addition formulas for trigonometric and hyperbolic functions to write

(A.9) in the form

φbefore
1 = 4arctan

(
cos(b1 + δ1)

cosh(a1 + ϵ)

)
(A.10)

with the phase and position shifts δ1 and ϵ given by

tan(δ1) =
4u2w1C

C2 + A

tanh(ϵ) =
4u1u2D

D2 +B
Equation (A.10) is a one-breather solution phase shifted by δ1 and position shifted

by ϵ. In the same way we can obtain

φbefore
2 = 4arctan

(
cos(b2 + δ2)

cosh(a2 − ϵ)

)
(A.11)

φafter
1 = 4arctan

(
cos(b1 − δ1)

cosh(a1 − ϵ)

)
(A.12)

φafter
2 = 4arctan

(
cos(b2 − δ2)

cosh(a2 + ϵ)

)
(A.13)

The phase shift δ2 is given by3)

tan(δ2) =
4u1w2C

C2 + A

We can directly obtain the trajectories of the asymptotics. Taking into account

that to the trajectory x+ belong the asymptotics φbefore
2 and φafter

1 , and to x− the

asmptotics φbefore
1 and φafter

2 we get

x+ ≈
{
v2t+

d
cos(q)γ2

tanh−1(4u1u2D
D2+B

) t→ −∞
v1t+

d
cos(q)γ1

tanh−1(4u1u2D
D2+B

) t→ +∞

}
(A.14)

x− ≈
{
v2t− d

cos(q)γ2
tanh−1(4u1u2D

D2+B
) t→ −∞

v1t− d
cos(q)γ1

tanh−1(4u1u2D
D2+B

) t→ +∞

}
(A.15)

3In the case considered in section 3 we have q1 = q2 and thus u1w2 = u2w1. Consequently we
then also have δ1 = δ2 in this case.
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