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Abstract. In this note, we introduce and develop the analysis of the fractional

invariance. This analysis is used for estimating the partial sums of arithmetic
functions f : N −→ R of the form

∑
n≤x
n∈A

f(n) for A ⊆ N. This analysis can be

applied to a broad class of arithmetic functions.

1. Introduction

The study of arithmetic functions is a cornerstone of number theory, providing
profound insights into the distribution of integers and their relationships. These
functions, which map natural numbers to real values, encompass a wide variety of
important sequences, including divisor functions, multiplicative functions, and the
celebrated Euler totient function. Estimating the partial sums of such functions
may not be straightforward, often requiring sophisticated analytical techniques to
yield accurate results. Traditional approaches to estimating these partial sums
frequently encounter limitations due to the oscillatory nature of arithmetic functions
and their diverse growth rates. As a result, existing methods may struggle to
provide estimates that are both precise and reflective of the inherent smooth trends
that characterize many arithmetic functions. This is particularly evident in the
estimation of sums involving functions that exhibit erratic behaviors over their
domains. While complex variable techniques have been developed to address these
challenges, they often require substantial mathematical machinery and may not
be accessible to all practitioners in the field [1]. In this context, we introduce an
analysis that allows us to decompose an arithmetic function into several parts,
where some parts contains a smoothed-out version of the arithmetic function. We
leverage this analysis to estimate the partial sums of a broad class of arithmetic
functions. Our approach centers around the concept of the fractional invariance,
which extends the properties of an arithmetic function f : N −→ R to certain
subsets of the real numbers. By leveraging this concept, we develop a systematic
framework that enables us to derive accurate estimates for sums of the form

∑
n≤x
n∈A

f(n)

with A ⊆ N. This method serves as an alternative to existing techniques, providing
an accessible and effective means of analysis that enhances our understanding of
the behavior of arithmetic functions.
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The following sections will elaborate on the theoretical foundations of our method,
detailing its application to various arithmetic functions and demonstrating its ef-
ficacy through concrete estimates. We aim to elucidate the advantages of this
approach, highlighting its versatility and potential for further exploration in the
rich landscape of analysis and number theory.

2. The fractional invariant function

In this section, we extend the validity of an arithmetic function to subsets of the
reals.

Definition 2.1. Let f : N −→ R. We denote the fractional invariance of f with
f̃ as the function f̃ : R −→ R such that f̃(x) = f(bxc) + {x}, where b·c and {·}
denotes the integer and the fractional part of the real number x.

The fractional invariance f̃ of f is a slight extension that preserves the intrinsic
property of f on the reals R. Some immediate properties of f̃ are obvious.

2.1. Properties of the fractional invariant function. In this section, we ex-
pose some fundamental properties of the fractional invariance of the function f :
N −→ R.

Proposition 2.2. Let f : N −→ R. The following properties of the fractional
invariant function f̃ hold

(i) f̃ |N = f . That is, the values of the fractional invariant function f̃ coincides
with the values of the original function f on the positive integers.

(ii) f̃ : R −→ R is right-continuous and have left limits on the interval [x, x+1)
for all x ∈ N.

(iii) f̃ : R −→ R is a strictly increasing on [x, x+ 1) for each x ∈ N.
(iv) f̃ : R −→ R is of bounded variation of [x, x+ 1) for each x ∈ N.
(v) If f̃(x) = f̃(y) and {x} = {y}, then f(bxc) = f(byc).
(vi) f̃ : R −→ R is bounded if and only if f : N −→ R is bounded.

Lemma 2.3 (Stieltjes-Lebesgue integral). Let g : [a, b] −→ R and f : [a, b] −→ R
be right continuous and of bounded variation on [a, b] and both having left limits.
Then we have

f(b)g(b)− f(a)g(a) =

∫
(a,b]

f(t−)dg(t) +

∫
(a,b]

g(t−)df(t) +
∑

t∈(a,b]

∆ft∆gt

where ∆ft = f(t)− f(t−).

There are several well-known strategies for estimating partials sums of the form∑
n≤x
n∈A

f(n) for A ⊆ N and f : N −→ R. In the case f is continuous one can often

apply Stieltjes integral. However, this approach becomes ineffective if f(n) is not
uniformly continuous on R and has no known arithmetic property. A typical in-
stance is when f is an arithmetic function that exhibits chaotic behaviours on its
positive integer arguments. In the sequel, we launch a new method for analyzing
the partial sums of the form above in those scenarios.
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Theorem 2.4 (The fractional invariance analysis). Let f : N −→ R and let A ⊆ N.
Denote A(x) := {n ≤ x : n ∈ A} and |A(x)| := #{n ≤ x : n ∈ A}. Then

∑
n≤x
n∈A

f(n) = f(bxc)|A(x)| −
bxc∑
j=1

∫ j

j−1
|A(t)|f̃ ′(t)dt−

bxc∑
j=1

∑
t∈(j−1,j]

∆|At|∆f̃t

where ∆f̃t = f̃(t)−f̃(t−) and ∆|At| = |A(t)|−|A(t−)| with f̃ denoting the fractional
invariance of f .

Proof. By the first part of Proposition 2.2, we can write

∑
n≤x
n∈A

f(n) =
∑
n≤x
n∈A

f̃(n) =

bxc∑
j=1

∑
j−1<n≤j

n∈A

f̃(n).

The fractional invariant function f̃ is right-continuous on intervals of the form
[x, x+ 1) for each x ∈ N and has left limits with a bounded variation of [x, x+ 1).
By an application of Stieltjes integral, can write

∑
j−1<n≤j

n∈A

f̃(n) =

j∫
j−1

f̃(t)d|A(t)|.

By applying the Stieltjes-Lebesgue integral, we deduce∫ j

j−1
f̃(t)d|A(t)| = f̃(j)|A(j)| − f̃(j − 1)|A(j − 1)| −

∫ j

j−1
|A(t)|f̃ ′(t)dt

−
∑

t∈(j−1,j]

∆|At|∆f̃t.

It follows that that

bxc∑
j=1

∫ j

j−1
f̃(t)d|A(t)| =

bxc∑
j=1

[
f̃(j)|A(j)| − f̃(j − 1)|A(j − 1)|

]
−
bxc∑
j=1

∫ j

j−1
|A(t)|f̃ ′(t)dt

−
bxc∑
j=1

∑
t∈(j−1,j]

∆|At|∆f̃t.

We deduce further

bxc∑
j=1

∫ j

j−1
f̃(t)d|A(t)| = f̃(bxc)|A(x)| − f̃(0)|A(0)| −

bxc∑
j=1

∫ j

j−1
|A(t)|f̃ ′(t)dt

−
bxc∑
j=1

∑
t∈(j−1,j]

∆|At|∆f̃t.
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Clearly |A(0)| = 0 and with the convention f̃(0) = f(0) := 0 combined with the
properties of the fractional invariant function, we obtain

∑
n≤x

f(n) = f(bxc)|A(x)| −
bxc∑
j=1

∫ j

j−1
|A(t)|f̃ ′(t)dt

−
bxc∑
j=1

∑
t∈(j−1,j]

∆|At|∆f̃t.

�

3. Applications of the fractional invariance analysis

In this section, we discuss some applications of the fractional invariance analysis
developed in the previous section.

3.1. Fractional invariance analysis on the partial sums of the logarithmic
function. We now apply the fractional invariance analysis method to estimate∑

n≤x log n Let f(n) = log n and let A = N, so A(x) = bxc. Then,

∑
n≤x

log n = log(bxc) · bxc −
bxc∑
j=1

∫ j

j−1
btc · d

dt
(log t)dt−

bxc∑
j=1

∑
t∈(j−1,j]

∆|At|∆f̃t (3.1)

where ∆f̃t = f̃(t) − f̃(t−) and ∆|At| = |A(t)| − |A(t−)|. We analyze each of the
terms in the sum. The first term provides the dominant growth

log(bxc) · bxc ≈ x log x.

By noting that f(n) = log n with the invariance f̃(t) = log t and f̃ ′(t) = 1
t , we

deduce

bxc∑
j=1

∫ j

j−1
btc·1

t
dt =

bxc∑
j=2

∫ j

j−1
btc·1

t
dt =

bxc∑
j=2

∫ j

j−1
dt−

bxc∑
j=2

∫ j

j−1

{t}
t
dt = bxc−

bxc∑
j=2

∫ j

j−1

{t}
t
dt.

By putting these contributions together, we deduce

∑
n≤x

log n = bxc log(bxc)− bxc+

bxc∑
j=2

∫ j

j−1

{t}
t
dt−

bxc∑
j=1

∑
t∈(j−1,j]

∆|At|∆f̃t

and a more precise estimate could be obtained by analyzing the contributions from
the sum involving the discrete jumps.

3.2. Fractional invariance analysis on the partial sums of the Euler totient
function. We now apply the fractional invariance analysis method to estimate∑

n≤x φ(n) Let f(n) = φ(n) and let A = N, so A(x) = bxc. Then,

∑
n≤x

φ(n) = φ(bxc) · bxc −
bxc∑
j=1

∫ j

j−1
btcφ̃′(t)dt−

bxc∑
j=1

∑
t∈(j−1,j]

∆|At|∆φ̃t (3.2)
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where ∆φ̃t = φ̃(t) − φ̃(t−) and ∆|At| = |A(t)| − |A(t−)|. We analyze each of the
terms in the sum. The first term provides the dominant growth

φ(bxc) · bxc = (bxc)2
∏
p|bxc

(1− 1

p
)

where p denotes a prime number. We deduce∑
n≤x

φ(n) = (bxc)2
∏
p|bxc

(1− 1

p
)−

bxc∑
j=2

∫ j

j−1
tφ̃′(t)dt+

bxc∑
j=1

∫ j

j−1
{t}φ̃′(t)dt

−
bxc∑
j=1

∑
t∈(j−1,j]

∆|At|∆φ̃t.

The estimate for this sum can be made more precise by understanding the integral
terms and the discrete jumps involving the invariance φ̃ of φ.

4. Conclusion and further remarks

The fractional invariance analysis presented herein offers a novel and robust
approach to estimating partial sums of a wide array of arithmetic functions. By
leveraging the interplay between local behavior and smooth trends, this method
surpasses traditional techniques, which often rely heavily on either discrete or con-
tinuous analysis. Its adaptability to various classes of functions, along with the
capacity to accommodate the intricate nature of arithmetic distributions, positions
it as a valuable tool in the arsenal of analytic number theory. Through rigorous ap-
plication, we have demonstrated the efficacy of this method in estimating sums such
as those associated with the Euler totient function and the divisor function. The
insights garnered not only enhance our understanding of these fundamental arith-
metic functions but also pave the way for future explorations into more complex
problems in number theory. The implications of the fractional invariance analysis
extend beyond the specific estimates presented; it invites a reconsideration of es-
tablished methods and encourages further research into the nuances of arithmetic
functions. As we continue to explore the richness of number theory, the adoption of
this alternative approach may lead to new discoveries and a deeper comprehension
of the intricate relationships that govern the behavior of numbers. Ultimately, this
work lays a foundation for future inquiry and reinforces the importance of innova-
tive methods in advancing mathematical understanding of how arithmetic functions
can be smoothed out in certain subsets of the reals. We anticipate that the frac-
tional invariance analysis will inspire subsequent research, fostering advancements
in analytic number theory.
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